分母分式的加减法导学案
- 格式:doc
- 大小:80.50 KB
- 文档页数:2
§3.3 分式的加减法(第一课时)一、学习目标1.经历探索分式加减运算法则,理解其算理;2.会进行简单分式的加减运算,具有一定的代数化归能力;3.能解决一些简单的实际问题,进一步体会分式的模型思想。
二、学习重点:分式的加减运算;三、学习难点:解决一些简单的实际问题,进一步体会分式的模型思想。
四、预习设计:1.同分母的分式相加减__________________________,用式子表示则为ac±bc=______.2.填空:(1)2214_______;(2)_______;(3)y x a bm m x y x y a b b a --=-=+----=____.3.把分母不相同的几个分式化成分母相同的分式叫做________.4.三个分式的分母是3ax2y,4a3x y,2xy,则它们的最简公分母是______.五、教学过程设计1.创设情景,导出问题从甲地到乙地有两条路,每条路都是3km,其中第一条是平路,第二条有1km的上坡路、2km的下坡路,小丽在上坡路上的骑车速度为vkm/h,在平路上的骑车速度为2vkm/h,在下坡路上的骑车速度为3vkm/h,那么(1)当走第二条路时,她从甲地到乙地需要多长时间?(2)她走哪条路花费时间少?少用多长时间?2.探索交流,发现规律讨论:(1)同分母的分数如何加减?(2)你认为应等于什么?(3)猜一猜,同分母的分式应该如何加减?归纳:与同分母分数加减法的法则类似,同分母的分式加减法的法则是:同分母的分式相加减,分母,把分子。
3.练习巩固,促进迁移做一做:想一想:(1)异分母的分数如何加减?(2)比如应该怎样计算?类比异分母分数的加减运算,学生容易想到,解决异分母分式的加减问题,其关键是化异分母分式为分式的过程。
议一议:小明认为,只要把异分母的分式化成同分母的分式,异分母分式的加减问题就变成了同分母分式的加减问题。
小亮同意小明的这种看法,但他俩的具体做法不同。
分式的加减(第1课时)教学设计一、内容和内容解析1.内容分式的加减法法则.2.内容解析本节课内容属于《义务教育数学课程标准》(2011年版)中的“数与代数”领域,是在小学学习了分数的加减运算,初中学习了整式加减、多项式的因式分解、分式的基本性质和分式乘除运算的基础上,利用“数式通性”,通过类比研究整式加减的方法和分数的加减法运算,进一步研究分式的加减法运算.因此,分式的加减运算是分数加减运算的抽象和深化.同时分式的加减运算又是后续学习分式的混合运算及分式方程的基础,在本章中起着承上启下的作用.首先,分式的加减法法则是对分数的加减法法则的抽象,两者的本质是一样的.教学中先回顾分数的加减法法则,再引申出分式的加减法法则,从而在学生的“最近发展区”得到响应,体现由“数”到“式”的发展过程.本节课的核心内容是分式的加减运算,而分式的加减运算的核心内容是“数式通性”.其次,分式加减法法则分别用文字形式和符号形式进行了表述.类比分数加减法则首先出现文字表述,在学生理解后,适时地提出如何用符号形式表述法则的问题,引导学生运用数学符号语言表达法则.这样处理不仅可以加深学生对法则本身的理解,还可以锻炼他们用数学式子表达数学关系的能力,渗透符号意识.再次,对于分式加减法法则的教学,不仅要清楚它们的算理,而且还要安排相应的例题进行示范,以规范学生的解题格式,培养学生良好的学习习惯.因此,本节课安排了例题及不同层次的练习,用以巩固本节课所学知识,及时反馈目标达成情况,提高学生的运算能力.最后,分式的加减法中蕴含着丰富的数学思想和研究问题的方法:1.本节课通过两个实际问题——工作效率问题、增长率问题,说明分式的加减法有着丰富的实际背景和广泛的应用,通过对这两个实际问题的数学化,潜移默化地向学生渗透数学模型思想.2.在进行分式加减运算时,由于分母有相同和不同之分,所以对同分母和异分母分式的加减,得出对应的结论,即“同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减”,体现了分类讨论的研究方法.3.由整式加减的研究思路得出分式加减的研究思路,分数的加减法法则得出分式的加减法法则,体现解决问题的基本策略即类比的研究方法.4.将异分母分式的加减转化为同分母的分式加减,最终转化为分子的整式加减运算,体现了化归的思想方法.基于以上分析,确定本节课的教学重点:分式的加减法法则和简单运算,以及本节课所蕴含的数学思想方法.二、目标和目标解析1.目标(1)理解分式的加减法法则,体会类比思想.(2)会运用法则进行分式的加减运算,体会化归思想.(3)在探究法则及运用法则解决问题的过程中,提高观察、分析、归纳及概括能力.2.目标解析达成目标(1)的标志是:学生能类比分数的加减法法则得出分式的加减法法则,通过分数的加减法体会分式的加减法,能用文字语言和符号语言表示分式的加减法法则.通过分数的加减运算法则抽象得到分式加减运算法则,使学生经历从特殊到一般的研究问题的过程,体会从特殊到一般的研究问题的方法.达成目标(2)的标志是:学生能对两个或三个分式进行加减运算(含整式与分式的加减运算),明确异分母分式必须化为同分母分式才能进行加减运算,体会化归思想在异分母分式加减运算中的作用.达成目标(3)的标志是:在探究分式的加减法法则的过程中,通过学生独立思考、互相交流,引导学生归纳概括出分式加减的法则,提高学生的归纳及概括能力;在学生自主完成练习后,通过订正习题、交流不同解法,提高学生观察及分析能力.三、教学问题诊断分析在进行异分母分式的加减运算时,通常要经历找最简公分母、通分、加减、化简这4个步骤,由于步骤多,运算量大,综合性强,学生很容易出错. 常遇到如下问题:(1)找不准最简公分母.(2)当进行分式与整式的加减计算时,不能把这个整式看作分母为1的式子.(3)当分子相减时,若减式的分子是多项式,计算时没有将分子用括号括起来.(忽视了分数线的括号作用)(4)运算结果没有化为最简分式或整式.(5)进行异分母分式加减运算时,按法则先通分进行运算,不能根据题目特点约分后再进行计算,存在思维定势,不能具体问题具体分析.教学时,应注意进行有针对性的引导,如结合题目引导学生如何找最简公分母,结果要化成最简,具体问题具体分析等.本节课的教学难点是:异分母分式的加减运算.四、学情分析学生在小学已经学过分数的加减,分数的加减运算相关内容和学习方法为学习分式的加减法运算搭好了“脚手架”.七年级已经类比数的运算,研究了整式加减运算,研究整式加减的过程和方法为研究分式的加减积累了经验.在本章前面已学过分式的基本性质、约分与通分、分式的乘除,而这些内容的展开都非常重视分数与分式的联系,利用“数式通性”,充分考虑了“从具体到抽象,从特殊到一般”的认识过程,这些已有的知识和经验使学生具备了学习分式加减法则的基础.八年级学生已经具备一定的运算能力,但对于运算的准确性和算法的选择存在一定的困难,如在进行分式的减法运算时,忽略分数线的括号作用,不能将分子的整式用括号括起来,从而造成运算错误.还有的学生在进行异分母分式加减运算时,只知道按法则通分进行运算,不能根据题目特点约分后再进行计算,存在思维定势,不能具体问题具体分析.五、教学策略分析1.“先行组织者”教学策略.在“创设情景,提出问题”这一环节,引导学生类比整式加减运算的研究路径,引出本节课学习的分式加减运算的研究路径,为新知学习提供研究线索和研究方法.2.“问题导学”教学策略.教师通过设置“问题串”,利用类比的思想,采用启发式教学,引导学生回顾分数的加减法法则,类比得出分式的加减法法则,最大限度地调动学生“合情推理”的因素,从而在学生的“最近发展区”得到响应,以确保学习知识的“正迁移”,从而体现由数到式的发展过程.3.“多媒体辅助”教学策略.