透射式电子显微镜实验
- 格式:doc
- 大小:470.00 KB
- 文档页数:10
透射电镜实验报告透射电子显微镜透射电子显微镜简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。
散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。
通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,用于观察超微结构,即小于0.2µm、光学显微镜下无法看清的结构,又称“亚显微结构”。
成像原理透射电子显微镜的成像原理可分为三种情况:吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。
样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。
早期的透射电子显微镜都是基于这种原理。
衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射钵的振幅分布不均匀,反映出晶体缺陷的分布。
相位像:当样品薄至100Å以下时,电子可以传过样品,波的振幅变化可以忽略,成像来自于相位的变化。
组件电子枪:发射电子,由阴极、栅极、阳极组成。
阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速、加压的作用。
聚光镜:将电子束聚集,可用已控制照明强度和孔径角。
样品室:放置待观察的样品,并装有倾转台,用以改变试样的角度,还有装配加热、冷却等设备。
物镜:为放大率很高的短距透镜,作用是放大电子像。
物镜是决定透射电子显微镜分辨能力和成像质量的关键。
中间镜:为可变倍的弱透镜,作用是对电子像进行二次放大。
通过调节中间镜的电流,可选择物体的像或电子衍射图来进行放大。
透射镜:为高倍的强透镜,用来放大中间像后在荧光屏上成像。
此外还有二级真空泵来对样品室抽真空、照相装置用以记录影像。
透射电子显微镜结构包括两大部分:主体部分为照明系统、成像系统和观察照相室;辅助部分为真空系统和电气系统。
透射电镜析出相统计
透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种高性能的微观观察仪器,主要用于观察纳米至原子尺度的物体结构。
在材料科学、生物学、化学等领域具有广泛的应用。
在析出相统计方面,透射电镜可以提供高分辨率的相分布和晶体取向信息,为研究析出相的形成机制、相变过程等提供重要依据。
透射电镜析出相统计的主要步骤如下:
1. 样品制备:首先需要从实验材料中制备出适合透射电镜观察的薄片样品。
通常采用冷冻切片、聚焦离子束(FIB)切割等方法获取。
2. 透射电镜观察:将制备好的样品放置在透射电镜样品杆上,调整透射电镜的参数,如加速电压、电流等,获取清晰的透射图像。
3. 数据分析:利用图像处理软件对透射图像进行处理,提取相界、相区等信息。
通过定量分析,可以得到不同相的面积百分比、相分布规律等统计数据。
4. 相变研究:结合原子力显微镜(AFM)、X射线衍射(XRD)等实验手段,进一步研究析出相的形成机制、相变过程等。
透射电镜析出相统计的优点:
1. 高分辨率:透射电镜可以清晰地观察到纳米甚至原子尺度的析出相,为统计分析提供精确的数据。
2. 定量分析:通过图像处理软件,可以实现对不同相的定量分析,得到相分布、相界等关键数据。
3. 样品制备相对简单:相较于其他微观观察手段,透射电镜样品制备相对简单,易于获取高质量的薄片样品。
4. 多种实验手段结合:可以与其他实验手段如原子力显微镜、X射线衍射等相结合,全面研究析出相的相关问题。
总之,透射电镜在析出相统计方面具有显著优势,为材料科学、生物学等领域的研究提供了有力支持。
TEM原理实验范文TEM(Transmission Electron Microscope,透射电子显微镜)原理实验是一种利用电子束对物质进行高分辨率成像的技术。
TEM原理实验可以用于观察材料的微观结构、获得元素成分、确定晶体结构等。
TEM原理实验需要的主要设备包括透射电子显微镜、样品准备设备和探测仪器等。
实验开始前需要先准备样品,将待观察的样品切割成极薄的截面,通常要求样品的厚度在几十纳米至几百纳米之间。
然后将样品安装在透明的载玻片或网格上,以便电子束的穿透。
实验开始时,将样品放置在透射电子显微镜的样品台上,并调整显微镜的参数使得电子束聚焦并垂直穿过样品。
通常实验者需要通过衍射图样或直接观察来确定电子束是否正确地穿过样品。
在实验中,电子束通过样品后,会与样品中的原子与电子发生相互作用。
根据不同的相互作用机制,我们可以获得不同的信息。
例如,透射电子显微镜可以通过对透射电子的弹性散射进行观察,获得材料的晶体结构信息;同时,通过对透射电子的能量散射进行分析,可以获得材料的元素成分信息。
透射电子显微镜的分辨率一般可以达到0.1纳米以下,因此可以观察到非常细微的结构细节。
然而,透射电子显微镜的实验操作对实验者的技术要求也非常高,因为束电子非常容易因各种因素而散射或被吸收,从而影响实验结果。
因此,在进行TEM原理实验时,实验者必须掌握基本的透射电子显微镜操作技巧,并且具备对样品的处理和分析能力。
总结起来,TEM原理实验通过透射电子束对样品进行观察和分析,可以获得材料的微观结构、元素成分等信息。
TEM技术在材料科学、生物医学等领域具有重要的应用价值,但也需要实验者具备一定的技术和分析能力。
实验27透射电子显微镜观察聚合物的微相分离结构一、实验目的1.熟悉透射电子显微镜的基本结构,理解透射电镜的工作原理及像反差的形成原理。
2.初步掌握聚合物(如胶乳)的制样技术和观察记录方法。
