2021届陕西省交大附中、龙岗中学高三上学期第一次联考理科数学试题 PDF版
- 格式:pdf
- 大小:631.37 KB
- 文档页数:16
2021年高三上学期第一次联考数学理试题含答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1. “”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件2. 已知,其中i为虚数单位,则=()A.-1 B.1 C.2 D.33. 若,则下列结论正确的是()A. B.C. D.4.下列四个命题中,正确的是()A.已知服从正态分布,且,则B.已知命题;命题.则命题“”是假命题C.设回归直线方程为,当变量增加一个单位时,平均增加2个单位D.已知直线,,则的充要条件是 =-35. 已知单位向量满足,则夹角为()A.B.C.D.6. 若动圆的圆心在抛物线上,且与直线相切,则此圆恒过定点()A. B. C. D.7. 设,满足约束条件,若目标函数(,)的最大值为12,则的取值范围是()A. B. C. D.8. 记集合, M=}4,3,2,1,|10101010{4433221=∈+++i T a aa a a i ,将M 中的元素按从大到小排列,则第xx 个数是( )A. B. C. D.第二部分 非选择题(共110分)二、填空题: 本大题共7小题,考生作答6小题,每小题5分,满分30分 (一)必做题(9~13题)9. 在展开式中的系数为,则实数的值为 .10.计算定积分 .11.已知双曲线C 的焦点、实轴端点恰好是椭圆的长轴端点、焦点,则双曲线C 的渐近线方程是____________________.12.在△中,内角、、的对边分别为、、,已知,,,则 ..将石子摆成如图的梯形形状.称数列为“梯形数”.根据图形的构成,数 列第项 ;第项 .(二)选做题(14~15题,考生只能从中选做一题)14. (坐标系与参数方程选做题) 在极坐标系中,直线()截圆所得弦长是 .15.(几何证明选讲选做题)如图(图2)是圆的直径,过、的两条弦和相交于点,若圆的半径是,那么的值等于________________.图2三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16. (本小题满分12分)甲乙丙三人商量周末去玩,甲提议去市中心逛街,乙提议去城郊觅秋,丙表示随意。
2021届陕西省交大附中、龙岗中学高三上学期第一次联考理科综合化学试卷★祝考试顺利★(含答案)(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H-1 C-12 N-14 O-16 S-32 Fe-56 Co-59第Ⅰ卷一、选择题:本题共14小题,每小题3分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 化学与生活、生产、科技等紧密相关,下列有关说法错误的是A. 从某种锂离子电池的正极材料中可回收金属LiB. 港珠澳大桥的隔震支座所含的橡胶属于有机高分子材料C. 高效手性螺环催化剂通过改变反应热增大化学反应速率D. 嫦娥四号探测器所搭载的太阳能电池的电池板的主要材料为单质硅【答案】C【详解】A.锂离子电池放电时产生锂离子,锂离子向正极移动,充电时在正极发生还原反应,所以从该电池的正极材料中可回收金属Li ,A正确;B.有机高分子材料是用有机高分子化合物制成的材料,常见的塑料、橡胶、合成纤维等都属于有机高分子材料,B正确;C.催化剂可以改变反应的历程,通过降低化学反应的活化能来加快化学反应速率,反应的始态和终态不变,所以不能改变反应热,C错误;D.硅是可以将太阳能变为电能的材料,可以制太阳能电池,D 正确。
答案选C。
2. 下列有关化学用语表示正确的是A. 镁离子的结构示意图:B. CH2F2的电子式:C. HClO的结构式:H—Cl—OD. 含18个中子的氯原子:1735Cl 【答案】A【详解】A、镁原子失去最外层两个电子变为镁离子,A正确;B、CH2F2的电子式中F原子最外层应满足8电子稳定结构,B错误;C、HClO正确的结构式为H—O—Cl,C错误;D、含18个中子的氯原子:3517Cl,D错误。
陕西省西安市交大附中中学2020-2021学年高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若对圆上任意一点,的取值与无关,则实数的取值范围是()A. B. C. D.参考答案:B2. 若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2)C.(1,)D.(,+∞)参考答案:C【考点】双曲线的简单性质.【分析】先根据双曲线方程求得双曲线的渐近线,进而利用圆心到渐近线的距离小于半径求得a和b 的关系,进而利用c2=a2+b2求得a和c的关系,则双曲线的离心率可求.【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.3. 函数在上的图象是参考答案:A4. 已知,则= ()A .2B . C. D .3参考答案:C略5. 已知函数f(x)=,则方程f(2x2+x)=a(a>0)的根的个数不可能为( )A.3 B.4 C.5 D.6参考答案:A考点:根的存在性及根的个数判断.