大型PLC系统及网络结构
- 格式:ppt
- 大小:3.51 MB
- 文档页数:73
西门子SMART 200 PLC控制系统构成及网络架构
引言
随着现代社会的高速发展,每个公司都希望自己的产品有一个属于自己的LOGO标记,增强自己的品牌效应,激光标记是首选,特别是在一些金属及铝型材上标记。
为了节省人工成本,自动化标记设备就应运而生。
通过伺服电机将需要标记的铝型材送到标记区,实现精准标记(精度误差不大于0.1mm),从而降低人工送料带来的体力劳动以及精度误差,为企业快速发展及规模化生产带来了便捷。
项目简介
1.项目所在行业及背景
由于近年来人工成本上升,各地出现用工荒,企业很难招到操作工人的前提下。
原来人工操作已经不能满足企业的量化生产模式,终端用户的高要求也对企业加工产品的要求提出了高要求。
自动化机械设备的出现将会解决企业发展面临的瓶颈问题,企业还可以根据上位机画面查看生产情况以及合格品率。
为企业的高速发展带来了优势,使企业在激励的竞争中脱颖而出,立于不败之地。
2.工艺介绍
3.项目使用的配件清单
控制系统构成及网络架构
产品选型论证
全新的S7-200 SMART 带来两种不同类型的CPU模块,标准型和经济型,全方位满足不同行业、不同客户、不同设备的各种需求。
标准型作为可扩展CPU 模块,可满足对I/O 规模有较大需求,逻辑控制较为复杂的应用;而经济型CPU 模块直接通过单机本体满足相对简单的控制需求。
以太网通信,所有CPU模块标配以太网接口,支持西门子S7协议、。
PLC控制系统结构及工作原理
一、系统结构
PLC控制系统主要由以下几个部分组成:
1. 电源模块:提供系统所需的电能。
2. 中央处理单元(CPU):进行逻辑运算、算术运算和顺序控制等,实现各种数据操作。
3. 输入输出模块:实现外部信号的采集和输出,与外部设备进行数据交换。
4. 存储器:存储用户程序和数据。
5. 通信接口:实现PLC与外部设备的通信。
二、工作原理
PLC控制系统的工作原理可以概括为“输入-处理-输出”的过程。
首先,通过输入模块采集外部设备的信号,这些信号可以是开关状态、传感器读数等。
然后,这些信号被送到CPU进行处理。
在CPU中,根据预先编写好的程序,对这些信号进行逻辑运算、算术运算等处理。
处理完成后,输出模块将这些结果输出到外部设备,如马达、灯泡等。
三、控制功能实现
PLC控制系统的控制功能主要由用户程序实现。
用户程序可以根据实际需求进行编写,包括各种逻辑运算、算术运算、顺序控制等。
通过输入模块采集的信号,可以触发用户程序执行相应的操作。
这样,PLC控制系统就可以实现对外部设备的精确控制。
四、控制性能分析
PLC控制系统的控制性能主要取决于以下几个因素:
1. 硬件性能:包括CPU的处理能力、存储器的容量、输入输出模块的精度等。
2. 软件设计:包括用户程序的编写、程序结构的合理性、运算速度等。
3. 环境因素:包括温度、湿度、电磁干扰等环境因素对PLC控制系统性能的影响。
总的来说,PLC控制系统具有结构简单、运行可靠、操作方便等优点,因此在工业自动化领域得到了广泛应用。
PLC系统组成PLC系统主要由中央处理器(CPU)、存储器、输入单元、输出单元、通信接口、扩展接口电源等部分组成。
其中,CPU是PLC的核心,输入单元与输出单元是连接现场输入/输出设备与CPU之间的接口电路,通信接口用于与编程器、上位计算机等外设连接。
对于整体式PLC,所有部件都装在同一机壳内,其组成框图如图1所示;对于模块式PLC,各部件独立封装成模块,各模块通过总线连接,安装在机架或导轨上,其组成框图如图2所示。
无论是哪种结构类型的PLC,都可根据用户需要进行配置与组合。