二、透射电镜的结构三大部分:1.电子光学系统(镜体):照明源(电子枪聚光镜)、成像系统(样品室物镜中间镜投影镜)观察与记录系统;2.真空系统(机械泵油扩散泵);3.电子学系统(即电路系统)。
镜体是透射电镜最基本的重要的部分,真空系统和电路系统是其辅助系统。
三、实验基本原理1.透射电镜的工作原理1.1由电子枪发射电子流,在阳极的加速下,电子束(100um)射向镜筒。
1.2聚光镜将电子束进一步会聚,形成1-2um电子束斑,并投射在样品上。
1.3物镜将穿过样品并带有样品结构信息的电子束放大聚焦形成第一放大像。
1.4中间镜以物镜放大像为物,形成第二级放大像。
1.5投影镜以中间镜的放大像为物,形成第二级放大像。
1.6第三级放大像被投射在荧光屏上。
M(总)=Mo(物)×Mi(中)×Mp(投)2.像反差的形成原理当透射电镜的照明源中插入了样品的膜之后,原来均匀的电子束就变得不均匀了。
样品膜中质量厚度大的区域因散射电子多而出现电子数的不足,这样的区域经放大后就成了暗区,而样品膜中质量厚度小的区域因透过电子较多,散射电子较少而成为亮区。
通过样品后的这种不均匀的电子束被荧光屏截获后,即成为反映样品信息的透射电镜黑白图像。
对于那些质量厚度差别不大的样品,常常需要用电子染色的方法来加强样品本身或样品四周(背景)或样品的某些部分的电子密度,从而使不同区域散射电子的数量差别增大,进而改善图像的明暗差别即增强反差。
四、实验条件1.仪器:JEM-100SX透射电镜,DM220高真空镀膜台,超声波清洗器2.试剂:1.5%火棉胶 1.5%磷钨酸水溶液2%乙酸铀水溶液3.试样:乳胶或其它液状或粉末状聚合物样品4.器皿:青霉素小瓶玻棒铜镍网弯头镊子培养皿滤纸φ3mm碳棒等五、实验步骤及方法1.制作复膜铜网(火棉胶膜加碳膜)1.1复火棉胶膜在一直径约为10cm的培养皿中装适量双蒸水,滴一滴1.5%火棉胶液于水面上,一段时间后,水面上即成有一层火棉胶膜。
透射电子显微镜的实验技巧与使用方法透射电子显微镜(Transmission Electron Microscope,简称TEM)作为一种重要的材料科学与纳米科学研究工具,广泛应用于物质的微观结构分析。
然而,使用TEM进行观察和分析需要一些实验技巧和操作方法,以确保获得高质量的显微图像和可靠的实验结果。
本文将介绍透射电子显微镜的实验技巧和使用方法,以帮助读者更好地掌握这一强大工具。
第一部分:样品制备在进行TEM观察前,样品制备是至关重要的一步。
以下是一些常用的样品制备技巧:1. 薄片制备:将待观察的材料制备成足够薄的薄片,常用的方法有机械切割、离子蚀刻和离心旋涂等。
制备薄片时需注意避免产生裂纹和杂质。
2. 薄片转移到网格:将薄片转移到透射电子显微镜网格上,通常使用细钳和转移介质(如水和乙醇)进行操作。
转移过程需要小心以避免薄片折叠或粘附杂质。
第二部分:透射电子显微镜操作1. 启动与预热:在开始使用TEM之前,需要对其进行启动和预热。
启动过程包括电源接通、真空泵抽取空气以及透射电子显微镜主机预热。
预热时间可根据设备型号和要求进行设定。
2. 对准和聚焦:必须对TEM进行准确的样品对准和聚焦。
首先,通过观察屏幕上的光学显微镜图像,调整样品位置,使其准确对应TEM光学通道。
然后,通过微调操纵仪或操作面板上的聚焦控制旋钮对样品进行聚焦。
3. 选择倍率和放大:根据需要选择适当的倍率和放大倍数。
通常,低倍率可以提供较大的视野和全局信息,高倍率则可以提供更高分辨率和详细信息。
倍率过高可能导致图像模糊,倍率过低则可能丧失微观细节。
4. 稳定电流和时间控制:在TEM操作过程中,保持稳定的电流和时间控制至关重要。
电流的稳定性直接影响到图像质量和分辨率。
合理选择电流和控制时间以避免样品损伤。
第三部分:图像采集和分析1. 图像采集:在获得良好对准和聚焦的样品后,可以开始进行图像采集。
根据需求选择适当的图像模式,如亮场、暗场、选区电子衍射等。
电子显微镜实验报告电子显微镜实验报告引言:电子显微镜(Electron Microscope,简称EM)是一种利用电子束来观察物质微观结构的仪器。
与光学显微镜相比,电子显微镜具有更高的分辨率和放大倍数,能够观察到更小的细微结构。
本实验旨在通过使用电子显微镜,观察和分析不同样本的微观结构,以及了解电子显微镜的工作原理和操作技巧。
实验材料和仪器:本次实验使用的材料包括金属样品、植物细胞样品和昆虫组织样品。
实验所使用的仪器为电子显微镜,包括扫描电子显微镜(Scanning Electron Microscope,简称SEM)和透射电子显微镜(Transmission Electron Microscope,简称TEM)。
实验步骤:1. 样品制备:将金属样品切割成薄片,植物细胞样品进行固定和切片,昆虫组织样品进行化学处理和切片。
2. SEM观察:将样品放置在SEM的样品台上,通过控制电子束的扫描范围和电子束的强度,观察样品表面的微观结构。
3. TEM观察:将样品制备成透明薄片,放置在TEM的样品台上,通过控制电子束的透射范围和电子束的强度,观察样品内部的微观结构。
4. 结果分析:根据观察到的图像,分析样品的微观结构、形态和组成。
实验结果:1. 金属样品观察:通过SEM观察,我们可以清晰地看到金属表面的晶粒结构和纹理。
不同金属的晶粒大小和排列方式也可以通过SEM图像进行比较分析。
2. 植物细胞样品观察:通过TEM观察,我们可以观察到植物细胞的细胞壁、细胞质、细胞核和细胞器等微观结构。
通过比较不同类型的细胞样品,我们可以了解不同细胞的结构和功能差异。
3. 昆虫组织样品观察:通过SEM和TEM观察,我们可以观察到昆虫组织的外部形态和内部结构。
例如,昆虫的触角、翅膀和腿部等结构可以通过SEM观察到其表面形态,而昆虫的神经系统和内脏器官可以通过TEM观察到其内部结构。