使用多媒体课件,及时反馈学生的课堂达成情况,激发学生的学习兴趣.同时,增大课堂容量,提高课堂效益.4.“评价反思”教学策略.在归纳小结环节,引导学生回顾本节课的学习内容及研究过程,针对学习过程反思新知的研究方法,完善学生的认知结构,培养学生良好的学习习惯,从而逐步做到学会学习.5.“分层递进”教学策略.在运用分式加减法法则环节,为学生搭建自主探索、合作交流的平台,展示学习成果,反馈学习疑难.在展示中比较优劣,通过分析题目的显著特点,来灵活运用方法技巧解决问题,从而达到“用法则而不拘泥于法则”的程度;在反馈中进行调控,通过富有针对性的提问、指导,从而面向全体,为不同层次的学生提供学习机会和恰当的帮助,提高课堂实效性.在布置作业环节,通过设置不同层次的作业让不同的学生在数学上得到不同的发展,增加学习的兴趣.六、教学支持条件分析根据本节课教材内容的特点,采用多媒体辅助教学.在教学过程中,利用Seewolink教学软件,通过手机拍照,将学生所做练习同步传输到电脑屏幕,结合电子白板的功能完成批注,形象、直观的呈现素材,及时反馈学生的课堂达成情况,提高课堂效率,激发学生的学习兴趣,体现数学课堂的“现代感”.七、教学过程设计(一)创设情境,提出问题问题1 我们是如何研究整式的加减运算的?师生活动:教师提出问题,学生独立思考并回答问题,师生共同完成.追问:你能类比整式加减运算的研究过程和方法,试着说出分式加减运算的过程和方法吗? 师生活动:教师提出问题,学生独立思考并回答问题.【设计意图】学生已有了研究整式加减运算的活动经验,通过问题引导学生回忆整式加减运算研究的过程与方法,然后类比整式加减的研究,启发学生勾画出分式加减运算研究的过程与方法,引导学生建构本节课的研究思路,明确类比对象,逐步养成用代数研究的“基本策略”思考问题的习惯.同时,通过类比,使学生对本节课的内容有了一个整体的认识,使他们在后续学习与研究中增强学习的预见性与主动性.问题2 (1)甲工程队完成一项工程需n 天,乙工程队要比甲队多用3天才能完成这项工程.请用含有n 的式子表示:甲工程队一天完成这项工程的 ;乙工程队一天完成这项工程的 ;两队共同工作一天完成这项工程的 .(2)①若2009年,2010年,2011年某地的森林面积分别是10km 2,15km 2,24km 2,请用算式表示:2011年的森林面积增长率是 ;2010年的森林面积增长率是 .②若2009年,2010年,2011年某地的森林面积(单位: km 2)分别是1s ,2s ,3s ,请用含有1s ,2s ,3s 的式子表示:2011年的森林面积增长率是 ;2010年的森林面积增长率是 ;2011年与2010年相比,森林面积增长率提高了 .师生活动:教师提出问题,学生独立思考并写出答案.如果学生存在问题,教师可适时启发引导.在解决问题2的第(2)组练习时,让学生明确年增长率的含义,通过具体数字帮助学生理解其意义.【设计意图】通过这两个实际问题,说明分式的加减法有着丰富的实际背景,为引出分式的加减法作铺垫.(二)类比探究,解决问题1.探索同分母分式加减法法则问题3 (1)请计算:5251+=( ), 5251-=( ) . (2)请思考: c c 21+=( ), cc 21-=( ) . 你能类比同分母分数的加减法法则说出同分母分式的加减法法则吗?师生活动:学生回答问题,相互补充.在教师的引导下,学生给出同分母分数的加减法法则,再通过类比得出同分母分式的加减法法则: “同分母分式相加减,分母不变,把分子相加减”.追问:你能用式子表示同分母分式的加减法法则吗?师生活动:(学生自主学习,小组讨论汇报,师生归纳总结)教师指导学生完成,得出c a ±c b =c b a ±.教师引导学生得出同分母分式的加减法可转化为分子整式相加减,让学生感受转化思想.【设计意图】从学生已有的数学经验出发,经历由特殊的同分母分数加减法法则到一般的同分母分式加减法法则的类比过程,感悟数式通性,体会一般化及类比的方法在解决数学问题时的重要价值.同时,引导学生对分式的加减法法则用文字语言和符号语言分别进行表述,这样处理不仅加深学生对法则本身的理解,而且可以渗透符号意识.2.运用同分母分式加减法法则计算: (1) x x x 11-+; (2)1131121++-++++b a b a b a ; (3)2222235y x x y x y x ---+. 师生活动:学生独立完成,三名学生板书,师生共同订正.教师强调书写格式的规范性,强调计算结果一定要化成最简分式,如将(1)的结果x x 化为1,(3)的结果2233y x y x -+化为最简分式y x -3.对于(2),要强调当分子为多项式时,要添加括号.【设计意图】初步运用同分母分式的加减法法则进行简单计算,规范分式加减运算的步骤和格式.通过运用同分母分式加减法法则进行计算,培养学生的运算能力. 3.探索异分母分式加减法法则问题4 (1)请计算:3121+=( ), 3121-=( ) . (2)请思考: d b 11+=( ), db 11-= ( ) . 你能类比异分母分数加减法法则说出异分母分式的加减法法则吗?师生活动:学生回答问题,相互补充.在教师的引导下,学生给出异分母分数的加减法法则,再通过类比得出异分母分式的加减法法则: “异分母分式相加减,先通分,变为同分母的分式,再加减”.追问:你能用式子表示异分母分式的加减法法则吗?师生活动:教师与学生共同完成.得出d c b a ±=bd ad ±bdbc =bd bc ad ±.教师引导学生得出异分母分式的加减法可转化为同分母分式相加减,让学生再次感受转化思想.【设计意图】从学生已有的数学经验出发,经历由特殊的异分母分数加减法法则到一般的异分母分式加减法法则的类比过程,感悟数式通性,体会一般化及类比的方法在解决数学问题时的重要价值.通过用式子表示异分母分式的加减法法则,渗透符号意识.4.运用异分母分式加减法法则例 计算: qp q p 321321-++ . 师生活动:师生共同分析,解答.教师强调找准最简公分母后再通分.【设计意图】初步运用异分母分式的加减法法则进行简单计算,规范分式加减运算的步骤和格式. 练习1 计算:(1)223121cd d c + ; (2) ba b a a +--122 . 练习2 计算:(1) 112---a a a ; (2) 222a b a b a b---+. 师生活动:学生独立完成练习,利用Seewolingk 软件和白板展示运算过程,师生共同订正.教师引导学生注意解题过程中出现的问题.在计算练习1中的(1)题时,应引导学生找出正确的最简公分母;(2)中则再次强调分子是多项式时,要加括号. 在计算练习2中的(1)题时,由于是分式与整式的减法运算,应将整式看作是分母为1的“分式”,再作计算;在计算练习2中的(2)题时,通过“通分、计算、再约分”与“先约分,再计算”的解法对比,体会解法优化所带来的“运算的简捷性”.师生交流,达成共识:应注意先观察式子的特点,参与运算的分式不是最简分式,应该先将其化为最简分式,再作减法计算.【设计意图】(1)通过练习使学生进一步理解分式的加减法法则,会运用它们进行简单分式的加减运算;(2)学生经历将异分母分式化归为同分母分式的过程,体会化归的作用;(3)在学生自己独立思考解答练习2后,教师利用Seewolingk 软件和白板将学生值得集体思考的做法展示出来,在展示中比较优劣,从而把对知识的认知提升一个层面.同时,通过分析题目的特点,引导学生灵活运用方法技巧解决问题,从而提高学生的运算能力.练习3 你能应用本节课所学的知识解决 “问题2”吗?