专题:计算题;作图题;函数的性质及应用.分析:由题意化简f(2x2+x)=;作图象求解.解答:解:f(2x2+x)=;作其图象如下,故方程f(2x2+x)=a(a>0)的根的个数可能为4,5,6;故选A.点评:本题考查了函数的图象的应用,属于基础题.6. 已知,把数列的各项排列成如下的三角形状,……………………………………记A(m,n)表示第m行的第n个数,则A(10,11)= ()A、B、 C、D、参考答案:B略7. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A.B.C.D.参考答案:A解析: 该几何体可以看成是在一个半球上叠加一个圆锥,然后挖掉一个相同的圆锥,所以该几何体的体积和半球的体积相等.由图可知,球的半径为2,则.故选A8. 已知a是函数的零点,若0<x0<a,则f(x0)的值满足()(A)f(x0)=0 (B)f(x0)>0(C)f(x0)<0 (D)f(x0)的符号不确定参考答案:C9. 已知函数(且),若,且,则的值()A.恒小于2 B.恒大于2 C.恒等于2 D.与相关参考答案:B略10. 设为函数的单调递增区间,将图像向右平移个单位得到一个新的的单调减区间的是A B. C. D.参考答案:D因为函数为偶函数,在当为减函数,图像向右平移个单位,此时单调减区间为,选D.二、填空题:本大题共7小题,每小题4分,共28分11. 若曲线与曲线在处的两条切线互相垂直,则实数a的值为▲.参考答案:12. 已知函数的图象经过点,则不等式的解为_________;参考答案:13. 高三(1)班班委会由4名男生和3名女生组成,现从中任选3人参加上海市某社区敬老服务工作,则选出的人中至少有一名女生的概率是.(结果用最简分数表示)参考答案:3人中有1个是女生的概率为,3人中有2个是女生的概率为,3人中有3个是女生的概率为,所以选出的人中至少有一名女生的概率是。
陕西省西安市交大附中中学2020-2021学年高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在北纬45°的纬度圈上有甲、乙两地,两地经度差为90°,则甲、乙两地最短距离为(设地球的半径为R)()A. B. C. D.参考答案:B2. 已知全集U=R,A={y|y=2x+1},B={x|lnx<0},则(?U A)∩B=( )A.? B.{x|<x≤1}C.{x|x<1} D.{x|0<x<1}参考答案:D考点:补集及其运算;交集及其运算.专题:计算题.分析:本题求集合的交集,由题设条件知可先对两个集合进行化简,再进行交补的运算,集合A由求指数函数的值域进行化简,集合B通过求集合的定义域进行化简解答:解:由题意A={y|y=2x+1}={y|y>1},B={x|lnx<0}={x|0<x<1},故C U A={y|y≤1}∴(C U A)∩B={x|0<x<1}故选D点评:本题考查补集的运算,解题的关键是理解掌握集合的交的运算与补的运算,运用指数函数与对数函数的知识对两个集合进行化简,本题是近几年高考中的常见题型,一般出现在选择题第一题的位置考查进行集合运算的能力3. 复数z满足(﹣1+i)z=(1+i)2,其中i为虚数单位,则在复平面上复数z对应的点位( )A.第一象限B.第二象限C.第三象限D.第四象限参考答案:D 考点:复数的代数表示法及其几何意义;复数相等的充要条件.专题:计算题.分析:根据两个复数相除,分子和分母同时乘以分母的共轭复数,化简复数z为=1﹣i,故z对应点的坐标为(1,﹣1),从而得出结论.解答:解:∵复数z满足(﹣1+i)z=(1+i)2,其中i为虚数单位,∴z=====1﹣i,故复数z对应点的坐标为(1,﹣1),故选D.点评:本题主要考查两个复数代数形式的除法,虚数单位i的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.4. 已知点B(1,0),P是函数y=e x图象上不同于A(0,1)的一点.有如下结论:①存在点P使得△ABP是等腰三角形;②存在点P使得△ABP是锐角三角形;③存在点P使得△ABP是直角三角形.其中,正确的结论的个数为( )A.0 B.1 C.2 D.3参考答案:B【考点】命题的真假判断与应用.【专题】探究型.【分析】利用导数法,可判断出线段AB与函数y=e x图象在(0,1)点的切线垂直,进而可判断出三个结论的正误,得到答案.【解答】解:∵函数y=e x的导函数为y′=e x,∴y′|x=0=1,即线段AB与函数y=e x图象在(0,1)点的切线垂直故△ABP一定是钝角三角形,当PA=AB=时,得△ABP是等腰三角形;故①正确,②③错误故正确的结论有1个故选:B【点评】本题以命题的真假判断为载体,考查了指数函数的导数及三角形形状判断,难度不大,属于基础题.5. 已知函数,则f(1)的值是()A.B.C.24 D.12参考答案:B考点:函数的值.专题:函数的性质及应用.分析:直接利用分段函数,求解函数值即可.解答:解:函数,则f(1)=f(2)=f(3)==.故选:B.点评:本题考查分段函数的应用,函数值的求法,考查计算能力.6. 抛物线的焦点坐标是()A.(2,0)B.(0,2)C.(l,0)D.(0,1)参考答案:D略7. 