讨论与总结:通过本次实验,我们深入了解了电子显微镜的工作原理和操作技巧,并成功观察到不同样品的微观结构。
物理实验中透射电子显微镜的使用指南透射电子显微镜(Transmission Electron Microscopy,简称TEM)是现代物理实验中一种非常重要的工具,它能够提供高分辨率的观测和分析样品的微观结构和成分。
本文将为您介绍透射电子显微镜的使用指南。
一、透射电子显微镜的原理与构造透射电子显微镜利用电子束通过样品并形成细致的图像,它的原理是基于电子的波粒二象性以及电子与样品相互作用的特性。
透射电子显微镜通常由电子源、透镜系统、样品台和显像系统等组成。
电子源是透射电子显微镜的核心部件,常用的电子源包括热阴极和场发射阴极。
透镜系统负责控制和聚焦电子束,它由透镜、磁透镜和计数器等组成。
样品台用于固定和转动样品,使得电子束可以满足不同角度的入射条件。
显像系统则负责收集电子束通过样品后的信息,并将其转化成可见图像。
二、透射电子显微镜的样品制备透射电子显微镜对样品制备要求极高,首先需要将样品制备成薄片,以保证电子束能够穿透样品并形成可观测的图像。
常用的样品制备方法有机械切割、电子束刻蚀和离子薄化等。
在样品制备过程中,还需要注意避免样品表面的污染和氧化。
在制备过程中,可以采用真空环境、惰性气体保护或氮气氛等方法来防止样品受到污染。
同时,也要注意避免样品上的含水气泡,可以通过超声震荡或去离子水清洗等方法去除。
三、透射电子显微镜的操作指南在使用透射电子显微镜时,需要注意以下几点:1. 系统预热:在使用透射电子显微镜之前,需要进行系统预热以达到稳定的工作状态。
预热时间通常为数小时,具体时间取决于仪器和操作要求。
2. 加热和冷却样品:透射电子显微镜可以在不同温度下观察样品。
在进行加热或冷却样品之前,需要确保样品和样品台可以承受相应的温度,并根据需要选择正确的加热或冷却装置。
3. 对溶液样品的观察:如果需要观察溶液样品,可以将样品制备在薄碳膜或其他透明基底上,并在观察前进行干燥。
同时,还应注意避免样品在高真空下蒸发或结晶。
引言本文是关于TEM(透射电子显微镜)实验的报告,主要介绍了使用TEM仪器对材料的微观结构进行观察和分析的过程和结果。
通过本次实验,我们可以进一步了解TEM技术的原理和应用,以及探索TEM在研究材料结构和属性方面的潜力。
概述TEM是一种通过透射电子束来观察材料内部结构的高分辨率显微镜。
它利用电子的波粒二象性和电子束与样品相互作用的特点,通过收集被透射电子打散的信息,可以获取高分辨率、高对比度的图像,并对材料结构进行分析。
本次实验中,我们将使用TEM对一种材料的微观结构进行观察和分析。
正文1. 实验准备1.1 选择合适的样品:TEM可以观察金属、陶瓷、生物材料等多种材料的微观结构,我们在本次实验中选择了一种具有典型结构的纳米材料作为观察对象。
1.2 制备样品:为了得到高质量的TEM图像,我们需要制备薄而透明的样品。
通常,可以通过机械切割、电子刻蚀等方法来制备样品。
1.3 处理样品:为了降低图像中的辐射损伤和噪音等因素的影响,我们需要对样品进行预处理。
例如,可以使用特殊的染料来增强样品的对比度。
2. TEM操作2.1 样品加载:将制备好的样品放置在TEM的样品架上,并确保样品位置准确。
TEM通常需要进行真空操作,以减少氧气和水蒸汽等对电子束的干扰。
2.2 电子束对准:通过调节TEM仪器的参数,如电子束聚焦、缺陷消除和光学系统对仪器进行调试,以获得清晰的图像。
2.3 图像获取:通过控制电子束的扫描和探测器的运行,将透射电子信号转化为电信号,并记录成数字图像。
3. TEM数据分析3.1 图像处理:对于获取的TEM图像,需要进行一定的处理以去除噪音、增强对比度和调整亮度。
可以使用图像处理软件进行这些操作。
3.2 纳米颗粒分析:通过对TEM图像中纳米颗粒的计数、尺寸测量和形状分析等,可以获得纳米颗粒的粒径分布和结构形态等信息。
3.3 晶体学分析:通过对TEM图像中的晶体衍射环和棱柱面的分析,可以得到晶体的晶格参数、晶体学分类和结构定量等信息。
一、实验名称电子显微镜技术二、实验目的1. 了解扫描电子显微镜(SEM)和透射电子显微镜(TEM)的基本原理和结构。
2. 掌握电子显微镜的样品制备和操作方法。
3. 通过观察样品的微观结构,了解材料的形貌、内部组织结构和晶体缺陷。
三、实验仪器1. 扫描电子显微镜(SEM):型号为Hitachi S-4800。
2. 透射电子显微镜(TEM):型号为Hitachi H-7650。
3. 样品制备设备:离子溅射仪、真空镀膜机、切割机、研磨机等。
四、实验内容1. 扫描电子显微镜(SEM)实验(1)样品制备:将待观察的样品切割成薄片,用离子溅射仪去除表面污染层,然后用真空镀膜机镀上一层金属膜,以增强样品的导电性。
(2)操作步骤:① 开启扫描电子显微镜,调整真空度至10-6Pa。
② 将样品放置在样品台上,调整样品位置,使其位于物镜中心。
③ 设置合适的加速电压和束流,调整聚焦和偏转电压,使样品清晰成像。
④ 观察样品的表面形貌,记录图像。
(3)结果分析:通过观察样品的表面形貌,了解材料的微观结构,如晶粒大小、组织结构、缺陷等。
2. 透射电子显微镜(TEM)实验(1)样品制备:将待观察的样品切割成薄片,用离子溅射仪去除表面污染层,然后用真空镀膜机镀上一层金属膜,以增强样品的导电性。
(2)操作步骤:① 开启透射电子显微镜,调整真空度至10-7Pa。
② 将样品放置在样品台上,调整样品位置,使其位于物镜中心。
③ 设置合适的加速电压和束流,调整聚焦和偏转电压,使样品清晰成像。
④ 观察样品的内部结构,记录图像。
(3)结果分析:通过观察样品的内部结构,了解材料的微观结构,如晶粒大小、组织结构、缺陷等。
五、实验结果与讨论1. 扫描电子显微镜(SEM)实验结果:通过观察样品的表面形貌,发现样品表面存在大量晶粒,晶粒大小不一,且存在一定的组织结构。
