极点配置与状态观测器
- 格式:ppt
- 大小:1.27 MB
- 文档页数:39
实 验 报 告实验名称 利用MATLAB 实现极点配置、设计状态观测器系 专业 自动化 班 姓名 学号 授课老师 预定时间实验时间实验台号一、目的要求1、掌握状态反馈和输出反馈的概念及性质。
2、掌握利用状态反馈进行极点配置的方法。
学会用MATLAB 求解状态反馈矩阵。
3、掌握状态观测器的设计方法。
学会用MATLAB 设计状态观测器。
4、熟悉分离定理,学会设计带有状态观测器的状态反馈系统。
二、原理简述1、状态反馈和输出反馈设线性定常系统的状态空间表达式为Cxy Bu Ax x =+=如果采用状态反馈控制规律u= r-Kx ,其中 r 是参考输入,则状态反馈闭环系统的传递函数为:B BK A sIC G k 1)]([---=2、极点配置如果 SISO 线性定常系统完全能控,则可通过适当的状态反馈, 将闭环系统极点配置到任意期望的位置。
MATLAB 提供的函数acker( )是用Ackermann 公式求解状态反馈阵K 。
该函数的调用格 式为K=acker(A,B,P)其中A 和B 分别为系统矩阵和输入矩阵。
P 是期望极点构成的向量。
MATLAB 提供的函数place( )也可求出状态反馈阵K 。
该函数的调用格式为 K=place(A,B,P)函数place( )还适用于多变量系统极点配置,但不适用含有多重期望极点的问题。
函数acker( )不适用于多变量系统极点配置问题,但适用于含有多重期望极点问题。
三、仪器设备PC 计算机,MATLAB 软件⎣[y1=lsim(G,u,t); plot(t,y1,':',t,y2,'-')蓝色为配置前,绿色为配置后题5-3 某系统状态空间描述如下[]010100134326100x x u y x⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦= 设计全维状态观测器,要求状态观测器的极点为[]123---。
程序>> A=[0 1 0;0 0 1;-4 -3 -2];B=[1;3;-6]'; C=[1 0 0]; D=0;p=[-1 -2 -3]; L=(acker(A',C',p))' 结果:L = 40 -10。
订 线实 验 报 告实验名称 利用MATLAB 实现极点配置、设计状态观测器系 专业 自动化 班 姓名 学号 授课老师 预定时间实验时间实验台号一、目的要求1、掌握状态反馈和输出反馈的概念及性质。
2、掌握利用状态反馈进行极点配置的方法。
学会用MATLAB 求解状态反馈矩阵。
3、掌握状态观测器的设计方法。
学会用MATLAB 设计状态观测器。
4、熟悉分离定理,学会设计带有状态观测器的状态反馈系统。
二、原理简述1、状态反馈和输出反馈设线性定常系统的状态空间表达式为Cxy Bu Ax x=+=如果采用状态反馈控制规律u= r-Kx ,其中 r 是参考输入,则状态反馈闭环系统的传递函数为:B BK A sIC G k 1)]([---=2、极点配置如果 SISO 线性定常系统完全能控,则可通过适当的状态反馈, 将闭环系统极点配置到任意期望的位置。
MATLAB 提供的函数acker( )是用Ackermann 公式求解状态反馈阵K 。
该函数的调用格 式为K=acker(A,B,P)其中A 和B 分别为系统矩阵和输入矩阵。
P 是期望极点构成的向量。
MATLAB 提供的函数place( )也可求出状态反馈阵K 。
该函数的调用格式为 K=place(A,B,P)函数place( )还适用于多变量系统极点配置,但不适用含有多重期望极点的问题。
函数acker( )不适用于多变量系统极点配置问题,但适用于含有多重期望极点问题。
三、仪器设备PC 计算机,MATLAB 软件[0410x y ⎢=⎢⎢--⎣=理想闭环系统的极点为(1)采用直接计算法进行闭环系统极点配置;(2)采用Ackermann订 线y1=lsim(G,u,t); plot(t,y1,':',t,y2,'-')蓝色为配置前,绿色为配置后题5-3 某系统状态空间描述如下[]010100134326100x x u y x⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦= 设计全维状态观测器,要求状态观测器的极点为[]123---。