尽管整体式与模块式PLC的结构不太一样,但各部分的功能作用是相同的,下面对PLC主要组成各部分进行简单介绍。
1.中央处理单元(CPU)同一般的微机一样,CPU是PLC的核心。
PLC中所配置的CPU 随机型不同而不同,常用有三类:通用微处理器(如Z80、8086、80286等)、单片微处理器(如8031、8096等)和位片式微处理器(如AMD29W等) 。
小型PLC大多采用8位通用微处理器和单片微处理器;中型PLC大多采用16位通用微处理器或单片微处理器;大型PLC大多采用高速位片式微处理器。
目前,小型PLC为单CPU系统,而中、大型PLC则大多为双CPU系统,甚至有些PLC 中多达8 个CPU。
对于双CPU系统,一般一个为字处理器,一般采用8位或16位处理器;另一个为位处理器,采用由各厂家设计制造的专用芯片。
字处理器为主处理器,用于执行编程器接口功能,监视内部定时器,监视扫描时间,处理字节指令以及对系统总线和位处理器进行控制等。
位处理器为从处理器,主要用于处理位操作指令和实现PLC编程语言向机器语言的转换。
位处理器的采用,提高了PLC的速度,使PLC更好地满足实时控制要求。
在PLC中CPU按系统程序赋予的功能,指挥PLC有条不紊地进行工作,归纳起来主要有以下几个方面:1)接收从编程器输入的用户程序和数据。
2)诊断电源、PLC内部电路的工作故障和编程中的语法错误等。
PLC系统组成PLC系统主要由中央处理器(CPU)、存储器、输入单元、输出单元、通信接口、扩展接口电源等部分组成。
其中,CPU是PLC的核心,输入单元与输出单元是连接现场输入/输出设备与CPU之间的接口电路,通信接口用于与编程器、上位计算机等外设连接。
对于整体式PLC,所有部件都装在同一机壳内,其组成框图如图1所示;对于模块式PLC,各部件独立封装成模块,各模块通过总线连接,安装在机架或导轨上,其组成框图如图2所示。
无论是哪种结构类型的PLC,都可根据用户需要进行配置与组合。
尽管整体式与模块式PLC的结构不太一样,但各部分的功能作用是相同的,下面对PLC主要组成各部分进行简单介绍。
1.中央处理单元(CPU)同一般的微机一样,CPU是PLC的核心。
PLC中所配置的CPU 随机型不同而不同,常用有三类:通用微处理器(如Z80、8086、80286等)、单片微处理器(如8031、8096等)和位片式微处理器(如AMD29W等) 。
小型PLC大多采用8位通用微处理器和单片微处理器;中型PLC大多采用16位通用微处理器或单片微处理器;大型PLC大多采用高速位片式微处理器。
目前,小型PLC为单CPU系统,而中、大型PLC则大多为双CPU系统,甚至有些PLC 中多达8 个CPU。
对于双CPU系统,一般一个为字处理器,一般采用8位或16位处理器;另一个为位处理器,采用由各厂家设计制造的专用芯片。
字处理器为主处理器,用于执行编程器接口功能,监视内部定时器,监视扫描时间,处理字节指令以及对系统总线和位处理器进行控制等。
位处理器为从处理器,主要用于处理位操作指令和实现PLC编程语言向机器语言的转换。
位处理器的采用,提高了PLC的速度,使PLC更好地满足实时控制要求。
在PLC中CPU按系统程序赋予的功能,指挥PLC有条不紊地进行工作,归纳起来主要有以下几个方面:1)接收从编程器输入的用户程序和数据。
2)诊断电源、PLC内部电路的工作故障和编程中的语法错误等。
Controllogix是Rockwell公司推出AB系列的模块化PLC,它代表了当前PLC发展的最高水平,是目前世界上最具有竞争力的控制系统之一,Control- logix将顺序控制、过程控制、传动控制及运动控制、通讯、I/O技术集成在一个平台上,可以为各种工业应用提供强有力的支持,适用于各种场合,最大的特点是可以使用网络将其相互连接,各个控制站之间能够按照客户的要求进行信息的交换。