在样品表面还观察到一些缺陷,如裂纹、孔洞等。
2. 透射电子显微镜(TEM)实验结果:通过观察样品的内部结构,发现样品内部晶粒较小,且存在一定的组织结构。
实验二细胞的超微结构—透射电镜下的细胞器实验目的:通过使用透射电子显微镜观察和研究细胞的超微结构,了解细胞器的形态和组织,以及其在细胞功能中的作用。
实验原理:透射电子显微镜是一种利用电子束通过样品的原理进行显微观察的仪器。
相比传统光学显微镜,透射电子显微镜具有更高的分辨率和放大倍数。
实验步骤:1.准备样品:使用透射电子显微镜需要制备薄片样品。
将细胞或组织固定、切片和上染色剂等。
2.调整放大倍数:根据需要观察的细胞器,调整透射电子显微镜的放大倍数。
3.开始观察:将样品放入透射电子显微镜中,调整焦距和对比度,开始观察细胞超微结构。
4.记录结果:使用电子显微镜拍摄或记录所见到的细胞器的图像和形态。
根据观察结果,对细胞器的结构和功能进行分析和讨论。
实验结果:观察细胞的超微结构可以看到许多细胞器,如细胞核、线粒体、内质网、高尔基体、溶酶体等。
细胞核是细胞的控制中心,一般位于细胞的中央。
在透射电镜下观察,可以看到核膜(由内核膜和外核膜组成)、核孔、核仁等结构。
核膜通过核孔与细胞质相连,核仁是RNA合成的地方。
线粒体是细胞的能量中心,通过细胞呼吸产生ATP。
在透射电镜下观察,线粒体呈棒状或梭形,内部含有许多内膜,并形成一系列被称为嵴(cristae)的褶层。
嵴上含有许多氧化酶,参与细胞呼吸。
内质网是细胞的重要细胞器之一,两个片层之间的空腔称为内质网腔。
内质网膜上覆盖着许多小颗粒,称为核糖体。
内质网分为粗面内质网和平滑内质网,前者存在核糖体,用于蛋白质合成,后者没有核糖体,参与脂质代谢和钙离子存储。
高尔基体是细胞的分泌细胞器,具有分泌蛋白质、糖蛋白质和磷脂等功能。
高尔基体由多个平面被膜囊构成,形成一系列被称为囊泡的结构。
在透射电镜下可以看到高尔基体具有一层由囊泡组成的堆叠结构。
溶酶体是细胞的消化系统,其内部含有多种水解酶。
溶酶体呈球状或椭圆形,在透射电镜下可以看到其内部含有酶泡。
溶酶体参与细胞内的废物降解和吞噬体的形成。
纳米材料的透射电子显微镜分析一.实验原理在透射电子显微镜电子光学系统中,薄样品对电子束的散射和衍射作用可形成电子显微像衬度或电子衍射花样。
通过观察和研究像衬度及电子衍射花样,可分析样品的微观形貌、尺寸大小和晶体结构。
电子显微图像衬度主要有3种:质厚衬度、衍射衬度和相位衬度。
(1)质厚衬度:由于试样各处组成物质的原子种类和厚度不同,使得对电子散射能力不同,而造成的一种像衬度。
(2)衍射衬度:晶体试样在进行透射电镜观察时,由于各处晶体取向和结构不同,满足布拉格衍射条件的程度不同,使得对试样下表面处有不同的衍射效果,从而在下表面形成随位置而异的衍射振幅分布,由此而形成的一种像衬度。
(3)相位衬度:由透射束与衍射束发生相互干涉,形成一种反映晶体点阵周期性的条纹和结构像,这种像衬度是因透射束与衍射束相位相干而形成的,故称相位衬度。
因此,采用不同的实验条件可以得到不同的衬度像。
另外,透射电镜配置X-Ray能谱仪后,可获得试样微区(nm-µm)元素成分信息。
X-Ray能谱仪是将透射电镜中高能电子入射试样后使原子内壳层电子被激发电离后原子在恢复基态的过程中产生的X射线信号进行收集、放大处理,并按能量展开成谱,利用谱峰的特征能量值确定元素种类,根据谱的强度分析计算各元素含量。
二.实验仪器1.透射电子显微镜:JEM-2010 (HR)2.X-Ray能谱仪:Oxford INCA3.制样设备:超声波发生器,双喷减薄仪,离子减薄仪三.样品制备方法1.粉末分散法取少量粉末样品置于洁净的小烧杯中,加入适量与试样不发生反应的溶剂(例如:无水乙醇、丙酮、蒸馏水等),将烧杯置于超声波发生器水浴槽中进行超声振荡,使粉末样品充分分散,形成悬浮液。
把碳增强的微栅网放在滤纸上,再将此悬浮液滴在微栅网上面,等溶剂挥发干燥后,才可将微栅网装入样品台。
2.电解减薄法用于金属和合金薄膜试样的制备。
3.离子减薄法用于陶瓷、半导体以及多层薄膜截面等材料的薄膜试样制备。
透射电子显微镜(TEM)实验报告学院:班级:姓名:学号:2016年6月21日实验报告一、实验目的与任务1.熟悉透射电子显微镜的基本构造2.初步了解透射电镜操作过程。
3.初步掌握样品的制样方法。
4.学会分析典型组织图像。
二、透射电镜的结构与原理透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏上而形成所观察的图像。
在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。
透射电子显微镜按加速电压分类,通常可分为常规电镜(100kV)、高压电镜(300kV)和超高压电镜(500kV以上)。
提高加速电压,可缩短入射电子的波长。
一方面有利于提高电镜的分辨率;同时又可以提高对试样的穿透能力,这不仅可以放宽对试样减薄的要求,而且厚试样与近二维状态的薄试样相比,更接近三维的实际情况。
就当前各研究领域使用的透射电镜来看,其主要三个性能指标大致如下:加速电压:80~3000kV分辨率:点分辨率为0.2~0.35nm、线分辨率为0.1~0.2nm最高放大倍数:30~100万倍尽管近年来商品电镜的型号繁多,高性能多用途的透射电镜不断出现,但总体说来,透射电镜一般由电子光学系统、真空系统、电源及控制系统三大部分组成。
此外,还包括一些附加的仪器和部件、软件等。
有关的透射电镜的工作原理可参照教材,并结合本实验室的透射电镜,根据具体情况进行介绍和讲解。
以下仅对透射电镜的基本结构作简单介绍。
1.电子光学系统电子光学系统通常又称为镜筒,是电镜的最基本组成部分,是用于提供照明、成像、显像和记录的装置。