一. 极点配置原理假设原系统的状态空间模型为:⎩⎨⎧=+=Cxy Bu Ax x 若系统是完全可控的,则可引入状态反馈调节器,且:这时,闭环系统的状态空间模型为:()x A BK x Bv y Cx =-+⎧⎨=⎩二. 状态观测器设计原理假设原系统的状态空间模型为:⎩⎨⎧=+=Cxy Bu Ax x 若系统是完全可观的,则可引入全维状态观测器,且:ˆˆ(y y)ˆˆx Ax Bu G y Cx ⎧=++-⎪⎨=⎪⎩设ˆx x x=-,闭环系统的状态空间模型为: ()x A GC x =-解得:(A GC)t(0),t 0x ex -=≥由上式可以看出,在t 0≥所有时间内,如果(0)x =0,即状态估计值x 与x 相等。
如果(0)0x ≠,两者初值不相等,但是()A GC -的所有特征值具有负实部,这样x 就能渐进衰减至零,观测器的状态向量ˆx就能够渐进地逼近实际状态向量x 。
状态逼近的速度取决于G 的选择和A GC -的特征配置。
三. 状态观测的实现为什么要输出y 和输入u 对系统状态x 进行重构。
u Kx v =-+证明 输出方程对t 逐次求导,并将状态方程x Ax Bu =+代入整理,得2(n 1)(n 2)(n 3)21n n y Cxy CBu CAx y CBu CABu CA x y CBu CABu CA Bu CA x-----=⎧⎪-=⎪⎪--=⎨⎪⎪⎪----=⎩将等号左边分别用z 的各分量12,,,n z z z 表示,有121(n 1)(n 2)(n 3)2n n n y C z y CBu CA z z y CBu CABu x Qx z CA y CBu CABu CA Bu -----⎡⎤⎧⎡⎤⎡⎤⎢⎥⎪-⎢⎥⎢⎥⎢⎥⎪⎪⎢⎥⎢⎥⎢⎥==--==⎨⎢⎥⎢⎥⎢⎥⎪⎢⎥⎢⎥⎢⎥⎪⎣⎦⎣⎦⎢⎥⎪----⎩⎣⎦如果系统完全能观,则rankQ n =即1ˆ(Q Q)T Tx Q z -= (类似于最小二乘参数估计) 综上所述,构造一个新系统z ,它是以原系统的输出y 和输入u ,其输出经过变换1(Q Q)T T Q -后得到状态向量ˆx。
实验6极点配置与全维状态观测器的设计实验 6 极点配置与全维状态观测器的设计⼀、实验⽬的1. 加深对状态反馈作⽤的理解。
2. 学习和掌握状态观测器的设计⽅法。
⼆、实验原理在MATLAB 中,可以使⽤acker 和place 函数来进⾏极点配置,函数的使⽤⽅法如下:K = acker(A,B,P) A,B为系统系数矩阵,P为配置极点,K为反馈增益矩阵。
K = place(A,B,P) A,B为系统系数矩阵,P为配置极点,K为反馈增益矩阵。
[K,PREC,MESSAGE] = place(A,B,P) A,B为系统系数矩阵,P为配置极点,K为反馈增益矩阵,PREC 为特征值,MESSAGE 为配置中的出错信息。
三、实验内容1.已知系统(1)判断系统稳定性,说明原因。
(2)若不稳定,进⾏极点配置,期望极点:-1,-2,-3,求出状态反馈矩阵k。
(3)讨论状态反馈与输出反馈的关系,说明状态反馈为何能进⾏极点配置?(4)使⽤状态反馈进⾏零极点配置的前提条件是什么?1.(1)(2)代码:a=[-2 -1 1;1 0 1;-1 0 1];b=[1,1,1]';p=[-1,-2,-3]';K=acker(a,b,p)K =-1 2 4(3)讨论状态反馈与输出反馈的关系, 说明状态反馈为何能进⾏极点配置?在经典控制理论中,⼀般只考虑由系统的输出变量来构成反馈律,即输出反馈。
在现代控制理论的状态空间分析⽅法中,多考虑采⽤状态变量来构成反馈律,即状态反馈。
从状态空间模型输出⽅程可以看出,输出反馈可视为状态反馈的⼀个特例。
状态反馈可以提供更多的补偿信息,只要状态进⾏简单的计算再反馈,就可以获得优良的控制性能。
(4)使⽤状态反馈配置极点的前提是系统的状态是完全可控的。
2.已知系统设计全维状态观测器,使观测器的极点配置在12+j,12-j 。
(1)给出原系统的状态曲线。
(2)给出观测器的状态曲线并加以对⽐。
实 验 报 告实验名称 运用MATLAB 实现极点配备、设计状态观测器系 专业 自动化 班 姓名 学号 授课教师 预定期间实验时间实验台号一、目规定1、掌握状态反馈和输出反馈概念及性质。
2、掌握运用状态反馈进行极点配备办法。
学会用MA TLAB 求解状态反馈矩阵。
3、掌握状态观测器设计办法。