解:(1)311++n n =()33++n n n + ()3+n n n =()332++n n n . (2)223S S S --112S S S -=()21231S S S S S --()21122S S S S S -=2121222131S S S S S S S S S +--=212231S S S S S -. 即2011年与2010年相比,森林面积增长率提高了212231S S S S S -. 师生活动:教师提问,学生在导学案上完成并展示,教师巡视和指导,师生交流.【设计意图】通过这个练习,让学生应用分式的加减法法则解决简单的实际问题,并在此过程中体会分式的加减法在解决实际问题时的重要作用.(三)归纳小结,反思提高问题5 (1)分式加减法的法则是什么?在运用法则计算的过程中,需要注意哪些问题?(2)通过本节课的学习,你学到了哪些解决数学问题的方法?能举例说明吗?师生活动:教师引导,学生思考、回答,师生共同完成.【设计意图】引导学生从知识内容和思想方法等方面总结自己的收获,体会类比方法在学习分式的加减法中的作用,进一步感悟数式通性,体会化归思想,积累解题经验.同时,让学生学会反思,养成良好的学习习惯.(四)分层作业,巩固提高1.必做题:教科书P146习题15.2第4,5题.2.选做题:观察下面的变形规律:211⨯=1-21,321⨯=21-31,431⨯=31-41,… 解答下面的问题:①若n 为正整数,请你猜想()11+n n = . ②证明你猜想的结论;③求和:211⨯+321⨯+431⨯+…+()n n 11-+()11+n n . 【设计意图】分层作业,使“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展.”.第1题“必做题”是帮助学生巩固基础知识和基本技能;第2题“选做题”是为学有余力的学生设置的,主要是培养学生综合运用能力.八、板书设计,突出重点【设计意图】第一块黑板分成左右两部分,它们对课堂所起的作用分别是:左边让学生明确知识要点和相应的数学思想、方法,突出本节课的重点;右边是解题板书,给学生示范.第二块黑板以学生的板书为主,根据问题的难易程度,让不同的学生板书,激励学生上课认真听讲,吸收有价值的相关知识和方法. 该板书设计突出本节课的核心内容,能够有效利用黑板,起到辅助教学、提高课堂教学效益的作用.九、目标检测设计1.计算111---a a a 的结果为( ) A . 11-+a a B . 1--a a C . -1 D . a -1 【设计意图】考查同分母分式的加减运算.2.化简xx x-+-31922的结果是 . 【设计意图】考查异分母分式的加减运算.3.计算下列各题:(1)ab a b 1+-; (2)y x y x y x y x 324323-+--+; (3)162412---x x x ; (4) 112---x x x . 【设计意图】观察题目特点,灵活运用法则,积累解题经验,提高运算能力.4.某单位全体员工计划在植树节义务植树240棵,原计划每小时植树a 棵,实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务(用含a 的代数式表示)【设计意图】考查建模思想及运用分式加减法解决实际问题的能力.。
分式加减法教案教案标题:分式加减法教案教案目标:1. 学生能够理解分式加减法的概念和基本原则。
2. 学生能够运用分式加减法解决实际问题。
3. 学生能够运用所学知识,灵活地进行分式加减法的计算。
教学重点:1. 分式加减法的基本原则和运算规则。
2. 分式加减法的实际应用。
教学难点:1. 学生理解分式加减法的概念和运算规则。
2. 学生能够将实际问题转化为分式加减法的计算。
教学准备:1. 教师准备教学课件、黑板、彩色粉笔等。
2. 学生准备纸和铅笔。
教学过程:一、导入(5分钟)1. 教师通过提问复习上节课所学的分式的概念和运算规则。
2. 引入今天的主题:分式加减法。
二、讲解与示范(15分钟)1. 教师通过PPT或黑板,详细讲解分式加减法的基本原则和运算规则,包括相同分母的分式加减法和不同分母的分式加减法。
2. 教师通过具体的例子演示如何进行分式加减法运算,并解释每一步的操作原因。
三、练习与巩固(20分钟)1. 学生进行基础练习,计算给定的分式加减法题目。
2. 学生完成一些应用题,将实际问题转化为分式加减法的计算,并给出答案和解答过程。
3. 学生互相交流,讨论解题思路和方法。
四、拓展与应用(15分钟)1. 学生分组进行小组讨论,设计一些实际问题,通过分式加减法进行计算,并给出解答和解题过程。
2. 每个小组派代表上台展示他们的问题和解答过程。
五、总结与反思(5分钟)1. 教师总结今天的教学内容,强调分式加减法的重要性和实际应用。
2. 学生对今天的学习进行反思,提出问题和困惑。
教学延伸:1. 学生可以通过做更多的分式加减法题目来加深对知识点的理解和掌握。
2. 学生可以通过查阅资料,了解更多分式加减法的实际应用。
教学评估:1. 教师观察学生在课堂上的表现,包括参与度、理解程度和解题能力。
2. 教师布置作业,检查学生对分式加减法的掌握情况。
3. 学生之间相互评价和反馈。
教学反馈:1. 教师根据学生的表现和作业情况,及时给予反馈和指导。
3.3分式的加减(1)(说课稿)李天群《分式的加减法》这节课是代数运算的基础,一课时完成,主要内容是同分母的分式相加减及简单的异分母的分式相加减。
学生已掌握了分数的加减法运算,同时也学过分式的基本性质,这为本节课的学习打下了基础,而掌握好本节课的知识,将为学习《分式方程》做好必备的知识储备教学目标: ①知识与技能:使学生会进行简单的分式加减运算,具有一定的代数化归能力,能解决一些简单的实际问题;②过程与方法:使学生经历探索分式加减运算法则的过程,理解其算理;③情感态度与价值观:培养学生大胆猜想,积极探究的学习态度,发展学生有条理思考及代数表达能力,体会其价值。
重点:掌握分式的加减运算法则进行运算难点:异分母的分式加减运算本课我主要以“创设情景——引导探究——类比归纳——拓展延伸”为主线,让学生观察归纳,启发和引导贯穿教学始终,通过师生共同研究探讨,体现以教为主导、学为主体、练习为主线的教学过程。
根据学生的认知水平,我设计了“自主探索、合作交流、猜想归纳和巩固提高”四个层次的学法。
引导学生通过类比分数运算引入分式的加减运算,既体现了分式加减运算的意义,又让学生经历从类比中归纳出法则并运用法则进行运算的过程,并在此基础上激发学生寻求解决问题的方法。
15·2·2分式的加减(1)一、教学目标1、使学生在理解分式的加减法法则,并用法则进行运算。
2、通过对分式的加减法的学习,提高学生的计算能力。
二、教学重点、难点重点:分式的加减法运算。
难点:异分母分式的加减法运算。
三、教学方法:启发式教学四、教学过程(一)、复习提问:1、分数的加减法的法则是什么?计算:15+25,15-25,12+13,12-13。
2、分式的乘方性质是什么?用式子表示出来。
学生计算并回答问题,教师及时纠正出现的错误。
引言:我们在小学学习了分数的加减法,对于分式的加减如何来进行计算呢?这就是我们这节课要学习的内容。
(二)、明确学习目标。
《同分母分数加减法》是在学生学习整、小数加减法的基础上安排的,是进一步学习分数计算和以后学习数学的基础,是小学数学四则运算的主要内容之一。
因此这部分内容是小学数学重要的基础知识。
下面是白话文的小编为您带来的五年级同分母分数加减法教学设计【优秀3篇】,在大家参照的同时,也可以分享一下白话文给您最好的朋友。
人教版五年级数学下册《同分母分数加减法》教案篇一第一课时教学内容:同分母分数加减法教学目标:使学生理解分数加减法的意义,掌握同分母分数加减法的法则,并能正确的计算同分母分数加减法。
教学过程:一、复习什么叫加法、减法?二、教学新课1、学生自学例1和例22、学生提出问题。