整个镜筒自上而下顺序排列着电子枪、双聚光镜、样品室、物镜、中间镜、投影镜、观察室、荧光屏及照相室等。
通常又把电子光学系统分为照明、成像和观察记录部分。
2.真空系统为保证电镜正常工作,要求电子光学系统应处于真空状态下。
透射电镜实验报告透射电镜是一种能够观察样品内部结构的高级显微镜,它利用电子束的透射来形成样品的显微图像。
透射电镜实验是现代生物学、材料科学和纳米技术等领域中常用的实验手段,可以帮助研究人员观察和分析样品的微观结构。
本实验旨在通过透射电镜对样品进行观察,了解透射电镜的工作原理和操作方法,以及掌握透射电镜实验的基本技能。
实验步骤:1. 样品制备,首先,我们需要准备样品。
样品制备的关键是要将样品切割成极薄的切片,以便电子束能够透射样品并形成清晰的显微图像。
2. 透射电镜的准备,接下来,我们需要对透射电镜进行准备。
首先打开透射电镜的主电源,等待其预热。
然后安装样品架,并调整透射电镜的对焦和放大倍数,以确保能够获得清晰的显微图像。
3. 样品观察,将制备好的样品放置到透射电镜的样品架上,调整透射电镜的参数,如加速电压和聚焦,然后通过电子束对样品进行观察。
观察过程中需要注意调整对比度和亮度,以获得清晰的显微图像。
4. 数据分析,观察完样品后,我们需要对获得的显微图像进行分析。
通过观察样品的微观结构,我们可以了解样品的成分、晶体结构、表面形貌等信息,并对样品进行进一步的研究和分析。
实验结果:通过透射电镜观察,我们成功获得了样品的显微图像,并对样品的微观结构进行了初步分析。
我们观察到样品中的颗粒分布情况,以及颗粒的形状和大小。
通过对比不同样品的显微图像,我们还可以比较不同样品之间的微观结构差异,为进一步研究提供了重要参考。
实验总结:透射电镜实验是一项重要的实验手段,可以帮助研究人员观察和分析样品的微观结构。
通过本次实验,我们掌握了透射电镜的操作方法和样品制备技巧,并成功获得了样品的显微图像。
透射电镜实验为我们提供了一种全新的观察样品的方式,为我们的研究工作提供了重要的帮助。
透射电镜实验报告到此结束。
透射电子显微镜的操作流程透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种高分辨率的显微镜,能够在纳米级别观察样品的内部结构和原子级别的细节。
本文将介绍透射电子显微镜的操作流程。
一、准备工作在操作透射电子显微镜之前,需要进行一些准备工作。
首先,确保显微镜的主要部件都处于正常工作状态,如电子源、电子透镜、样品夹持器等。
其次,检查透射电子显微镜的真空系统是否正常运行,避免气体对电子束的干扰。
最后,选择适当的样品,将其切片并磨制至适当厚度,以便透射电子通过。
二、样品装载将事先制备好的样品装载到透射电子显微镜的样品夹持器上。
夹持器通常有细螺纹固定装置,通过轻轻旋转可以固定样品。
在装载过程中,需注意避免样品与夹持器之间产生机械应力,以免影响显微镜观察的结果。
三、对准操作对准是使用透射电子显微镜必不可少的一步,它确保电子束能够准确地照射在样品上并通过样品,以获取清晰的图像。
对准操作主要包括以下几个步骤:1. 调整透射电子显微镜的电子源,使其发射的电子束平行并具有适当的亮度和聚焦度。
2. 调节电子透镜系统,包括调节聚焦透镜和透镜间距,以使电子束在样品上得到合适的聚焦。
3. 利用荧光屏或高放大倍率的光学系统对电子束进行对齐,以确保电子束与样品表面垂直。
四、图像获取在对准完成后,可以开始进行图像的获取。
操作过程中需要注意以下几点:1. 调节透射电子显微镜中的电子束强度,避免过高的电子束强度对样品产生伤害。
2. 选择适当的像场和放大倍率,使得所需观察的细节能够在图像中清晰可见。
3. 调整对比度和亮度,以获得最佳的图像效果。
4. 在浏览图像时,可以调整样品的不同区域和焦平面,以获取更全面的信息。
五、数据分析与处理获取到的图像可以进行数据分析与处理,提取感兴趣的信息。
常见的数据处理方法包括图像增强、图像对比度调整、图像滤波等。
这些方法可以帮助更好地理解和解释样品的结构和特性。
透射电子显微镜实验报告透射电子显微镜的基本结构及成像原理认知实验一、实验目的1.理解透射电子显微镜(TEM : transmission electron microscope)的成像原理。
2.观察透射电子显微镜基本部件的名称,了解其用途;二、实验仪器仪器:JEM-2100UHR 透射电子显微镜(JEOL)透射电子显微镜用高能电子束作为照明源。
利用从样品下表面透出的电子束来成像。
原理及结构与透射式光学显微镜一样。
世界第一台透射电子显微镜是德国人鲁斯卡1936年发明的。
他与发明扫描隧道显微镜的学者一起获得1982年的诺贝尔物理奖。
目前透射电子显微镜的生产厂家有日本的日立(HITACHI)、日本电子(JEOL)、美国FEI、德国LEO。
透射电子显微镜的功能:主要应用于材料的形貌、内部组织结构和晶体缺陷的观察;物相鉴定,包括晶胞参数的电子衍射测定;高分辨晶格和结构像观察;纳米微粒和微区的形态、大小及化学成分的点、线和面元素定性定量和分布分析。
样品要求为非磁性的稳定样品。
可观察的试样种类:复型样品,金属薄膜和粉末试样,玻璃薄膜和粉末试样,陶瓷薄膜和粉末试样。
三、实验内容(一)透射电镜成像原理透射电子显微镜电子光学系统的工作原理可以用普通光学成像原理进行描述,也就是:平行光照射到一个光栅或周期物样上时,将产生各级衍射,在透镜的后焦面上出现各级衍射分布,得到与光栅或周期物样结构密切相关的衍射谱;这些衍射又作为次级波源,产生的次级波在高斯像面上发生干涉叠加,得到光栅或周期物样倒立的实像。
图1示意地画出了平行光照射到光栅后,在衍射角为θ的方向发生的衍射以及透射光线的光路图。
如果没有透镜,则这些平行的衍射光和透射光将在无穷远处出现夫琅和费衍射花样,形成衍射斑D和透射斑T。