学会用MA TLAB 设计状态观测器。
4、熟悉分离定理,学会设计带有状态观测器状态反馈系统。
二、原理简述1、状态反馈和输出反馈 设线性定常系统状态空间表达式为Cxy Bu Ax x =+=如果采用状态反馈控制规律u= r-Kx ,其中 r 是参照输入,则状态反馈闭环系统传递函数为:B BK A sIC G k 1)]([---=2、极点配备如果 SISO 线性定常系统完全能控,则可通过恰当状态反馈,将闭环系统极点配备到任意盼望位置。
MATLAB 提供函数acker( )是用Ackermann 公式求解状态反馈阵K 。
该函数调用格 式为K=acker(A,B,P)其中A 和B 分别为系统矩阵和输入矩阵。
P 是盼望极点构成向量。
MATLAB 提供函数place( )也可求出状态反馈阵K 。
该函数调用格式为 K=place(A,B,P)函数place( )还合用于多变量系统极点配备,但不合用具有多重盼望极点问题。
函数acker( )不合用于多变量系统极点配备问题,但合用于具有多重盼望极点问题。
三、仪器设备PC 计算机,MATLAB 软件四、内容环节、数据解决⎣[蓝色为配备前,绿色为配备后题5-3 某系统状态空间描述如下[]010100134326100x x u y x⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦= 设计全维状态观测器,规定状态观测器极点为[]123---。
程序>> A=[0 1 0;0 0 1;-4 -3 -2];B=[1;3;-6]'; C=[1 0 0]; D=0;p=[-1 -2 -3]; L=(acker(A',C',p))' 成果:L = 40 -10题5-4已知系统。
第7章线性定常离散时间状态空间设计法7.1引言7.2状态反馈配置极点7.3状态估值和状态观测器7.4利用状态估值构成状态反馈以配置极点7.5扰动调节7.6无差调节7.1引言一个被控对象:(1)()()()()():1,():1,:,:,:x k Fx k Gu k y k Cx k x k n u k m F n n G n m C r n+=+⎧⎨=⎩⨯⨯⨯⨯⨯ 7.1当设计控制器对其控制时,需要考虑如下各因素: ● 扰动,比如负载扰动 ● 测量噪声● 给定输入的指令信号 ● 输出 如图7.1所示。
给d L (k )扰动图7.1 控制系统示意图根据工程背景的不同,控制问题可分为调节问题和跟踪问题,跟踪问题也称为伺服问题。
调节问题的设计目标是使输出迅速而平稳地运行于某一平衡状态。
包括指令变化时的动态过程,和负载扰动下的动态过程。
但是这二者往往是矛盾的,需要折衷考虑。
伺服问题的设计目标是对指令信号的快速动态跟踪。
本章研究基于离散时间状态空间模型的设计方法。
7.2研究通过状态变量的反馈对闭环系统的全部特征值任意配置——稳定性与快速线。
7.3考虑当被控对象模型的状态无法直接测量时,如何使用状态观测器对状态进行重构。
7.4讨论使用重构状态进行状态反馈时闭环系统的特征值。
7.5简单地讨论扰动调节问题。
7.6状态空间设计时的无差调节问题。
7.2 状态反馈配置极点工程被控对象如式7.1,考虑状态反馈()()()u k v k Lx k =+7.2如图7.2所示。
式7.2带入式7.1,得(1)()()()()()()()x k Fx k Gu k y k Cx k u k v k Lx k +=+⎧⎪=⎨⎪=+⎩7.3整理得()(1)()()()()x k F GL x k Gv k y k Cx k +=++⎧⎨=⎩7.4(k )v(k )图7.2 状态反馈任意配置闭环系统的极点闭环系统的特征方程为[]det ()0zI F GL -+=7.5问题是在什么情况下式7.5的特征根是可以任意配置的?即任给工程上期望的n 个特征根λ1, λ2, ..., λn ,有[]1det ()()0ni i zI F GL z λ=-+=-=∏7.6定理:状态反馈配置极点若被控对象式7.1是状态完全能达的,即(F , G )是一个能达对(能达性矩阵-1[...]N c W F G FG G =满秩),则一定存在一个r 行n 列的状态反馈矩阵L ,使得在状态反馈()()()u k v k Kx k =+下,闭环系统式7.4具有任意给定的n 个期望的特征根λ1, λ2, ..., λn 。