Controllogix目前在工业生产中得到广泛的运用,本文详细介绍Rockwell Controllogix PLC冗余系统在汽轮机发电中的应用。
Controllogix可以提供完善的控制器的冗余功能,采用热备的方式构建控制器,两个控制器框架采用完全相同的配置,它们之间使用同步电缆连接,不仅控制器可以采用热备,通讯网络也可以采用相似的方式进行热备,除以上的部分可以热备外,控制器的电源也可以进行热备,这样大大提高了控制器的运行的可靠性。
2 系统介绍在某焦化厂干熄焦汽轮机发电项目的DCS控制系统中,采用了冗余的Controllogix,系统结构如图1所示。
上位机通过交换机与PLC处理器通讯,远程框架通过冗余的ControlNet 连接到控制器框架,同时,远程框架采用了冗余电源配置。
整套系统具有很高的可靠性,满足了汽轮机发电系统对于PLC控制部分需要长期无故障运行的要求。
上位机采用Rsview32软件,用以监控现场设备的运行。
图1 系统结构图本地框架由L1和L2 框架构成,运行时L1和L2互为热备,构成了冗余,L1和L2框架各个槽位的所配置的模块如表1所示。
R1,R2和R3是远程框架,所有的点号都连接到远程框架的模块,远程框架的供电使用了AB的冗余电源(1756-PAR2)。
表1 L1和L2框架各个槽位的所配置的模块设置主从控制器框架的1756-CNBR/D的节点地址时应注意,他们的地址拨码应该相同,应该是系统中挂接在冗余ControlNET网上所有节点的最高地址,在本系统里面都设置为4,远程站的节点地址分别为1,2,3。
PLC的结构及各部分的作用可编程控制器的结构多种多样,但其组成的一般原理基本相同,都是以微处理器为核心的结构。
通常由中央处理单元(CPU)、存储器(RAM、ROM)、输入输出单元(I/O)、电源和编程器等几个部分组成。
1.中央处理单元(CPU)CPU作为整个PLC的核心,起着总指挥的作用。
CPU一般由控制电路、运算器和寄存器组成。
这些电路通常都被封装在一个集成电路的芯片上。
CPU通过地址总线、数据总线、控制总线与存储单元、输入输出接口电路连接。
CPU的功能有以下一些:从存储器中读取指令,执行指令,取下一条指令,处理中断。
2.存储器(RAM、ROM)存储器主要用于存放系统程序、用户程序及工作数据。
存放系统软件的存储器称为系统程序存储器;存放应用软件的存储器称为用户程序存储器;存放工作数据的存储器称为数据存储器。
常用的存储器有RAM、EPROM和EEPROM。
RAM是一种可进行读写操作的随机存储器存放用户程序,生成用户数据区,存放在RAM中的用户程序可方便地修改。
RAM存储器是一种高密度、低功耗、价格便宜的半导体存储器,可用锂电池做备用电源。
掉电时,可有效地保持存储的信息。
EPROM、EEPROM都是只读存储器。
用这些类型存储器固化系统管理程序和应用程序。
3.输入输出单元(I/O单元)I/O单元实际上是PLC与被控对象间传递输入输出信号的接口部件。
I/O单元有良好的电隔离和滤波作用。
接到PLC输入接口的输入器件是各种开关、按钮、传感器等。
PLC的各输出控制器件往往是电磁阀、接触器、继电器,而继电器有交流和直流型,高电压型和低电压型,电压型和电流型。
4.电源PLC电源单元包括系统的电源及备用电池,电源单元的作用是把外部电源转换成内部工作电压。
PLC 内有一个稳压电源用于对PLC的CPU单元和I/O单元供电。
5.编程器编程器是PLC的最重要外围设备。