3、向学生提问:(1)为什么分母相同的分数,可以直接把分子相加?(2)填空题:2/9+5/9表示()个1/9加上()个/1/9,一共是()个1/9,就是()。
(3)3/4-1/4表示()个1/4减去()个1/4,还有()个1/4,就是()。
4、在计算的过程中要注意什么?三、巩固练习1、看题目说出计算过程。
2、完成应用题。
四、总结本节课的内容1、同分母分数加减法的计算法则如何?2、为什么分母不便呢?3、最后的结果要注意什么。
五、布置作业人教版五年级数学下册《同分母分数加减法》教案篇二教学要求1.理解分数加、减法的意义,初步掌握民分母分数加、减法的算理和计算法则。
2.能够正确地计算比较简单的同分母分数加、减法。
3.培养同学们抽象、概括等思维能力。
教学重点同分母分数加、减法的计算法则。
教学难点理解分数加、减法的意义。
教学用具例1和例2的示意图。
(投影片)教学过程一、创设情境1.口答。
①什么是分数单位?②的分数单位是(),的分数单位是(),的分数单位是()。
③是()个,是5个(),4个是()。
使学生理解一个分数的分母是几,它的分数单位就是几分之一;分子是几,就有几个这样的分数单位。
然后教师引出新课,并板书:同分母分数加、减法。
二、揭示课题1.教学分数加法的意义。
9.3简单的同分母分数加减法(教案)- 三年级上册数学青岛版一、教学目标1. 让学生掌握同分母分数加减法的计算方法,能正确计算同分母分数的加减。
2. 培养学生运用数学知识解决实际问题的能力,提高学生的数学思维水平。
3. 培养学生合作学习的精神,增强学生参与数学活动的积极性。
二、教学内容1. 同分母分数加减法的计算方法。
2. 同分母分数加减法的实际应用。
三、教学重点与难点1. 教学重点:同分母分数加减法的计算方法。
2. 教学难点:同分母分数加减法的实际应用。
四、教学过程1. 导入新课通过创设情境,引导学生回顾已学的分数知识,为新课的学习做好铺垫。
2. 探究新知(1)教师引导学生发现同分母分数加减法的计算规律,总结计算方法。
(2)学生通过小组合作,探究同分母分数加减法的计算方法。
(3)教师点评学生的探究成果,强调计算方法的关键点。
3. 巩固练习(1)教师出示同分母分数加减法的计算题,学生独立完成。
(2)教师点评学生的练习情况,针对典型错误进行讲解。
4. 应用拓展(1)教师引导学生运用同分母分数加减法解决实际问题。
(2)学生分组讨论,提出解决问题的方法。
(3)教师点评学生的解决方案,给予鼓励和指导。
5. 课堂小结教师引导学生总结本节课所学内容,强化学生对同分母分数加减法的认识。
6. 课后作业教师布置同分母分数加减法的练习题,要求学生在课后独立完成。
五、教学反思1. 教师应关注学生在课堂上的参与度,调动学生的学习积极性。
2. 在教学过程中,教师要注意引导学生发现同分母分数加减法的计算规律,培养学生的数学思维。
3. 教师应注重培养学生的合作学习能力,提高学生的团队协作意识。
4. 教师要关注学生的学习反馈,及时调整教学策略,提高教学效果。
六、板书设计1. 同分母分数加减法的计算方法。
2. 同分母分数加减法的实际应用。
七、教学资源1. 同分母分数加减法的计算题。
2. 同分母分数加减法的实际应用题。
八、教学时间1课时九、教学评价1. 学生能正确计算同分母分数的加减法。
15.2.2分式的加减〔一〕一、教学目标:〔1〕熟练地进行同分母的分式加减法的运算.〔2〕会把异分母的分式通分,转化成同分母的分式相加减. 二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算. 2.难点:熟练地进行异分母的分式加减法的运算. 三、教学过程:〔一〕板书标题,呈现教学目标:〔1〕熟练地进行同分母的分式加减法的运算.〔2〕会把异分母的分式通分,转化成同分母的分式相加减. 〔二〕引导学生自学:阅读P15-16练习,并思考以下问题:1. 分数的加减运算法那么是什么?分式的加减运算法那么又是什么? 2. 异分母的分式加减法的一般步骤是什么?8分钟后,检查自学效果〔三〕学生自学,教师巡视: 学生认真自学,并完成P16练习 〔四〕检查自学效果:1.学生答复老师所提出的问题 2.学生答复P16练习〔五〕引导学生更正,归纳: 1.更正学生错误;2.P16例6. 第〔1〕题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比拟简单;第〔2〕题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.[分析] 第〔1〕题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.[分析] 第〔2〕题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式. 3.进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转化为同分母的分式加减法,,然后按同分母的分式加减法的法那么计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:〔1〕取各分母系数的最小公倍数;〔2〕所出现的字母(或含字母的式子)为底的幂的因式都要取;〔3〕相同字母(或含字母的式子)的幂的因式取指数最大的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.4.异分母的分式加减法的一般步骤:〔1〕通分,将异分母的分式化成同分母的分式;〔2〕写成“分母不变,分子相加减〞的形式;〔3〕分子去括号,合并同类项;〔4〕分子、分母约分,将结果化成最简分式或整式. 〔六〕课堂练习 1.计算:〔1〕 〔2〕 〔3〕2.计算:〔1〕 〔2〕 111---x x x b a ab b a a +++2329122---m m aa a a a a a a a 2444122222--÷⎪⎭⎫ ⎝⎛+----+)225(423---÷-+x x x x作业:1.习题15.2第4,5题〔A本〕2.?感悟?P8-9分式的加减〔一〕3.预习P17-18练习[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
《同分母分数加减法》的教学设计优秀6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!《同分母分数加减法》的教学设计优秀6篇作为一名老师,常常要写一份优秀的教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。