设等比数列{a n}的前n项和为S n,若S10:S5=1:2,则S15:S5=()A.3:4 B.2:3 C.1:2 D.1:3参考答案:A【考点】8G:等比数列的性质.【分析】本题可由等比数列的性质,每连续五项的和是一个等比数列求解,由题设中的条件S10:S5=1:2,可得出(S10﹣S5):S5=1:1,由此得每连续五项的和相等,由此规律易得所求的比值选出正确选项【解答】解:∵等比数列{a n}的前n项和为S n,若S10:S5=1:2,∴(S10﹣S5):S5=﹣1:2,由等比数列的性质得(S15﹣S10):(S10﹣S5):S5=1:(﹣2):4,所以S15:S5=3:4故选A.8. 设函数的定义域为,值域为,若的最小值为,则实数a的值为( )A. B.或 C.D.或参考答案:C9. 已知定义域为的函数的导函数为,且满足,则下列正确的是()A.B.C.D.参考答案:A10. 已知函数满足对任意的实数都有成立,则实数的取值范围为()A. B. C. D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 记定义在R上的函数的导函数为.如果存在,使得成立,则称为函数在区间上的“中值点”.那么函数在区间[-2,2]上“中值点”的为▲.参考答案:略12. 已知圆C的圆心为(0,1),直线与圆C相交于A ,B 两点,且,则圆C的半径为.参考答案:圆心到直线的距离。
2021年陕西高考数学试题〔理〕一.选择题:本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.集合2{|0},{|1,}M x x N x x x R =≥=<∈,那么MN =〔 〕.[0,1]A .[0,1)B .(0,1]C .(0,1)D【答案】 B 【解析】B N M N M 选,).1,0[),11-(),,0[=∩∴=+∞=2.函数()cos(2)6f x x π=-的最小正周期是〔 〕.2A π.B π .2C π .4D π【答案】 B 【解析】B T 选∴,π2π2||π2===ω3.定积分1(2)xx edx +⎰的值为〔 〕.2Ae + .1B e + .C e .1D e -【答案】 C 【解析】C e e e e x dx e x x x 选∴,-0-1|)()2(1001102∫=+=+=+4.根据右边框图,对大于2的整数N ,输出数列的通项公式是〔 〕.2n A a n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=【答案】 C 【解析】C q a a a a a n 选的等比数列是.2,2∴,8,4,21321=====5.底面边长为12为〔 〕32.3A π .4B π .2C π 4.3D π【答案】 D 【解析】D r r r r 选解得设球的半径为.π3434V ∴,1,4)2(11)2(,32222====++=π6.从正方形四个顶点及其中心这5个点中,任取2个点,那么这2个点的距离不小于该正方形边长的概率为〔 〕1.5A2.5B3.5C 4.5D 【答案】 C 【解析】C p 选反向解题.53C 4C 4-1.2525===7.以下函数中,满足“()()()f x y f x f y +=〞的单调递增函数是〔 〕〔A 〕()12f x x = 〔B 〕()3f x x = 〔C 〕()12xf x ⎛⎫= ⎪⎝⎭〔D 〕()3x f x =【答案】 D 【解析】D y f x f y x f D C y x y x y x 选而言,对不是递增函数只有.333)()(,3)(.++=•=•=+8.原命题为“假设12,z z 互为共轭复数,那么12z z =〞,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的选项是〔 〕〔A 〕真,假,真 〔B 〕假,假,真 〔C 〕真,真,假 〔D 〕假,假,假 【答案】 B 【解析】Bz z b a z b a z bi a z bi a z 选选择完成判断逆命题的真假即可逆否名称也为真,不需,原命题为真,则设,逆命题和否命题等价原命题和逆否名称等价.,||||∴,||||,-,.2122222111=+=+==+=9.设样本数据1210,,,x x x 的均值和方差分别为1和4,假设i i y x a =+〔a 为非零常数,1,2,,10i =〕,那么12,10,y y y 的均值和方差分别为〔 〕(A )1+,4a 〔B 〕1,4a a ++ 〔C 〕1,4 〔D 〕1,4+a【答案】 A 【解析】A 选变均值也加此数,方差不样本数据加同一个数,.10.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降,下降飞行轨迹为某三次函数图像的一局部,那么函数的解析式为〔 〕(A )3131255y x x =- 〔B 〕3241255y x x =-〔C 〕33125y x x =- 〔D 〕3311255y x x =-+ 【答案】 A 【解析】AA f x f f x f A f x 选符合只有,,而言,对即为极值点且),三次奇函数过点..053-53)5(53-1253x )(2-3-1)5(∴x 53-x 1251)(.0)5(,5,2-5(),0,0(23==′=′====′= 第二局部〔共100分〕二、填空题:把答案填写在答题卡相应题号后的横线上〔本大题共5小题,每题5分,共25分〕.11.,lg ,24a x a==那么x =________. 