插入透镜的作用就是把无穷远处的夫琅和费衍射花样前移到透镜的后焦面上。
后焦面上的衍射斑(透射斑视为零级衍射斑)作为光源产生次波干涉,在透镜的像平面上出现一个倒立的实像。
透射电子显微镜实验报告
本次实验使用的是透射电子显微镜(Transmission Electron Microscope, TEM)。
透射电子显微镜是一种高分辨率的电子显微镜,在材料科学、生物学和化学等领域有着广泛
的应用。
实验中我们选取了一块金属样品进行观察和分析。
首先,我们用金刚石刀将样品割成
非常薄的薄片,通常厚度在50纳米以下。
然后我们将薄片放在转移网上,并用一定的化学方法对样品进行处理,使得样品中的非结晶区域能够产生足够的对比度,便于观察。
最后,我们将转移网装到透射电子显微镜中,开始观察。
透射电子显微镜工作的基本原理是将一束高速电子通过样品,然后观察透射的电子形
成的衍射图案。
电子束是通过一系列电磁透镜,这些透镜对电子进行聚焦和放大,将电子
束的直径缩小到纳米级别。
在这个过程中,电子会与样品中的原子和分子发生相互作用,
这就导致了电子束的散射,从而产生了衍射图案。
通过观察样品的衍射图案,我们可以确定样品的晶体结构、晶面取向和晶界等信息。
在本次实验中,我们观察到的衍射图案表明样品呈现出面心立方结构,这与金属的晶体结
构相符合。
此外,我们还观察到了一些点阵缺陷和晶界,这些对于了解样品的缺陷和微观
结构也非常有帮助。
总之,透射电子显微镜是一种非常重要的工具,可以帮助我们深入了解材料的微观结
构和性质。
通过观察和分析样品的衍射图案,我们可以获取关键的信息,为材料科学和工
程学的发展提供支持和指导。
物理仿真实验报告项目名称:透射式电子显微镜实验院系名称:专业班级:姓名:学号:透射式电子显微镜实验一、实验目的在软件虚拟的环境中,了解对透射电子显微镜的基础操作流程;结合原理的介绍,了解它们的意义。
二、实验原理图1图1表示:透射电子显微镜由电子枪(照明源、接地阳极、光阑等)、双聚光镜、物镜、中间镜、投影镜等组成. 电子显微镜的热发射电子枪由高温的钨丝尖端发射电子,高级的场发射电子枪在高电场驱动下通过隧道效应发射电子. 场发射电子束的亮度显著提高,同时能量分散度(色差)显著减少,使电子束直径会聚到1nm以下仍有相当的束流.双聚光镜将电子枪发出的电子会聚到样品,经过样品后在下表面形成电子的物波,物波经过物镜、中间镜、投影镜在荧光屏或照相底片上形成放大象.图2为了获得更高的性能,目前生产的新型TEM的结构更为复杂(图2),如透镜有:聚光镜两个,会聚小透镜,物镜,物镜小透镜,三个中间镜,投影镜等. 这样的结构可以在很大围改变像的放大倍数,并被用来实现扫描透射成像(STEM,需要利用偏转线圈)、微衍射和微分析(加上X射线能谱仪).图3图3是透射电子显微镜阿贝成像原理光路图. 物波在物镜的焦平面上形成衍射图样,各个衍射波经过透镜汇聚成第一中间像。
改变中间镜、投影镜电流(即改变它们的焦距),将试样下表面的物波聚焦到荧光屏或底片上得到的是显微像(左). 当中间镜、投影镜改变焦距将焦平面的衍射图样聚焦到荧光屏或底片上得到的是衍射图样(右). 透射电子显微镜的一大优点是:可以同时提供试样的放大像和对应的衍射图样。
得到显微像后在第一中间象处放置选区光阑选出需要的局部图象,再次得到的衍射图样就是和选区(最小选区为几百nm)图像对应的电子衍射图样.图4图4(动画)分别演示显微象和衍射图样的形成过程.先用闪烁的红色箭头表示试样、第一中间象、第二中间象和显微象的形成过程.接着用闪烁的三个圆斑表示物镜焦平面上的衍射图样经过中间镜和投影镜形成衍射图样的过程.三、实验仪器透射电子显微镜主要部件电子枪电子枪有四种:热发射W电子枪,热发射LaB6电子枪,热场发射W (100)电子枪和冷场发射W(310)电子枪. 前两种利用高温下电子获得足够能量逸出灯丝,后两种利用高场下电子的隧道效应逸出灯丝,它们的性能及使用条件见下表.热发射LaB6灯丝比热发射W亮度高,束斑小,能量发散度小,使用温度低,但真空度需提高. 产品更先进的场发射电子枪性能更好,但真空度需更高,并且价格昂贵. 利用场发射枪,可以获得半高宽为0.5nm的电子束。
第二篇材料电子显微分析实验一透射电子显微镜样品制备一、实验目的1.掌握塑料—碳二级复型样品的制备方法。
2.掌握材料薄膜样品的制备方法—双喷电解减薄法和离子薄化法。
二、塑料—碳二级复型的制备原理与方法(一) AC纸的制作所谓AC纸就是醋酸纤维素薄膜。
它的制作方法是:首先按重量比配制6%醋酸纤维素丙酮溶液。
为了使AC纸质地柔软、渗透性强并具有蓝色,在配制溶液中再加入2%磷酸三苯脂和几粒甲基紫。
待上述物质全部溶入丙酮中且形成蓝色半透明的液体,再将它调制均匀并等气泡逸尽后,适量地倒在干净、平滑的玻璃板上,倾斜转动玻璃板,使液体大面积展平。
用一个玻璃钟罩扣上,让钟罩下边与玻璃板间留有一定间隙,以便保护AC纸的清洁和控制干燥速度。
醋酸纤维素丙酮溶液蒸发过慢,AC纸易吸水变白,干燥过快AC纸会产生龟裂。
所以,要根据室温、湿度确定钟罩下边和玻璃间的间隙大小。
经过24小时后,把贴在玻璃板上已干透的AC纸边沿用薄刀片划开,小心地揭下AC纸,将它夹在书本中即可备用。
(二) 塑料—碳二级复型的制备方法(1) 在腐蚀好的金相样品表面上滴上一滴丙酮,贴上一张稍大于金相样品表面的AC纸(厚30~80μm),如图1-2(a)所示。
注意不要留有气泡和皱折。
若金相样品表面浮雕大,可在丙酮完全蒸发前适当加压。
静置片刻后,最好在灯泡下烘烤一刻钟左右使之干燥。
(2) 小心地揭下已经干透的AC纸复型(即第一级复型),将复型复制面朝上平整地贴在衬有纸片的胶纸上,如图1-2(b)所示。
(3) 把滴上一滴扩散泵油的白瓷片和贴有复型的载玻片置于镀膜机真空室中。