本节课主要内容是同分母分式相加减和异分母分式相加减,是通分与约分的应用,也是解分式方程的基础,所以说这节课的内容在本章中起着承上启下的作用,在整个初中代数运算中也起着非常重要的作用.分式的四则混合运算也是本章教学中的一个难点,克服这一难点的关键是通过必要的练习掌握分式的各种运算法则及运算顺序.一、同分母的分式加减法法则:同分母分式相加减,分母不变,分子相加减.二、异分母的分式加减法法则:(1)通分:将几个异分母的分式分别化为与原来分式的值相等的同分母分式的过程叫做通分,这几个相同的分母叫做公分母.(2)异分母分式加减法法则:分母不同的几个分式相加减,应先进行通分,化成同分母分式后再进行加减运算,运算结果能化简的必须化简.【例1】计算:(1);(2).【难度】★【答案】(1)1;(2).【解析】本题主要考查同分母的加减法.【例2】计算:(1);(2).【难度】★【答案】(1)1;(2).【解析】本题主要考查同分母的加减法,注意计算结果一定要是最简分式.【例3】化简的结果是()A、B、C、D、【难度】★【答案】A【解析】本题主要考查同分母的加减法,注意结果为最简分式.【例4】若,则=__________.【难度】★【答案】-5【解析】本题一方面考查分式值为零的条件,另一方面考查同分母的加减法.【例5】将分式化成分母分别为以下整式的分式:(1);(2).【难度】★【答案】(1);(2).【解析】(1);(2).【总结】本题主要是利用分式的基本性质将分式的分母化为指定的分母.【例6】计算:(1);(2).【难度】★【答案】(1);(2)【解析】(1);(2).【总结】本题主要考查异分母分式的加减法.【例7】计算:(1);(2).【难度】★【答案】(1);(2).【解析】(1);(2).【总结】本题主要考查异分母分式的加减法,注意结果要化为最简分式.【例8】计算:(1);(2).【难度】★★【答案】(1);(2).【解析】(1);(2).【总结】本题主要考查异分母分式的加减法,注意结果要化为最简分式.【例9】计算:(1);(2).【难度】★★【答案】(1);(2).【解析】(1);(2)【总结】本题主要考查同分母分式的加减法,当分母是多项式时,注意要分解因式.【例10】计算:(1);(2);(3);(4).【难度】★★【答案】(1);(2);(3);(4).【解析】(1);(2);(3);(4).【总结】当分式的分母是多项式时,要先分解因式,再按照相应法则进行加减运算.【例11】计算:(1);(2).【难度】★★【答案】(1);(2).【解析】(1);(2).【总结】当分式的分母是多项式时,要先分解因式,再按照相应法则进行加减运算.【例12】计算:(1);(2).【难度】★★【答案】(1);(2).【解析】(1);(2).【总结】当分式的分母是多项式时,要先分解因式,再按照相应法则进行加减运算,并且要特别注意符号的变化.【例13】已知,则__________.【难度】★★【答案】.【解析】.【总结】本题主要考查异分母分式加法以及整体代入思想的运用.【例14】某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下.已知该同学上楼速度是米/分,下楼速度是米/分,求他上、下楼的平均速度.(用含、的代数式表示)【难度】★★★【答案】.【解析】.【总结】本题要注意速度等于路程除以时间,不要简单的求两个速度的平均数.【例15】若,则的值为().A、正数B、负数C、零D、无法确定【难度】★★★【答案】A【解析】.【总结】本题主要是通过做差法来比较两数的大小.【例16】若,则=____________.【难度】★★★【答案】【解析】∵,∴∴∴.【总结】本题主要考查异分母分式的减法以及整体代入思想的运用.【例17】已知,则____________.【难度】★★★【答案】3【解析】.【总结】当已知互为倒数的两个数的和时,那它们的平方和的等于和的平方减2.一、分式的综合运算:与分数的混合运算类似,先算乘除,再算加减,如果有括号,要先算括号内的.【例18】化简:的结果是()A、2B、C、D、【难度】★【答案】B【解析】.【总结】本题主要考查分式的混合运算,计算时注意法则的准确运用.【例19】化简:的结果为()A、B、C、D、1【难度】★【答案】A【解析】原式=.【总结】本题在计算时,注意按照运算顺序进行,有括号先算括号里面的.【例20】计算:的结果为()A、B、C、D、【难度】★【答案】A【解析】原式=.【总结】本题在计算时,注意按照运算顺序进行,有括号先算括号里面的.【例21】计算:的结果为()A、1B、C、D、【难度】★【答案】A【解析】原式=.【总结】本题依旧考查的是分式的混合运算,注意先乘除后加减.【例22】计算:(1);(2).【难度】★★【答案】(1)1;(2).【解析】(1).(2).【总结】本题依旧考查分式的混合运算,第(1)小题注意乘法分配率的运用,第(2)小题注意符号的变化.【例23】计算:(1);(2).【难度】★★【答案】(1);(2).【解析】(1);(2).【总结】本题主要考查分式的混合运算,在计算时一方面注意法则的准确运用,一方面注意方法的灵活.【例24】已知,又,则用的代数式表示x应为().A、B、C、D、【难度】★★【答案】A【解析】.【总结】本题主要是考查分式之间的关系,注意等量代换的运用.【例25】甲、乙两位采购员同去一家饲料公司购买两次饲料,两次的价格有变化,两位采购员的购货方式也不同,其中甲每次购买1000千克,乙每次用800元,而不管购买多少饲料.(1)甲、乙所购饲料的平均单价各是多少?(2)谁的购货方式更合算?【难度】★★【答案】(1)甲的单价是(元/千克);乙的单价是(元/千克);(2)乙的购买方式合算.【解析】(1)设两次购买的饲料单价分别为m元/千克和n元/千克(m、n是正数,且).则甲两次购买饲料的平均单价为(元/千克),乙两次购买饲料的平均单价为(元/千克).(2)甲、乙两种饲料的平均单价的差是:.由于m、n是正数,且,那么也是正数,即,因此乙的购买方式更合算.【总结】本题是一道应用题,解题时注意对题目的正确理解和公式的准去运用.【例26】计算:(1);(2).【难度】★★【答案】(1);(2).【解析】(1).(2).【总结】本题的综合性比较强,在计算时注意要细心一些.【例27】计算:.【难度】★★【答案】.【解析】.【总结】本题在计算时,注意按照运算顺序进行,有括号先算括号里面的.【例28】已知,求下式的值:.【难度】★★★【答案】-5.【解析】∵,∴,,.∴.【总结】本题主要是利用分式的性质,通过整体代入的思想求值,另外本题也可以通过分式的混合运算,算出分式的最终结果之后再求值.【例29】化简:.【难度】★★★【答案】【解析】.【总结】本题主要是类比分数的拆项的思想来求解,注意方法的恰当选择.【例30】若和互为相反数,求的值.【难度】★★★【答案】.【解析】∵和互为相反数,∴.∴,.∵.代入,,得原式.【总结】本题一方面考查了当几个非负数的和为零时,则每一个数都为零,另一方面考查了分式的混合运算.【例31】已知:,求的值.【难度】★★★【答案】0.【解析】.【总结】本题一方面考查分式的运算,另一方面考查了整体代入的思想.【习题1】计算:(1);(2).【难度】★【答案】(1)1;(2)【解析】(1);(2).【总结】本题主要考查同分母的加减运算.【习题2】计算:(1);(2).【难度】★【答案】(1);(2)2.【解析】(1);(2).【总结】本题主要考查同分母的加减运算.【习题3】分式,,的最简公分母为().A、B、C、D、【难度】★【答案】D【解析】本题主要考查最简公分母的概念.【习题4】计算:(1);(2).【难度】★【答案】(1);(2).【解析】(1);(2).【总结】本题主要考查异分母分式的加减运算.【习题5】已知,,那么等于().A、4B、C、0D、【难度】★★【答案】B【解析】.【总结】本题主要考查异分母分式的混合运算.【习题6】计算的结果是().A、B、C、D、【难度】★★【答案】C【解析】.【总结】本题主要考查分式的乘除运算.【习题7】化简:的结果是().A、B、C、D、4【难度】★★【答案】C【解析】.【总结】本题主要考查异分母分式的加减,注意符号的变化.【习题8】已知:,,,则M与N的大小关系是()A、B、C、D、不确定【答案】A【解析】.【总结】在比较两数的大小时,通常采用做差法.【习题9】计算:(1);(2).【难度】★★【答案】(1);(2).【解析】(1)原式=;(2)原式.【总结】本题主要考查分式的混合运算,要注意法则的准确运用和符号的变化.【习题10】已知,则代数式的值为_________.【难度】★★【答案】4.【解析】∵,∴.∴.∴.【总结】本题主要考查异分母分式的减法以及整体代入思想的运用.