土力学第3章- 土的本构关系
- 格式:ppt
- 大小:1.78 MB
- 文档页数:61
土的本构关系土体是天然地质材料的历史产物。
土是一种复杂的多孔材料,在受到外界荷载作用后,其变形具有以下特性:①土体的变形具有明显的非线性,如:土体的压缩试验e~p 曲线、三轴剪切试验的应力—应变关系曲线、现场承载板试验所得的p~s曲线等; ②土体在剪切应力作用下会产生塑性应变,同时球应力也引起塑性应变; ③土体尤其是软粘土,具有十分明显的流变特性;④由于土体的构造或沉积等原因,使土具有各向异性; ⑤紧砂、超固结粘土等在受剪后都表现出应变软化的特性; ⑥土体的变形与应力路径有关,证明不同的加载路径会出现较大的差别; ⑦剪胀性等。
为了更好地描述土体的真实力学—变形特性,建立其应力、应变和时间的关系,在各种试验和工程实践经验的基础上提出一种数学模型,即: 土体的本构关系。
自从Roscoe等人首次建立了剑桥模型以来, 土的本构关系的研究经历了一个蓬勃发展的阶段, 出现了一些具有实用价值的本构模型。
虽然很多的理论为建立土的本构关系提供了有力的工具, 但是由于土是一种三相体材料, 在性质上既不同于固体也不同于液体, 是介于两者之间的特殊材料, 所以人们常借助于固体力学或流体力学理论, 同时结合工程实践经验来解决土工问题, 从而研究土的本构关系形成了自己一套独特的方法—半理论半经验的方法。
建立一个成功的本构关系关键有两点:第一要建立一个函数能较好地反映土在受力下的响应特征;第二要充分利用试验结果提供的数据比较容易地确定模型参数。
模型都需要满足以下基本条件:(1)不违背更高一级的基本物理原理(如热力学第一、第二定律)。
(2)建立在一定的力学理论基础之上(如弹性理论、塑性理论等)。
(3)模型参数能够通过常规试验求取。
从工程应用的角度出发,研究问题的精度就需要进行合理的控制,从而在计算精度与计算设备、计算难度、计算时间以及计算成本之间获得平衡。
另外,任何理论、方法都应以实践应用为目的,这样才具有价值。
综合上述两点,从工程应用的角度去分析各种土的本构关系是非常有必要的。
本 构 关 系“本构关系”是英文Constitutive Relation 的意译。
在力学中,本构关系泛指普遍的应力—应变关系。
因为在变形固体力学中,应力不只与应变有关.而且还与物体的加载历时(应力历史)、加载方式(或应力路径)以及温度和时间有关。
因此材科的本构关系或普遍的应力—应变关系可以表示为;应力路径等),,,(T t f ij ij εσ= 式中t 为加载历时,T 为温度。
例如,弹性力学中的广义定律就是最简单的材料本构关系,它不计时间、温度和应力路径及应力历史的影响。
因此应力和应变之间存在着唯一对应的关系。
当材料应力超出弹性范围而进入塑性阶段时,应力和应变之间就没有唯一的对应关系,而是要受应力历史或应力路径的影响,这时材料的应力—应变关系就称为塑性本构关系。
塑性本构关系要比弹性本构关系复杂得多。
如果再考虑材科应力—应变关系随时间和温度的变化,本构关系持更加复杂。
本书所要讲的岩土本构关系主要是指与时间和温度无关的塑性本构关系。
各种本构关系的特点1.弹性本构关系类型和分类弹性本构关系可分为线弹性本构关系和非线性弹性本构关系如图1所示,线弹性本构关系即一般的弹性力学,其应力—应变关系服从广义Hooke 定律。
非线性本构关系的应力—应变曲线是非线性的,但是加卸载仍然沿着一条曲线。
弹性本构关系的基本特征是:1) 应力和变形的弹性性质或可逆性;2) 应力与应变的单值对应关系或与应力路径相应力历史的无关性。
即无论材料单元在历史上受过怎样的加卸载过程或不同的应力施加路径,只要应力不超过弹性限度,应力与应变都是一一对应的;3) 应力与应变符合叠加原理;4) 正应力与剪应变、剪应力和正应变之间没有耦合关系。
因此,根据广义Hooke 定律有γτεσG K m m ==3 (1)式中,σm和τ分别为正应力和剪应力,εm和γ分别为平均应变和剪应变,K、G为体积弹性模量和剪切弹性模量。