按镀膜机的操作规程,先以倾斜方向“投影”铬,再以垂直方向喷碳,如图1-2(c)所示。
其膜厚度以无油处白色瓷片变成浅褐色为宜。
(4) 打开真空室,从载玻片上取下复合复型,将要分析的部位小心地剪成2mm×2mm的小方片,置于盛有丙酮的磨口培养皿中,如图1-2(d)所示。
(5) AC纸从碳复型上全部被溶解掉后,第二级复型(即碳复型)将漂浮在丙酮液面上,用铜网布制成的小勺把碳复型捞到清洁的丙酮中洗涤,再移到蒸馏水中,依靠水的表面张力使卷曲的碳复型展平并漂浮在水面上。
透射电子显微镜实验中的样品制备与成像调整透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种非常强大的工具,用于研究材料的微观结构。
在TEM实验中,样品制备和成像调整是非常重要的步骤,对于获得清晰准确的显微图像至关重要。
首先,样品制备是TEM实验的关键步骤之一。
样品必须非常薄以便透射电子穿透,因此调制样品的厚度和形状非常重要。
通常,研究人员会选择一小块感兴趣的材料,并使用切片机将其切成非常薄的片。
高质量的切片是关键,因为它们不仅要确保样品厚度均匀,还要避免损伤样品的结构。
接下来是样品的预处理。
在TEM实验中,电子束通过样品投射到屏幕上,因此样品必须能够导电。
对于非导电材料,通常会先在样品表面涂上一层非导电物质,如碳或金属。
这样可以提供电子的导电途径,保证电子束的传导和成像质量。
制备好样品后,就进入了成像调整的阶段。
调整成像主要包括对透射电镜的参数进行调整,以获得清晰的图像。
首先是对电子束的聚焦和对准。
调整透射电镜的聚焦使得电子束能够集中到一个小的点上,提高成像的分辨率。
对准是为了将电子束准确地投射到样品的表面,以获得清晰的图像。
在实际调整中,还需要考虑样品的质量和厚度。
不同样品的厚度和结构会对电子束的穿透程度产生影响。
因此,为了获得最佳的成像效果,可能需要调整透射电镜的加速电压和对焦点位置等参数。
通过调整这些参数,可以最大限度地提高样品的对比度和分辨率。
此外,在TEM实验中,由于电子与样品的相互作用,还常常会出现一些成像问题,例如像散射、衍射等。
对于这些问题,研究人员需根据特定的样品和实验条件进行调整。
衍射构图的调整可以提供更多有关样品的晶体结构的信息,进一步帮助研究人员揭示材料的微观特性。
综合而言,透射电子显微镜实验中的样品制备和成像调整是非常复杂而且关键的步骤。
仅仅制备好样品是不够的,还需要通过适当调整透射电镜的参数来获得高质量的显微图像。
只有这样,研究人员才能更好地观察和理解材料的微观结构,为材料科学的发展做出贡献。
物理仿真实验报告项目名称:透射式电子显微镜实验
院系名称:
专业班级:
姓名:
学号:
透射式电子显微镜实验
一、实验目的
在软件虚拟的环境中,了解对透射电子显微镜的基础操作流程;结合原理的介绍,了解它们的意义。
二、实验原理
图1
图1表示:透射电子显微镜由电子枪(照明源、接地阳极、光阑等)、双聚光镜、物镜、中间镜、投影镜等组成. 电子显微镜的热发射电子枪由高温的钨丝尖端发射电子,高级的场发射电子枪在高电场驱动下通过隧道效应发射电子. 场发射电子束的亮度显著提高,同时能量分散度(色差)显著减少,使电子束直径会聚到1nm以下仍有相当的束流.双聚光镜将电子枪发出的电子会聚到样品,经过样品后在下表面形成电子的物波,物波经过物镜、中间镜、投影镜在荧光屏或照相底片上形成放大象.
图2
为了获得更高的性能,目前生产的新型TEM的结构更为复杂(图2),如透镜有:聚光镜两个,会聚小透镜,物镜,物镜小透镜,三个中间镜,投影镜等. 这样的结构可以在很大范围内改变像的放大倍数,并被用来实现扫描透射成像(STEM,需要利用偏转线圈)、微衍射和微分析(加上X射线能谱仪).
图3
图3是透射电子显微镜阿贝成像原理光路图. 物波在物镜的焦平面上形成衍射图样,各个衍射波经过透镜汇聚成第一中间像。
改变中间镜、投影镜电流(即改变它们的焦距),将试样下表面的物波聚焦到荧光屏或底片上得到的是显微像(左). 当中间镜、投影镜改变焦距将焦平面的衍射图样聚焦到荧光屏或底片上得到的是衍射图样(右). 透射电子显微镜的一大优点是:可以同时提供试样的放大像和对应的衍射图样。
得到显微像后在第一中间象处放置选区光阑选出需要的局部图象,再次得到的衍射图样就是和选区(最小选区为几百nm)图像对应的电子衍射图样.
图4
图4(动画)分别演示显微象和衍射图样的形成过程.
先用闪烁的红色箭头表示试样、第一中间象、第二中间象和显微象的形成过程.接着用闪烁的三个圆斑表示物镜焦平面上的衍射图样经过中间镜和投影镜形成衍射图样的过程.
三、实验仪器
透射电子显微镜主要部件
电子枪
电子枪有四种:热发射W电子枪,热发射LaB6电子枪,热场发射W (100)电子枪和冷场发射W(310)电子枪. 前两种利用高温下电子获得足够能量逸出灯丝,后两种利用高场下电子的隧道效应逸出灯丝,它们的性能及使用条件见下表.
热发射LaB6灯丝比热发射W亮度高,束斑小,能量发散度小,使用温度低,但真空度需提高. 产品更先进的场发射电子枪性能更好,但真空度需更高,并且价格昂贵. 利用场发射枪,可以获得半高宽为的电子束。
在TEM中,电子枪发出的电子经过100-200kV的加速管形成能量为100-200keV的电子束(电子的波长是在SEM中电子枪发出的电子经过加速形成能量为1-30keV的电子束。
图6表示聚光镜系统的三种模式:(a)成像(TEM),(b)微分析(EDS能谱分析)和(c)纳米束衍射(NBD). 在(a)中会聚小透镜将电子束会聚到物镜前方磁场的前焦点后,电子束平行照射试样的大范围上, 这是一种成像的模式. (b)中小透镜关闭,电子束以大的会聚角集中在试样的微区, 可进行高分辨的EDS成分分析. (c)中使用很小的聚光镜光阑使电子束以很小的会聚角照明试样的小区成像和获得纳米束电子衍射图.