【习题11】已知:,则=________,=_________.【难度】★★【答案】-1;3.【解析】∵,∴,.【总结】本题主要考查分式的加减运算.【习题11】已知,求的值.【答案】.【解析】∵,∴.∴.∴.【总结】本题主要是考查如何将已知的方程化为互为倒数的两个数的和.【习题12】化简:.【难度】★★★【答案】1【解析】.【总结】本题主要考查分式的加减运算,注意对分子和分母都要进行因式分解.【习题13】化简:.【难度】★★★【答案】.【解析】.【总结】本题的难度较大,要注意对分子进行拆项.【习题14】化简:.【难度】★★★【答案】.【解析】【总结】本题主要是类比分数的拆项的思想来求解,注意方法的恰当选择.【作业1】(1);(2).【难度】★【答案】(1);(2).【解析】(1);(2).【总结】本题主要考查同分母的加减运算.【作业2】计算:(1);(2).【难度】★【答案】(1)1;(2).【解析】(1);(2).【总结】本题主要考查同分母分式的加减运算.【作业3】计算:(1);(2).【难度】★【答案】(1);(2).【解析】(1);(2).【总结】本题主要考查异分母分式的加减运算.【作业4】计算:(1);(2).【难度】★【答案】(1);(2).【解析】(1);(2).【总结】本题主要考查异分母分式的加减运算,注意运算法则的准确运用.【作业5】已知三个代数式:(1);(2);(3),请从中任意选取两个代数式求和,并进行化简.【难度】★★【答案】解析中任一种答案即可.【解析】(1);(2);(3).【总结】本题一方面考查分式的概念,另一方面考查分式的加减运算.【作业6】计算:(1);(2).【难度】★★【答案】(1);(2).【解析】(1)原式=;(2)原式=.【总结】本题主要考查分式的混合运算,有括号时要先算括号里面的.【作业7】计算:.【难度】★★【答案】.【解析】.【总结】本题主要考查分式的乘除运算,注意法则的准确运用.【作业8】计算:.【难度】★★【答案】.【解析】.【总结】本题主要考查异分母分式的加减运算,注意先对分式的分子和分母进行因式分解.【作业9】已知:,,当时比较值的大小.【难度】★★★【答案】【解析】∵,∴当时,,,∴.【总结】本题主要考查异分母分式的加减运算.【作业10】观察下列等式:,,,......(1)猜想并写出第个等式;(2)证明你写出的等式的正确性.【难度】★★★【答案】(1);(2).【解析】找规律,本题主要考查分式的加减运算.【作业11】已知,求的值.【难度】★★★【答案】或2.【解析】设(),则,,.∴,即.∴,∴.∴或.∴或.【总结】本题主要考查整体代入思想的运用.。
15.2.2分式的加减教案篇一:15.2.2《分式的加减--1》教案12篇二:15.2.2分式的加减教学设计(一)许镇中心初中电子备课教学设计篇三:15.2.2《分式的加减--2》教案12篇四:15.2.2分式的加减教案20XX0108《15.2.2分式的加减》导学案123篇五:20XX年新人教版八年级上15.2.2分式的加减教案(新版) 分式的加减一、教学目标:(1)熟练地进行同分母的分式加减法的运算. (2)会把异分母的分式通分,转化成同分母的分式相加减. 二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算.2.难点:熟练地进行异分母的分式加减法的运算.三、例、习题的意图分析1.P15问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的11?.这样引出分式的加减法的实际背景,问题4的目的与问题3一样,nn?3从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.P15[思考]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.3.P16例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运(:15.2.2分式的加减教案)算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)P17例7是一道物理的电路题,学生首先要有并联电路总电阻R 与各支路电阻R1,R2,?,Rn的关系为1?1?1?????1.若知道这个公式,就比较容易地用含有R1的式子RR1R2Rn表示R2,列出1?1?RR11,下面的计算就是异分母的分式加法的运算了,得到R1?5012R1?50,再利用倒数的概念得到R的结果.这道题的数学计算并不难,但是物理的知?RR1(R1?50)识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.四、课堂引入1.出示P15问题3、问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?3.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?4.请同学们说出确定方法吗?五、例题讲解(P16)例6.计算[分析]第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算(1)111的最简公分母是什么?你能说出最简公分母的,,234222xy3xy9xyx?3yx?2y2x?3y??x2?y2x2?y2x2?y2[分析]第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.解:x?3yx?2y2x?3y??x2?y2x2?y2x2?y2(x?3y)?(x?2y)?(2x?3y)x2?y22x?2y22x?y2(x?y)(x?y)(x?y)2x?y11?x6??2x?36?2xx?9====(2)[分析]第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.解:11?x6??2x?36?2xx?9=11?x6??x?32(x?3)(x?3)(x?3)2(x?3)?(1?x)(x?3)?122(x?3)(x?3)=?(x2?6x?9)=2(x?3)(x?3)?(x?3)2=2(x?3)(x?3)=?x?32x?6。
15.2.2 分式的加减(1)1.使学生掌握同分母、异分母分式的加减,能熟练地进行同分母,异分母分式的加减运算.2.通过同分母、异分母分式的加减运算,复习整式的加减运算、多项式去括号法则以及分式的通分,培养学生分式运算的能力.重点:让学生熟练地掌握同分母、异分母分式的加减法.难点:分式的分子是多项式的做减法时注意符号,去括号法则的应用.一、自学指导自学1:自学课本P139-140页“问题3、问题4、思考、例6”,掌握同分母、异分母分式加减的方法,完成填空.(7分钟)①计算:15+25,15-25,12+13,12-13.总结归纳:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母分式,再加减.a c +bc =a +b c ;a b +cd =ad bd +bc bd =ad +bc bd. 二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟) 1.课本P141页练习题1,2. 2.计算:(1)2x -5x 2;(2)x 2+xy xy -x 2-xy xy ;(3)a -2a +1-2a -3a +1; (4)a +1a -1-a -1a +1; (5)x 2x -2-4x x -2+4x -2; (6)2m -n n -m +m m -n +n n -m.