(1)式说明:正应力只产生正应变或体应变,而对剪应变没有贡献。
土的基本特性及本构关系与强度理论一、本文概述本文旨在深入探讨土的基本特性、本构关系以及强度理论,以增进对土壤力学行为的理解,并为土木工程、地质工程、环境工程等领域提供理论基础和实践指导。
土作为自然界中广泛存在的介质,其力学特性对于工程结构的稳定性和安全性至关重要。
因此,研究土的基本特性、建立合理的本构关系以及探索强度理论,对于预防地质灾害、优化工程设计、提高施工效率等方面都具有重要的意义。
本文首先对土的基本特性进行概述,包括土的分类、物理性质、化学性质以及力学性质等方面。
在此基础上,进一步探讨土的本构关系,即土的应力-应变关系,包括弹性、弹塑性和塑性等方面。
通过对土的本构关系的深入研究,可以更准确地描述土的力学行为,为工程实践提供理论支持。
本文还将重点介绍土的强度理论,包括土的抗剪强度、抗压强度等方面。
土的强度理论是土力学中的核心内容之一,它对于评估土的承载能力、预测土的变形和破坏等方面具有重要的指导作用。
通过对土的强度理论的深入研究,可以为工程实践提供更加准确、可靠的理论依据。
本文将系统介绍土的基本特性、本构关系以及强度理论,以期为提高土木工程、地质工程、环境工程等领域的理论水平和实践能力做出贡献。
二、土的基本特性土是一种由固体颗粒、液体水和气体组成的三相体,其特性受到这些组成部分的性质、相对含量以及它们之间的相互作用的影响。
土的基本特性主要包括其物质组成、物理性质、力学性质和环境特性。
物质组成:土主要由固体颗粒(如砂粒、粘土粒等)、水和气体组成。
固体颗粒的大小、形状和分布决定了土的粒度特征和结构特性。
物理性质:土的物理性质包括密度、含水率、孔隙率、饱和度等。
这些性质对于理解土的力学行为和环境响应至关重要。
例如,密度反映了土体的紧实程度,含水率则影响了土的塑性和流动性。
力学性质:土的力学性质是指在外部荷载作用下土的应力-应变关系和强度特性。
土的力学性质受到其物质组成、物理状态和环境条件的影响。
第三章 思考题与习题思考题3.1 为什么地基不是弹性体,在求解地基中的应力分布时,仍可以采用弹性解析结果? 答:在计算地基中的附加应力时,为了简化,把地基简化为由土颗粒骨架和孔隙水共同组成的弹性体,把弹性力学的成果直接用于这样的弹性地基。
把这样由离散的土颗粒组成的符合摩擦法则的土假定为弹性体,在小应变时也是很不合适的。
例如,根据后面第四章可知,土的模量随着约束应力的不同而不同。
但是根据下面的公式可知,在弹性解中,垂直方向的应力成分与材料的特性无关,其它的应力成分也只与泊松比ν相关,与弹性模量E 无关。
所以,尽管按弹性理论计算出的变形不合适(本章也不介绍地基变形的弹性理论方法),但按弹性理论计算的应力分布的近似程度还能满足工程上的要求。
基于以上道理,可以采用下面的弹性解析结果。
① 用弹性力学的方法求地基中的应力分布,但沉降量则用固结沉降计算公式。
例如,可以根据e—logp 的关系式计算沉降量(根据弹性力学的公式也可以计算出地基的变形量,但是实际中不用它计算沉降,只用应力计算公式求应力分布)。
② 用弹性力学的方法求地基中的应力分布,估计可能发生问题的地基范围,确定调查和讨论的必要范围(常常用后述的应力泡的方法)。
③ 用弹性力学的方法求基础底面的接触压应力,设计基础。
应该注意,对于本来不是弹性体的地基,用弹性力学的方法只适用于求应力并不能求解地基的所有问题。
所以,近年来,基于土的弹塑性本构关系式、有限元等数值计算方法被广泛应用。
3.2 简述自重应力与附加应力。
并指出何种应力是引起地基变形的主要原因? 答:如果地面下土质均匀,土体重度为γ,则在天然地面上任意深度处z 处的水平面上的竖向自重应为z cz γσ=可见自重应力沿水平面均匀分布,且与Z 成正比。
基础通常是埋置在天然地面下一定深度的。
由于天然土层在自重作用下的变形已经完成,故只有超出基底处原有自重应力的那部分应力才使地基产生附加变形,使地基产生附加变形的基底压力称为基底附加压力p 0。