【答案】 10 【解析】.1010,21lg 12a ∴,lg ,224212a a========x a x a x 所以,12.假设圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,那么圆C 的标准方程为_______.【答案】11-(22=+)y x 【解析】.11-(1),1,0(∴)1,0()0,1(22=+=)的标准方程为半径为圆心为,的对称点关于点y x x y13. 设20πθ<<,向量()()sin 2cos cos 1a b θθθ==,,,,假设b a //,那么=θtan _______.【答案】 21【解析】.21tan θθ,cos θcos θsin 2θcos θ2sin ∴//).1,θ(cos ),θcos ,θ2(sin 22=====解得即,b a b a14. 观察分析下表中的数据:多面体 面数〔F 〕 顶点数〔V ) 棱数〔E ) 三棱锥 5 6 9 五棱锥 6 6 10 立方体6812猜测一般凸多面体中,E V F ,,所满足的等式是_________. 【答案】 2+=+E V F 【解析】.2+=+E V F 经观察规律,可得15.〔考生注意:请在以下三题中任选一题作答,如果多做,那么按所做的第一题评分〕.A (不等式选做题)设,,,a b m n R ∈,且225,5a b ma nb +=+=,那么22m n +的最小值为.B 〔几何证明选做题〕如图,ABC ∆中,6BC =,以BC 为直径的半圆分别交,AB AC 于点,E F ,假设2AC AE =,那么EF =.C 〔坐标系与参数方程选做题〕在极坐标系中,点(2,)6π到直线sin()16πρθ-=的距离是【答案】 A 5 B 3 C 1 【解析】A5.≤5)φθsin(∴5)φθsin(5os θ5θsin 5,os θ5,θsin 5∴,52222222222的最小值为所以,,则设n m n m n m n m c n m nb ma c b a b a ++=++=++=+=+===+B.3,2,6∴Δ=∴===ΔEF AE AC BC CBEFAC AE ACB AEF ,且相似与 C1|1323-3|023-1,3(∴,2-3121os θρ-23θsin ρ)6π-θsin(ρ,1,3()6π,2(=++==+==••=d y x x y c 的距离)到直线点即对应直线)对应直角坐标点极坐标点三、解答题:解容许写出文字说明、证明过程或演算步骤〔本大题共6小题,共75分〕 16. 〔本小题总分值12分〕ABC ∆的内角C B A ,,所对的边分别为c b a ,,. 〔I 〕假设c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; 〔II 〕假设c b a ,,成等比数列,求B cos 的最小值. 【答案】 〔1〕 省略 〔2〕 21【解析】 〔1〕C)sin(A sinC sinA .∴C),sin(A sinB sinC.sinA 2sinB c,a b 2∴,,+=++=+=+= 即成等差,c b a〔2〕.,21cosB 212ac ac -2ac 2ac b -2ac ≥2ac b -c a cosB ac.b ∴,,22222这时三角形为正三角形取最小值时,仅当又成等比,b c a c b a ====+==17. 〔本小题总分值12分〕四面体ABCD 及其三视图如下图,过棱AB 的中点E 作平行于AD ,BC 的平面分 别交四面体的棱CA DC BD ,,于点H G F ,,.〔I 〕证明:四边形EFGH 是矩形;〔II 〕求直线AB 与平面EFGH 夹角θ的正弦值.【答案】 〔1〕 省略 〔2〕510【解析】 〔1〕.FG.⊥BCD ⊥,//∴,,AD//HG AD//EF,∴ADHG ADEF EFGH ⊂HG EF,EFGH,AD//HC AH EH//BC,∴EHBC EFGH,⊂EH EFGH,//B BCD⊥AD DC,⊥BD Δ,Δ为矩形所以,四边形,即面,且且共面和,面面同理且共面面面面且为等腰由题知,EHGF EF EF HG EF HG EF GC DG FB DF C RT BCD ====〔2〕510|,cos |sin 510252||||,cos ),0,1,1(0),,,()0,1-1(),2100(),1-20()0,0,1(),211,0(),0,1,0(),020(),100(,,DA ,DB ,DC (1)=><==<∴=======∴n AB n AB n AB n AB n FG n FE n z y x n EHGF FG FE AB G E F B A z y x θ所以,,解得一个则法向量,设面,,,,,,,,,,轴建系,则为知,分别以由18.〔本小题总分值12分〕在直角坐标系xOy 中,点)2,3(),3,2(),1,1(C B A ,点),(y x P 在ABC ∆三边围成的区域〔含边界〕上〔1〕假设0=++PC PB PA ,求OP ;〔2〕设),(R n m AC n AB m OP ∈+=,用y x ,表示n m -,并求n m -的最大值.