点拨精讲:分式加减的结果要化为最简分式.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟) 探究1 已知A x -1+B x +1=x -3x 2-1,求A 与B 的值.解:∵A x -1+B x +1=A (x +1)(x +1)(x -1)+B (x -1)(x +1)(x -1)=A (x +1)+B (x -1)(x +1)(x -1)=(A +B )x +(A -B )(x +1)(x -1),又∵A x -1+B x +1=x -3x 2-1,∴⎩⎪⎨⎪⎧A +B =1,A -B =-3,∴⎩⎪⎨⎪⎧A =-1,B =2.点拨精讲:先将左边相加,再与右边对比即可. 探究2 计算:11-x +11+x +21+x 2+41+x4.解:原式=21-x 2+21+x 2+41+x 4=41-x 4+41+x 4=81-x 8.点拨精讲:巧用乘法公式,逐项通分.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.计算:(1)(5a +3b a +b +3b -4a a +b -a +3ba +b ;(2)12-x +4x 2-4+x -12+x ; (3)a -b +2b2a +b.2.分式1a +1+1a (a +1)的计算结果是1a .3.先化简,再求值:a2a -1-a -1,其中a =-1.解:(略)(3分钟)1.异分母分式的加减法步骤:①正确地找出各分式的最简公分母;②准确地得出各分式的分子、分母应乘的因式;③通分后进行同分母分式的加减运算;④公分母保持积的形式,将各分子展开;⑤将得到的结果化成最简分式(整式).求最简公分母概括为:①取各分母系数的最小公倍数;②凡出现以字母为底数的幂的因式都要取;③相同字母的幂的因式取指数最大的.这些因式的积就是最简公分母.(学生总结本堂课的收获与困惑)(2分钟) (10分钟)4 分式方程第1课时分式方程的概念及解法【知识与技能]1.理解分式方程的概念;2.会通过设适当的未知数并根据等量关系列出分式方程 ;3.学生掌握解分式方程的基本方式和步骤.【过程与方式]通过列出的方程归纳出它们的共同特点 , 得出分式方程的概念.了解分式的概念 , 明确分式和整式的区别 ; 经历和体会解分式方程的必要步骤 ; 使学生进一步了解数学思想中的〞转化〞思想.【情感态度]在建立分式方程的数学模型的过程中培养能力和克服困难的勇气 , 并从中获得成就感 , 提高解决问题的能力.【教学重点]掌握分式方程的解法、解 , 分式方程要验根.【教学难点]掌握分式方程的解法、解 , 分式方程要验根.一.情景导入 , 初步认知在这一章的第一节【分式]中 , 我们曾研究过一个〞固沙造林 , 绿化家园〞的问题.面対日益严重的土地沙化问题 , 某县决定分期分批固沙造林 , 一期工程计划在一定期限内固沙造林2400公顷 , 实际每月固沙造林的面积比原计划多30公顷 , 结果提前4个月完成计划任务.原计划每月固沙造林多少公顷?分析 : 这一问题中有哪些已知量和未知量?已知量 : 造林总面积2400公顷实际每月造林面积比原计划多30公顷提前4个月完成原任务未知量 : 原计划每月固沙造林多少公顷这一问题中有哪些等量关系?实际每月固沙造林的面积=计划每月固沙造林的面积+30公顷原计划完成的时间-完成实际的时间=4个月我们设原计划每月固沙造林x公顷 , 那么原计划完成一期工程需要_____个月 , 实际完成一期工程用了______个月 , 根据题意 , 可得方程____________.【教学说明]为了让学生经历从实际问题抽象.概括分式方程这一〞数学化〞的过程 , 体会分式方程的模型在解决实际生活问题中作用 , 利用第一节【分式]中一个熟悉的问题 , 引导学生努力寻找问题中的所有等量关系 , 发展学生分析问题.解决问题的能力.二.思考探究 , 获取新知探究1 : 分式方程的概念问题 : 甲.乙两地相距 1400 km , 乘高铁列车从甲地到乙地比乘特快列车少用 9 h , 已知高铁列车的平均行驶速度是特快列车的 2.8 倍.〔1〕你能找出这一问题中的所有等量关系吗?〔2〕如果设特快列车的平均行驶速度为 x km/h , 那么 x 满足怎样的方程?〔3〕如果设小明乘高铁列车从甲地到乙地需 y h , 那么 y 满足怎样的方程?问题 : 为了帮助遭受自然灾害的地区重建家园 , 某学校号召同学们自愿捐款.已知初一同学捐款总额为4800 元 , 初二同学捐款总额为5000元 , 初二捐款人数比初一多20人 , 而且两个年级人均捐款额恰好相等.如果设初一捐款人数为 x 人 , 那么 x 满足怎样的方程?【教学说明]再次让学生经历从实际问题抽象.概括分式方程这一〞数学化〞的过程 , 体会分式方程的模型作用.回顾刚才我们得出的 4个方程 :它们和我们以前所碰到的方程一样吗?有什么不一样的地方?上面所得到的方程有什么共同特点?【教学说明]【归纳结论]分母中中含有未知数的方程叫做分式方程探究2 : 分式方程的解法1.解以下分式方程 :【教学说明]通过观察 , 使学生发现可以将分式方程通过去分母转化成一元一次方程来求解.通过教师対例题讲解 , 让学生明确解分式方程的一般步骤.【归纳结论]1.解分式方程的一般步骤 :〔1〕去分母〔即在方程的两边都乘以最简公分母〕 , 把原分式方程化为_____ ;〔2〕解这个整式方程 ;2.以下哪种解法正确?解分式方程解法一 : 将原方程变形为方程两边都乘以x-2,得 : 1-x=-1-2解这个方程 , 得 : x=4.解法二 : 将原方程变形为方程两边都乘以x-2 ,得 : 1-x=-1-2(x-2)解这个方程 , 得 : x=2你认为x=2是原方程的根?与同伴交流.【归纳结论]增根概念 : 将分式方程变形为整式方程时 , 方程两边同乘以一个含未知数的整式 , 并约去分母 , 有时可能产生不适合原分式方程的解(或根) , 这种根通常称为增根 ;认识增根 :①增根是去分母后所得的根 ;①增根使最简公分母的值为 ;③增根〔填〞是〞或〞不是〞〕原方程的根.三.运用新知 , 深化理解A.2个 B.3个 C.4个 D.5个答案 : B.〔〕是分式方程,〔〕是整式方程.答案 : B;A、C3.王军同学准备在课外活动时间组织局部同学参加电脑网络培训 , 按原定的人数估计共需费用300元.后因人数增加到原定人数的2倍 , 费用享受了优惠 , 一共只需要480元 , 参加活动的每个同学平均分摊的费用比原计划少4元 , 原定的人数是多少?如果设原定是x人 , 那么 x 满足怎样的分式方程?解 : 方程两边都乘以y〔y-1〕 ,得2y2+y〔y-1〕=〔y-1〕〔3y-1〕 ,2y2+y2-y=3y2-4y+1 , 3y=1 ,解得y=1/3.检验 : 当y=1/3时 , y〔y-1〕=1/3×1/3-1=-2/9≠0 ,∴y=1/3是原方程的解 ,∴原方程的解为y=1/3.解 : 两边同时乘以〔x+1〕〔x-2〕 ,得x〔x-2〕-〔x+1〕〔x-2〕=3.解这个方程 , 得x=-1.检验 : x=-1时〔x+1〕〔x-2〕=0 , x=-1不是原分式方程的解 ,∴原分式方程无解.〔3〕解 : 方程的两边同乘〔x-1〕〔x+1〕 ,得3x+3-x-3=0 , 解得x=0.检验 : 把x=0代入〔x-1〕〔x+1〕=-1≠0.∴原方程的解为 : x=0.〔4〕解 : 方程的两边同乘〔x+2〕〔x-2〕 , 得2-〔x-2〕=0 , 解得x=4.检验 : 把x=4代入〔x+2〕〔x-2〕=12≠0.∴原方程的解为 : x=4.再两边同乘以3x-1 , 得3〔3x-1〕-1=2 , 3x-1=1 , x=2/3.