利用编程器将用户程序送入PLC的存储器,还可以用编程器检查程序,修改程序,监视PLC的工作状态。
plc基本结构及原理plc基本结构及原理PLC的基本组成可分为两大部分:硬件系统和软件系统。
一、硬件系统:(一)CPU 运算和控制中心:起“心脏”作用。
1、当从编程器输入的程序存入到用户程序存储器中,然后CPU根据系统所赋予的功能(系统程序存储器的解释编译程序),把用户程序翻译成PLC内部所认可的用户编译程序。
2、输入状态和输入信息从输入接口输进,CPU 将之存入工作数据存储器中或输入映像寄存器。
然后由CPU把数据和程序有机地结合在一起。
把结果存入输出映像寄存器或工作数据存储器中,然后输出到输出接口、控制外部驱动器。
3、组成: CPU由控制器、运算器和寄存器组成。
这些电路集成在一个芯片上。
CPU通过地址总线、数据总线与I/O接口电路相连接。
(二)存储器具有记忆功能的半导体电路。
分为系统程序存储器和用户存储器。
1、系统程序存储器用以存放系统程序,包括管理程序,监控程序以及对用户程序做编译处理的解释编译程序。
由只读存储器、ROM组成。
厂家使用的,内容不可更改,断电不消失。
2、用户存储器: 分为用户程序存储区和工作数据存储区。
由随机存取存储器(RAM)组成。
用户使用的。
断电内容消失。
常用高效的锂电池作为后备电源,寿命一般为3~5 年。
(三)输入/输出(I/O )模块输入输出模块简称I/O模块,相当于人的眼睛、跺、鼻子手、脚是联系外部信息和大脑(CPU )的桥梁。
1、输入接口:光电耦合器由两个发光二极度管和光电三极管组成。
发光二极管:在光电耦合器的输入端加上变化的电信号,发光二极管就产生与输入信号变化规律相同的光信号。
光电三极管:在光信号的照射下导通,导通程度与光信号的强弱有关。
在光电耦合器的线性工作区内,输出信号与输入信号有线性关系。
输入接口电路工作过程:当开关合上,二极管发光,然后三极管在光的照射下导通,向内部电路输入信号。
当开关断开,二极管不发光,三极管不导通。
向内部电路输入信号。
也就是通过输入接口电路把外部的开关信号转化成PLC内部所能接受的数字信号。
PLC系统简介PLC系统简介PLC控制系统是一种专为工业生产设计的数字运算操作电子装置。
它采用可编程的存储器,用于内部存储程序,执行逻辑运算、顺序控制、定时、计数与算术操作等用户指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。
PLC是工业控制的核心部分。
自20世纪60年代美国推出可编程逻辑控制器以来,PLC得到了快速发展并在世界各地得到了广泛应用。
随着计算机技术、信号处理技术、控制技术和网络技术的不断发展以及用户需求的提高,PLC的功能也不断完善。
今天的PLC不再局限于逻辑控制,在运动控制、过程控制等领域也发挥着十分重要的作用。
基本介绍PLC是一种即时系统,有别于个人电脑。
在传统的以继电器为主的电机控制系统中,每当变更设计时,整个系统几乎都要重新制作,这不仅费时又费力,而且继电器还有接点接触不良、磨损、体积大等缺点,造成成本升高、可靠性低、不易检修等问题。
为了改善这些缺点,美国DEC在1969年首次发表了可编程式控制器(Programmable Controller)。
程式控制器在发表初期被称为Programmable Logic-Controller,简称PLC。
最初的目的是取代继电器,从而执行继电器逻辑及其他计时或计数等功能的顺序控制为主,因此也称为顺序控制器。
其结构也像一部微电脑,因此也可称为微电脑可程式控制器(MCPC)。
直到1976年,XXX正式给予命名为Programmable Controller,即可程式控制器,简称PC。