【答案】 〔1〕 22〔2〕 m-n=y-x, 1【解析】 〔1〕22|OP |22|OP |,2,2,0-2-3-1,0-3-2-1(0,0))-2,-3()-3,-2()-1,-1(PC PB PA ∴),,(),2,3(),3,2(),11(22==+=∴===++=++∴=++=++所以,解得,y x y x y y y x x x y x y x y x y x P C B A 〔2〕1---.1-)3,2(.,,-.--.2,2),1,2()2,1(y)x ,(∴,AC AB OP 最大值为,所以,取最大值时,经计算在三个顶点求线性规划问题,可以代含边界内的最大值,属在三角形即求解得即n m x y n m x y B C B A ABC x y x y n m n m y n m x n m n m ==+=+=+=+=19.〔本小题总分值12分〕在一块耕地上种植一种作物,每季种植本钱为1000元,此作物的市场价格和这块地上 的产量具有随机性,且互不影响,其具体情况如下表:〔1〕设X 表示在这块地上种植1季此作物的利润,求X 的分布列;〔2〕假设在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2000元 的概率.【答案】 〔1〕〔800,0.2〕〔2000,0.5〕〔4000,0.3〕 〔2〕 0.896【解析】 〔1〕3.06.0*5.0)4000(,5.04.0*5.06.0*5.0)2000(,2.04.0*5.0)800(.4000,2000,80040001000-10*50020001000-6*50020001000-10*3008001000-6*300.-*====+==========X p X p X p X X 三个,即,,,可以取考虑产量和价格,利润成本价格产量利润X 的分布列如下表:X 800 2000 4000 P0.2 0.5 0.3〔2〕896.020*******.08.02.0*8.0*3)-1()-1(200023.8.03.05.02000)1(8001000-6*300.-*32333223的概率是季的利润不少于季中至少有所以,的概率季的利润不少于季中至少有则的概率知,一季利润不少于由,可以取考虑产量和价格,利润成本价格产量利润=+=+==+===p p C p p C P p X X20.〔本小题总分值13分〕如图,曲线C 由上半椭圆22122:1(0,0)y x C a b y a b+=>>≥和局部抛物线22:1(0)C y x y =-+≤连接而成,12,C C 的公共点为,A B ,其中1C 的离心率为32. (1)求,a b 的值;(2)过点B 的直线l 与12,C C 分别交于,P Q 〔均异于点,A B 〕,假设AP AQ ⊥,求直线l 的方程.【答案】 〔1〕 a=2,b=1 〔2〕 )1-(38-x y =【解析】〔1〕14,3,1,2∴,23.1∴)0,1(),0,1-(1-2222222=+===+===+=x yc b a c b a a c b x y 椭圆方程为联立解得又,交于点抛物线 〔2〕)1-(38-.38-,0)2(4-)2,1)(4-,(,0)2k -k - -k,()4k8- 1,44-(,0∴⊥),0,1-()2k --k ,1--k (,2k --k )1-(,1--k 0,1-k -:1-)4k8-,44-(,4k 8-)1-(,44-04-2-)4(,44)12x -(14),,(),,(),1-()0,1(222222222222222112212222222222211x y k k k k k k k k AQ AP AQ AP A Q x k y x kx x x y k k k P k x k y k k x k x k x k x x k x y y x Q y x P x k y B ===+=+=•+++=•====++=+++==+==++=++=+=所以,所求直线方程为解得即即即由韦达定理得联立得与即由韦达定理得,即联立得与的直线方程为设过21.〔本小题总分值14分〕 设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数.(1)11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式;(2)假设()()f x ag x ≥恒成立,求实数a 的取值范围;〔3〕设n N +∈,比拟(1)(2)()g g g n +++与()n f n -的大小,并加以证明.【答案】 〔1〕 nx x x g n +=1)(〔2〕 ,1](-∞ (3) 前式 > 后式【解析】 〔1〕+++++=++=+=++=+++=+==+=+++=+===+=+=′′=+=N n nx x x g xk x x g k n x k x kxx kx xx g kx x x g k n x x xx x xx g x x x g x g g x g x g x g xx x g x x f x x f x x g x x f n k k k n n ∈,1)(,.)1(1)(1∴)1(1111)(.1)(1≥21111)(1)(∴))(()()()(1)(,11)(∴,0≥),()(),1ln()(112111综上也成立时,当则时,假设当,,, 〔2〕,1](-a 1.a 0.