检验 : 把x=2/3代入〔3x-1〕 : 〔3x-1〕≠0 ,∴x=2/3是原方程的根.∴原方程的解为x=2/3.〔6〕解 : 方程两边同乘以2〔3x-1〕 ,得 : -2+3x-1=3 , 解得 : x=2 ,检验 : x=2时 , 2〔3x-1〕≠0.所以x=2是原方程的解.【教学说明]通过学生的反馈练习 , 考察学生対分式方程概念的理解 ; 以及解分式方程.使教师能全面了解学生対解分式方程是否清楚 , 以便教师能及时地进行查缺补漏.四.师生互动,课堂小结1.什么样的方程是分式方程?2.解分式方程的一般步骤 :〔1〕去分母〔即在方程的两边都乘以最简公分母〕 , 把原分式方程化为_____ ;〔2〕解这个整式方程 ;〔3〕检验 : 把整式方程的根代入最简公分母 , 使最简公分母的值不等于零的根是原分式方程的_____ , 使最简公分母的值等于零的根是原方程的_____.五.教学板书布置作业:教材〞习题5.7”中第1、2、3题.〞习题5.8”中第1、2题.虽然在课堂上做了很多 , 但也存在许多缺乏的地方 , 以下是教师在教学中应该注意的地方 : 第一 , 讲例题时 , 先讲一个产生增根的较好 , 这样便于说明分式方程有时无解的原因 , 也便于讲清分式方程检验的必要性 , 也是解分式方程与整式方程最大的区别所在 , 从而再强调解分式方程必须检验 , 不能省略不写这一步 ; 第二 , 给学生的鼓励不是很多.鼓励可以让学生有充分的自信心.〞信心是成功的一半〞 , 在今后的课堂教学中 , 应尊重其差异性 , 尽可能分层教学 , 评价标准多样化 , 多鼓励 , 少批评 ; 多肯定 , 少指责.用动态的、发展的、积极的眼光看待每个学生 , 帮助他们树立自信心.赞美的力量是巨大的 , 有时 , 一句赞美的话 , 可以改变人的一生.一句肯定的话、一个赞许的点头、一张表示优秀的卡片 , 都是很好的鼓励 , 会起到意想不到的良好结果.巧用“规形”性质求星形角度之和如图1,这种图形形似圆规,我们不妨称之为“规形”.它有一条重要性质:∠BOC=∠A+∠B+∠C.证明留给读者.本文运用这条性质来求一类星形角度和,既快又准确.例1 如图2,∠1+∠2+∠3+∠4+∠5=__.(第三届“希望杯”初二试题)解依“规形”性质得:∠7=∠6=∠5+∠2+∠4.而∠1+∠3+∠7=180°,∴∠1+∠2+∠3+∠4+∠5=180°.例2 如图3,∠A+∠B+∠C+∠D+∠E+∠F=__.(1986年吉林省八市初中数学赛题)解依“规形”性质得:∠1=∠2=∠B+∠C+∠D,而∠A+∠1+∠E+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.例3 如图4所示的七角星形中,已知∠B=14°,∠C=15°,∠F=16°,并且∠A+∠D+∠E+∠G=k·45°,则k=__.(1991年北京市初二数学赛题)解依“规形”性质得:∠2=∠1=∠B+∠F+∠C,∠4=∠3=∠A+∠D+∠G.而∠E+∠2+∠4=180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°,∴k·45°+14°+15°+16°=180°,∴k=3.。
八年级数学(下)第三章第三节分式加减法(一)导学案一.学习目标1.会熟练地进行同分母分式加减法运算。
2.会找最简公分母。
3.会把简单的异分母分式通分,转化为同分母分式相加减。
4.类比分数加减法学习分式加减法运算,培养学生的转化思想与化归思想。
二.自学指导1、同分母分式加减法法则(1) 计算: 依据是:分数加减法法则(2)猜想:同分母分式应该如何加减?语言叙述: 。
用式子表示: 。
做一做,注意:运算结果必须是最简分式或整式。
2、计算 2422x x x --- 2、计算213111x x x x x x +---++++3、找最简公分母的步骤:(1)各分母系数的最小公倍数。
(2)各分母能分解因式的要先分解因式。
( 3)各分母所有因式的积,其中相同因式只取次数最高的那一项4、做一做:(1) 1134+= 第一步 第二步 第三步 (2) 第一步 第二步 第三步(3)2219(3)a a a a -+=-+ 第一步 第二步 第三步 通分:根据分式的基本性质,把异分母分式化为同分母分式的过程,叫做通分。
通分的关键是三、合作探究1、 异分母分式加减法法则::语言叙述: 。
2、异分母分式相加减时,主要是: 通分的关键是: 。
四、答疑填写“﹢”或“﹣”a-b=_(b-a), x-2=_(2-x)5366-=13a a +=5b m m -=2314a a +=五、达标检测1、 从甲地到乙地有两条路,如图所示:在平路上骑车速度为2vkm/h甲地 乙地 第一条路 3km上坡速度为2vkm/h ,下坡速度为3vkm/h甲地 乙地 第二条路 上坡1km 下坡2km(1)走第一条路从甲地到乙地需 h.(2)走第二条路从甲地到乙地需 h.(3)走第 条路节省时间,节省 h.2、计算(1)222a b ab a b a b ++++ (2)3155aa a -+(3)21124a ab - (4)(5)思考题拓展:(6)六、自我总结 :作业布置:课本82页3、4预 习:复杂的异分母分式加减法。
分母分式的加减法导学案
学习目标:
1运用类比数学思想学习分母分式的加减法。
2.熟练地进行分母分式的加减运算, 重点
熟练运用同分母分式的加减法法则进行计算。
难点
运算中对“把分子相加减”的处理。
知识链接:
1.计算:
5
152231321++);()( 2.分母分数的加减法法则是什么?
自主学习:
探究任务一:同分母分式的加减法法则是什么?几何语言? 探究任务二:例题 1)
a a a 5123-+ (同分母分式相加减) 2)y
x y y x x +++ (同分母分式相加减) =
a (分母不变,分子______) =
y
x + (分母不变,分子______)
= (化最简分式) = (化最简分式) 3)
2
222223223y x y
x y x y x y x y x --+-+--+ (同分母分式相加减)
=
2
2y
x - (分母不变,分子______)
=
2
2y
x - (合并同类项)
=
2
2y
x - (提公因式)
= (化最简分式) 跟踪练习:
一、基础训练(A 层) 计算下列各式:
1、m m 155-
2、y
x a
y x a --
- 3、b a b b a a ---22 4、x x x -++-2224 二、提高训练(B 层)计算下列各式: 11、
m n m n m n m n n m ---+-+22 12、2
2222222y x x
x y y y x y x ---+-+ 探究任务三:
1、什么是分式的通分?什么是最简公分母?
2、确定下列各组分式的最简公分母并进行通分: (1)
;21,322ac a a -+ (2)b
a b a b a a +--,222 探究任务四:
1、尝试自主完成下列各题:①
241a a - ②11a b + ③32b a
a b
+ ④a b b c
ab bc
++- 2、异分母分式加减法法则是什么?几何语言? 探究任务五: 例题(1)
223121cd d c + (2)xy y x
65
43322
-+ (3)224-++a a 2、跟踪练习:(1)2111x x x
-+-- 2)1624
432---x x
探究任务六:
用两种方法计算:x
x x x x x 4
)223(2-∙+--
达标反馈:
(1)ab a b 4334232++ (2) b
a b b a a ---2
2 (3)
)
1)(1(2
1111-+-+--x x x x (4) 22512
2--+-m m m m 课堂小结:本节课你有哪些收获?。