聚光镜系统内的两组偏转线圈可以偏转入射电子束得到明场像或暗场像, 利用它们还可以移动纳米电子束得到扫描透射电子像(STEM).
物镜由线圈、铁壳和极靴(图7)组成, 由精密软磁材料加工而成的极靴将轴对称强磁场集中在试样上,强磁场使透镜焦距很小,从而减小物镜的球差到mm量级. 这是提高电子显微镜分辨率的关键因素.提高电子束能量(减小其波长)可以降低物镜的衍射像差.
减小物镜电流和加速电压的涨落,利用场发射枪减小灯丝发射电子的能量发散度,减小电子束经过试样时的能量损失和滤去损失能量的电子等措施可以降低物镜的色差。
此外还需要消除像散(不同方位角上聚焦能力的差异).
经过多年的努力, 200kV透射电镜的点分辨率已经达到原子级, 即.
在物镜后焦面上放置物镜光阑, 选择透射束或衍射束形成明场像或暗场像, 或选多束形成高分辨像.
图8是可以绕X轴和y轴转动的双倾斜样品台. 样品放在直径为3mm的多孔铜网上.分别绕X和Y轴倾转样品可以得到电子束沿低密勒指数方向的样品取向, 以便得到高分辨像(HREM). 还可以倾转样品得到双束(只有强的透射束和一支强衍射束)条件,以便得到观察晶体缺陷的明场像(透射束通过物镜光阑)和暗场像(衍射束通过物镜光阑).
样品台有顶插式和侧插式两种. 前者从物镜上方将样品下放到物镜之中, 这是以获得HREM 为主的TEM采用的方式. 后者从横向插入物镜上下极靴之间, 这将有利于配置X射线能谱EDS 进行微区成分分析. 这样的电镜常被称为分析电镜.
图9(a)和(b)分别是低倍和高倍成像模式, 前者不用物镜和第一中间镜, 只用OM透镜、两个中间镜和投影镜使物在底片上成像, 后者则用物镜(不用OM透镜)、三个中间镜和投影镜使物在底片上成像. 这样的配置可以使放大倍数从50倍扩展到100万倍.
图9(c)的透镜配置和(b)相同, 但通过改变中间镜电流使物镜光阑处的电子衍射图样在底片上成像.
显微像和衍射图样一般用专门的底片记录.底片的分辨率为10mm, 在1000,000放大倍数下可以分辨细节. 底片能显示的黑度动态范围是两个数量级, 黑度和电子辐照量之间的关系远远偏离线性.
最近发展起来的慢扫描电荷耦合器件(CCD)摄像机的动态范围达到四个数量级, 信号的线性也好. 它的像素尺寸为24mm, 像素数为1020×1024. 它可以在几秒内将一幅图采集记录到计算机内成为数值图像, 十分方便. 它的构成见图10.
由图可见, 电子束在钇铝石榴石(YAG)闪烁器中转换成光, 经纤维光导板到达CCD并被转换为与光强正比的电量. CCD下面的冷却元件可以降低其噪声, 提高信号/噪声比.
四、实验内容及步骤
本仿真实验的主要目的是使您在软件虚拟的环境中,了解对透射电子显微镜的基础操作流程;结合原理的介绍,了解它们的意义。
同时软件可以作为使用真实仪器之前的练习工具,因为鉴于成本考虑,真实仪器的操作流程相当严格,允许的尝试性操作非常有限。
实验的操作内容:
开机
A1.开总电源后,开冷却水电源,并确认其工作正常
A2.按下电镜主机上power方框内的EVAC键,可在20~30分钟达到高真空
加高压
B1.确认仪器处于高真空状态后,按一下power方框内的COL键
B2.置BIAS钮于适当的位置,按一下READY/OFF键,再按一下所选的高压键,高压将逐步达到所选值,从HV/BEAM表上可确认高压已加上。
B3.顺时针缓慢转动FILAMENT控制钮,同时观察HV/BEAM表,至速流饱和值并锁住。
(对于不同的灯丝,仪器管理人员已调整好一定的BIAS和FILAMENT钮的位置,故第2,3步不应作大的更动)
照明系统对中
C1.将观察模式调整到SA
C2.将所有的光阑移除
C3.用MAG键将放大倍数设定在5000倍。
C4.将束斑直径调整到3~5微米,用BRIGHTNESS控制钮将光斑调整到清晰
C5.逆时针方向旋转FILAMENT控制钮少许,可在荧光屏上观察到灯丝像,此时灯丝的激发状态是欠饱和的,调整BRIGHTNESS CENTERING将光点移到屏幕中央。
C6.将束斑直径调整到5微米,用BRIGHTNESS控制钮将光斑调整到清晰
C7.用BRIGHTNESS CENTERING将光点移到屏幕中央
C8.将束斑直径调整到1微米,用BRIGHTNESS控制钮将光斑调整到清晰
C9.用GUN HORIZ将光点移到屏幕中央
C10.重复C6到C9各步,直到光斑总是在屏幕中央
C11.将FILAMENT调回到束流饱和值
更换样品
D1.将样品台插入镜筒,注意插入过程中不要转动样品台
D2.将样品台的真空泵开关扳到EVAC档
D3.大约15秒钟后,SPEC EVAC指示灯(绿灯)会亮
常规型貌的观察
E1.切换到SCAN状态
E2.用BRIGHTNESS CENTERING钮将样品中感兴趣的部分移动到荧光屏中心
E3.切换到ZOOM状态
E4.用BRIGHTNESS CENTERING钮移动样品作常规型貌的观察
五、实验过程截图、数据记录与处理
六、思考题
1.为什么对照明系统的对中操作中,需要频繁地改变束斑的大小
答:由阿贝的观点来看,许多成像光学仪器就是一个低通滤波器,物平面包含从低频到高频的信息,透镜口径限制了高频信息通过,只许一定的低频通过,因此改变束斑的大小可使图像图像清晰.
2.对照明系统的对中操作中,为什么在束斑大的时候用BRIGHTNESS CENTERING调整,而在束斑小的时候用GUN HORIZ调整反过来会有什么效果
答:答:因为用 BRIGHTNESS CENTERING 调节时移动的幅度比较小,GUN HORIZ 调节时幅度较大,若反过来不容易调准。