≥-1),0[∈∃0≥(x)h ,0),,0[∈∃∴0≥0≥h(x),0h(0))1(-1)1()-1(-11(x)h ,0.≥,1-)1ln(h(x)0.≥,≥1-)1ln(∴1)(),(≥)(22∞∈≤+′>=++=+++=′++=+++=所以,解得,即使上恒成立在则令a x t x t t x x x a x x x x a x x x ax x x xax x x x x g x ag x f〔3〕+∈>++++>>++∴>∈++=+++++++++=+++++••••=++++=+++++=+=+=N n f(n)-n )()3()2()1(0)(,011-n 1n ln .0)()2(],1,0,1 -)1ln()((a) )11-n 1n (ln )311-34(ln )211-23(ln )111-12(ln 11--311-211-111-n 1n 342312ln 11--311-211-111-f(n)f(n)]-[n -)()3()2()1(∴11-11)(∴,1)(,所以,恒成立式恒成立恒成立知,则由(令)(n g g g g a nx h x xx x x h nnnn g g g g nn n n g x x x g。
2021年陕西省西安市高考数学第一次质检试卷(理科)(一模)一、选择题(共12小题).1.已知集合M={x|x2﹣3x﹣10<0},,则(∁R N)∩M为()A.{x|3<x<5}B.{x|x<﹣3或x>5}C.{x|﹣3≤x≤﹣2}D.{x|﹣3<x<5} 2.i(2+3i)=()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i3.已知点A(﹣2,3)在抛物线y2=2px的准线上,则p=()A.1B.2C.4D.84.已知首项为最小正整数,公差不为零的等差数列{a n}中,a2,a8,a12依次成等比数列,则a4的值是()A.B.C.﹣26D.585.从点P(m,3)向圆(x﹣2)2+y2=1引切线,则切线长的最小值()A.B.5C.D.6.某三棱锥的三视图如图所示,则该三棱锥的体积是()A.6B.8C.12D.247.已知函数f(x)=sin(2x+φ)其中φ∈(0,2π),若对于一切x∈R恒成立,则f(x)的单调递增区间是()A.B.C.D.8.已知定义域为R的函数f(x)满足f(x+2)=f(x),且当0≤x≤1时,f(x)=lg(x2+2),则f(﹣2021)=()A.﹣lg3B.lg9C.lg3D.09.直线y=kx+1与曲线f(x)=alnx+b相切于点P(1,2),则2a+b=()A.4B.3C.2D.110.设图F1、F2分别为双曲线的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A .B .C .D.311.天干地支纪年法(简称干支纪年法)是中国历法上自古以来就一直使用的纪年方法.天干有十,即:甲、乙,丙、丁、戊、己、庚,辛,壬、癸;地支有十二,即:子、丑、寅、卯、辰,巳、午,未、申、酉、戌、亥.干支纪年法中,天干地支对应的规律如表:天干甲乙丙丁戊己庚辛壬癸甲乙丙…地支子丑寅卯辰巳午未申酉戌亥子…干支纪年甲子年乙丑年丙寅年丁卯年戊辰年己巳年庚午年辛未年壬申年癸酉年甲戌年乙亥年丙子年…2049年是新中国成立100周年.这一百年,中国逐步实现中华民族的伟大复兴.使用干支纪年法,2049年是己巳年,则2058年是()年.A.己巳B.甲申C.戊寅D.丙戌12.已知正方体的外接球与内切球上各有一个动点M、N,若线段MN 的最小值为,则下列结论不正确的是()A.正方体的外接球的表面积为12πB .正方体的内切球的体积为C.正方体的棱长为2D.线段MN 的最大值为二、填空题(共4小题).13.已知向量,,若,则k =.14.在(x﹣)6展开式中,常数项为.(用数值表示)15.已知实数x,y满足约束条件,则z=3x+2y的最大值.16.已知数列{a n}的前n项和为S n,满足a1=+1,则数列{a n}的前16项和S16=.三、解答题(第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.)(一)必考题:共60分.17.在△ABC中,角A、B、C所对的边分别为a、b、c,a=2.(1)若,求角B;(2)若c=2b,当角B最大时,求△ABC的面积.18.为了推进分级诊疗,实现“基层首诊,双向转诊,急慢分治、上下联动”的诊疗模式,某地区自2016年起全面推行家庭医生签约服务.已知该地区居民约为2000万.从1岁到101岁的居民年龄结构的频率分布直方图如图甲所示.为了解各年龄段居民签约家庭医生的情况,现调查了1000名年满18周岁以上的居民,各年龄段被访者签约率如图乙所示.(1)估计该地区年龄在71~80岁且已签约家庭医生的居民人数;(2)若以图中年龄在71~80岁居民签约率作为此地区该年龄段每个居民签约家庭医生的概率,则从该地区年龄在71~80岁居民中随机抽取三人,以已签约家庭医生的居民为变量X,求这三人中恰有二人已签约家庭医生的概率;并求变量X的数学期望和方差.19.