由于目前个人电脑(Personal Computer)极为普遍,加上常与可程式控制器配合使用,为了区分两者,所以一般都称可程式控制器为PLC以加以分别。
目前市场上有许多种PLC控制器,不同的制造商和适用场所会有所不同,但它们通常可以根据机组复杂度分为大型、中型和小型。
一般工厂和学校通常会使用小型PLC,其中日系F系列和我国A系列PLC最受国人喜爱。
PLC的通信及联网功能plc的通信包括PLC之间、PLC与上位计算机之间以及PLC与其他智能设备间的通信。
PLC系统与通用计算机可以直接或通过通信处理单元、通信转接器相连构成网络,以实现信息的交换,并可构成“集中管理、分散掌握”的分布式掌握系统,满意工厂自动化(FA)系统进展的需要,各PLC 系统或远程I/O模块按功能各自放置在生产现场分散掌握,然后采纳网络连接构成集中管理的分布式网络系统。
以西门子公司的SIMATICNET为例,在其提出的全集成自动化(TIA)的系统概念中,核心内容即包括组态和编程的集成、数据管理的集成以及通信的集成。
通信网络是这个系统重要的、关键的组件,供应了部件和网络间完善的工业通信。
SIMATICNET包含了三个主要层次:AS-I网——传感器和执行器通信的国际标准,扫描时间5ms,传输媒体为未屏蔽的双绞线,线路长度为300m,最多为31个从站。
PROFIBUS——工业现场总线,用于车间级和现场级的国际标准,传输率最大12m/s,传输媒体为屏蔽双线电缆(最长9.6km)或光缆(最长90km),最多可接127个从站。
工业以太网——用于区域和单元联网的国际标准,网络规模可达1024站1.5km(电气网络)或200km(光学网络)。
在这一网络体系中,尤其值得一提的是PROFIBUS现场总线,PROFIBUS是目前最胜利的现场总线之一,已得到广泛地应用。
它是不依靠生产厂家的、开放式的现场总线,各种各样的自动化设备均可通过同样的接口交换信息。
为数众多的生产厂家供应了优质的PROFIBUS产品,用户可以自由地选择最合适的产品。
PROFIBUS已经成为德国国家标准DIN19245和欧洲标准prEN50170,并在世界拥有了最多的用户数量。
PLC硬件结构PLC(Programmable Logic Controller,可编程逻辑控制器)是一种广泛应用于工业控制领域的自动化控制系统,其主要功能是控制工业过程中的机电设备,实现自动化生产。
PLC硬件结构是PLC系统的重要组成部分之一,其包括基本配置、扩展模块、接口等多个方面,本文将对PLC硬件结构进行详细介绍。
一、基本配置PLC硬件结构的基本配置主要包括CPU、电源、输入/输出模块以及编程器等多个方面。
(1)CPUCPU(Central Processing Unit,中央处理器)是PLC的核心部件,其主要负责实时控制和数据处理等功能。
根据具体的应用场景,PLC CPU的性能和配置也会有所差别,从单纯的控制应用到复杂的实时控制和数据处理等应用都需要采用不同级别的CPU。
(2)电源电源模块是PLC系统的能源来源,主要用于为CPU、输入/输出模块和其他扩展模块提供供电。
电源模块可以是AC电源模块或DC电源模块,具体的选择应根据实际情况进行判断,以满足不同的电源要求。
(3)输入/输出模块输入/输出模块是PLC系统的重要组成部分之一,主要用于与外部现场设备进行交互。
输入/输出模块中的输入模块将现场传感器和设备采集到的控制信号转换成PLC中的逻辑信号,而输出模块则将PLC控制信号输出到现场执行器和设备中去。
输入/输出模块可以根据不同的控制需求进行灵活组合和扩展。
(4)编程器编程器是PLC控制程序的编写和参数设置的重要工具,通常采用的是基于Windows系统的编程软件。