如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC垂直于半圆O 所在的平面,DC∥EB,DC=EB=1,AB=4.(1)证明:平面ADE⊥平面ACD;(2)当C点为半圆的中点时,求二面角D﹣AE﹣B的余弦值.20.已知椭圆离心率为,点A,B,D,E分别是C的左,右,上,下顶点,且四边形ADBE的面积为.(1)求椭圆C的标准方程;(2)已知F是C的右焦点,过F的直线交椭圆C于P,Q两点,记直线AP,BQ的交点为T,求证:点T横坐标为定值.21.已知函数f(x)=e x(x+a),其中e是自然对数的底数,a∈R.(1)求函数f(x)的单调区间;(2)设g(x)=f(x﹣a)﹣x2,讨论函数g(x)零点的个数,并说明理由.(二)选考题:共10.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知圆C 的极坐标方程为ρ2+12ρcosθ+11=0.(1)求圆心C的直角坐标;(2)若直线l的参数方程是(t为参数),l与C交于A,B两点,,求l的斜率.[选修4-5:不等式选讲]23.已知函数f(x)=x2+1,g(x)=|x﹣a|﹣|2x﹣1|,a≥.(1)当a=时,解不等式g(x2)<﹣;(2)对任意x1,x2∈R.若不等式f(x1)≥g(x2)恒成立,求实数a的取值范围.参考答案一、选择题(共12小题).1.已知集合M={x|x2﹣3x﹣10<0},,则(∁R N)∩M为()A.{x|3<x<5}B.{x|x<﹣3或x>5}C.{x|﹣3≤x≤﹣2}D.{x|﹣3<x<5}解:∵集合M={x|x2﹣3x﹣10<0}={x|﹣2<x<5},={x|﹣3≤x≤3},∴∁R N={x|x<﹣3或x>3},∴(∁R N)∩M={x|3<x<5}.故选:A.2.i(2+3i)=()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i解:i(2+3i)=2i+3i2=﹣3+2i.故选:D.3.已知点A(﹣2,3)在抛物线y2=2px的准线上,则p=()A.1B.2C.4D.8解:由已知得,抛物线y2=2px的准线方程为,且过点A(﹣2,3),故,p=4.故选:C.4.已知首项为最小正整数,公差不为零的等差数列{a n}中,a2,a8,a12依次成等比数列,则a4的值是()A.B.C.﹣26D.58解:设公差不为零的等差数列{a n}的公差为d(d≠0),∵a2,a8,a12依次成等比数列,∴a82=a2a12,即(a1+7d)2=(a1+d)(a1+11d),可得19d2=﹣a1d,∵d≠0,∴a1=﹣19d,又由已知可得a1=1,在,因此,,故选:A.5.从点P(m,3)向圆(x﹣2)2+y2=1引切线,则切线长的最小值()A.B.5C.D.解:设切线长为d,由题设条件可得:d2=(m﹣2)2+(3﹣0)2﹣1=(m﹣2)2+8≥8,∴,当且仅当m=2时取“=“,故选:D.6.某三棱锥的三视图如图所示,则该三棱锥的体积是()A.6B.8C.12D.24解:根据几何体的三视图转换为几何体为:如图所示:所以,由于锥体的高为4,故.故选:B.7.已知函数f(x)=sin(2x+φ)其中φ∈(0,2π),若对于一切x∈R恒成立,则f(x)的单调递增区间是()A.B.C.D.解:函数f(x)=sin(2x+φ),其中φ∈(0,2π),若对于一切x∈R 恒成立,则2×+φ=2kπ+,k∈Z,所以φ=2kπ+,k∈Z,由于φ∈(0,2π),所以φ=,即f(x)=sin(2x+),令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z,即f(x)的单调递增区间是.故选:B.8.已知定义域为R的函数f(x)满足f(x+2)=f(x),且当0≤x≤1时,f(x)=lg(x2+2),则f(﹣2021)=()A.﹣lg3B.lg9C.lg3D.0解:根据题意,定义域为R的函数f(x)满足f(x+2)=f(x),则f(x)是周期为2的周期函数,则有f(﹣2021)=f(1﹣2×1011)=f(1),又由当0≤x≤1时,f(x)=lg(x2+2),则f(1)=lg3,则f(﹣2021)=f(1)=lg3,故选:C.9.直线y=kx+1与曲线f(x)=alnx+b相切于点P(1,2),则2a+b=()A.4B.3C.2D.1解:直线y=kx+1与曲线f(x)=alnx+b相切于点P(1,2),可得k+1=2,即k=1,f(1)=b=2,f(x)的导数为f′(x )=,即有a=1,则2a+b=2+2=4.故选:A.10.设图F1、F2分别为双曲线的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A .B .C .D.3解:由双曲线的定义得:|PF1|﹣|PF2|=2a,(不妨设该点在右支上)又|PF1|+|PF2|=3b ,所以,两式相乘得.结合c2=a2+b2得.故e =.故选:B.11.天干地支纪年法(简称干支纪年法)是中国历法上自古以来就一直使用的纪年方法.天干有十,即:甲、乙,丙、丁、戊、己、庚,辛,壬、癸;地支有十二,即:子、丑、寅、卯、辰,巳、午,未、申、酉、戌、亥.