编程器可以对PLC系统进行程序编写、参数设置、监控和维护等功能,并可将编制好的程序存储到PLC CPU中,以实现实时控制。
二、扩展模块扩展模块是PLC硬件结构的重要组成部分之一,其能够扩展和增强系统的控制能力。
PLC扩展模块通常包括通信模块、转换模块、计数模块、模拟量输入/输出模块等。
(1)通信模块通信模块是PLC系统与其他设备进行通讯的关键部件,其主要用于实现PLC与其他设备、办公自动化系统、工业以太网、远程网络等进行通信。
PLC控制系统主要由输入部分、CPU、采样部分、输出控制和通讯部分组成。
输入部分包括控制面板和输入模板;采样部分包括采样控制模板、AD转换模板和传感器;CPU作为系统的核心,完成接收数据,处理数据,输出控制信号;输出部分有的系统用到 DA模板,将输出信号转换为模拟量信号,经过功放驱动执行器;大多数系统直接将输出信号给输出模板,由输出模板驱动执行器工作;通讯部分由通讯模板和上位机组成。
因为PLC本身的故障可能性极小,系统的故障主要来自外围的元部件,所以它的故障可分为如下几种:
输入故障,即操作人员的操作失误;
■传感器故障;
■执行器故障;
■PLC软件故障
这些故障,都可以用合适的故障诊断方法进行分析和用软件进行实时监测,对故障进行预报和处理。
PLC控制系统的故障诊断方法
PLC控制系统故障的宏观诊断
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
如需进一步了解相关PLC产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。
/。
PLC控制网络的组建与监控1. 网络拓扑结构在PLC控制网络的组建过程中,首先需要考虑网络的拓扑结构。
常见的PLC控制网络拓扑结构有总线型、星型、环型和网状型等。
总线型结构是将所有的PLC设备连接到同一条总线上,适用于中小型工业控制系统;星型结构是将所有的PLC设备连接到一个中心设备上,适用于大型工业控制系统;环型结构是将所有的PLC设备按环形连接,适用于需要数据循环传输的系统;网状型结构是将所有的PLC设备进行交叉连接,适用于多节点通信的系统。
根据实际需求和系统规模,选择合适的网络拓扑结构对于PLC控制网络的组建至关重要。
2. 网络通信协议在PLC控制网络中,网络通信协议起着承上启下的关键作用。
常见的网络通信协议有Modbus、Profibus、Ethernet、CAN等。
Modbus协议是一种串行通信协议,适用于简单的数据传输场景;Profibus协议是一种工业领域常用的通信协议,适用于大规模分布式控制系统;Ethernet协议是一种常见的局域网通信协议,适用于高速数据传输场景;CAN协议是一种适用于车载系统和工厂自动化领域的通信协议。
选择合适的网络通信协议可以有效提高系统的通信效率和稳定性。
3. PLC设备选型在PLC控制网络的组建过程中,还需要充分考虑PLC设备的选型问题。
PLC设备的选型应根据工控系统的实际需求、通信协议和性能指标来确定。
通常情况下,PLC设备的选型应从处理器性能、输入输出数量、通信接口、扩展性和可靠性等方面进行全面考量,以确保系统的稳定性和可靠性。
二、PLC控制网络的监控1. 网络状态监控在PLC控制网络运行过程中,对网络的状态进行监控是非常重要的。
网络状态监控主要包括对网络通信的带宽、延迟、丢包率、网络拓扑结构等进行实时监测和分析。
通过对网络状态的监控,可以及时发现网络故障和异常,快速定位和解决问题,保障工控系统的正常运行。
2. 数据通信监控3. 设备运行监控在PLC控制网络中,各个PLC设备的运行状态直接影响整个系统的运行效率和稳定性。