干支纪年法中,天干地支对应的规律如表:天干甲乙丙丁戊己庚辛壬癸甲乙丙…地支子丑寅卯辰巳午未申酉戌亥子…干支纪年甲子年乙丑年丙寅年丁卯年戊辰年己巳年庚午年辛未年壬申年癸酉年甲戌年乙亥年丙子年…2049年是新中国成立100周年.这一百年,中国逐步实现中华民族的伟大复兴.使用干支纪年法,2049年是己巳年,则2058年是()年.A.己巳B.甲申C.戊寅D.丙戌解:根据题意,列表如下:2049年是己巳年,往后数9年,可得2058年是戊寅.故选:C.12.已知正方体的外接球与内切球上各有一个动点M、N,若线段MN的最小值为,则下列结论不正确的是()A.正方体的外接球的表面积为12πB.正方体的内切球的体积为C.正方体的棱长为2D.线段MN的最大值为解:设正方体的棱长为a,则正方体外接球半径为体对角线长的一半,即,内切球半径为棱长的一半,即.∵M、N分别为外接球和内切球上动点,∴,解得:a=2.即正方体惨长为2,C正确;∴正方体外接球表面积为,A正确;内切球体积为,B正确;线段MN的最大值为,D错误.故选:D.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量,,若,则k=12.解:根据题意,向量,,则,若,则有,解得k=12,故答案为:12.14.在(x﹣)6展开式中,常数项为﹣20.(用数值表示)解:二项式(x﹣)6=[x+(﹣x﹣1)]6,其展开式的通项公式为:T r+1=•x6﹣r•(﹣x﹣1)r=(﹣1)r••x6﹣2r,当6﹣2r=0时,得r=3,所以展开式的常数项为:T4=(﹣1)3•=﹣20.故答案为:﹣20.15.已知实数x,y满足约束条件,则z=3x+2y的最大值9.解:由约束条件直线可行域如图,令t=x+2y,由图可知,当直线t=x+2y过A时,t有最大值为t=2,此时z=3x+2y的最大值为9.故答案为:9.16.已知数列{a n}的前n项和为S n,满足a1=+1,则数列{a n}的前16项和S16=84.解:2(S n+2+S n)=4S n+1+1,化为,即,∵,∴{a n}为等差数列,公差,∴.故答案为:84.三、解答题(共7.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.)(一)必考题:共60分.17.在△ABC中,角A、B、C所对的边分别为a、b、c,a=2.(1)若,求角B;(2)若c=2b,当角B最大时,求△ABC的面积.解:(1)因为,所以==,整理可得a2+c2﹣b2=ac,可得cos B===,因为B∈(0,π),可得B=.(2)在△ABC中,b2=a2+c2﹣2ac cos B,c=2b,所以cos B=≥,当且仅当b=时取等号,此时B=,C=,所以△ABC的面积S=ab==.18.为了推进分级诊疗,实现“基层首诊,双向转诊,急慢分治、上下联动”的诊疗模式,某地区自2016年起全面推行家庭医生签约服务.已知该地区居民约为2000万.从1岁到101岁的居民年龄结构的频率分布直方图如图甲所示.为了解各年龄段居民签约家庭医生的情况,现调查了1000名年满18周岁以上的居民,各年龄段被访者签约率如图乙所示.(1)估计该地区年龄在71~80岁且已签约家庭医生的居民人数;(2)若以图中年龄在71~80岁居民签约率作为此地区该年龄段每个居民签约家庭医生的概率,则从该地区年龄在71~80岁居民中随机抽取三人,以已签约家庭医生的居民为变量X,求这三人中恰有二人已签约家庭医生的概率;并求变量X的数学期望和方差.解:(1)由题知该地区居民约为2000万,由图1知,该地区年龄在71~80岁的居民人数为0.004×10×2000=80万.由图2知.年龄在71~80岁的居民签概率为0.7.所以该地区年龄在71~80岁且已签约家庭医生的居民人数为80×0.7=56万.(2)由题知此地区年龄段在71~80的每个居民签约家庭医生的概率为P=0.7,且每个居民之间是否签约是独立的,所以设“从该地区年龄在71~80岁居民中随机抽取三人”为事件B,随机变量为X,这三人中恰有二人已签约庭医生的概率为:.数学期望E(X)=3×0.7=2.1,方差D(X)=3×0.7×0.3=0.63.19.如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC垂直于半圆O 所在的平面,DC∥EB,DC=EB=1,AB=4.(1)证明:平面ADE⊥平面ACD;(2)当C点为半圆的中点时,求二面角D﹣AE﹣B的余弦值.【解答】(1)证明:∵AB是圆O的直径,∴AC⊥BC,∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC,又DC∩AC=C,∴BC⊥平面ACD,∵DC∥EB,DC=EB,∴四边形DCBE是平行四边形,∴DE∥BC,∴DE⊥平面ACD,又DE⊂平面ADE,∴平面ACD⊥平面ADE.(2)当C点为半圆的中点时,AC=BC=2,以C为原点,以CA,CB,CD为坐标轴建立空间坐标系如图所示:则D(0,0,1),E(0,2,1),A(2,0,0),B(0,2,0),∴=(﹣2,2,0),=(0,0,1),=(0,2,0),=(2,0,﹣1),设平面DAE的法向量为=(x1,y1,z1),平面ABE的法向量为=(x2,y2,z2),则,,即,,令x1=1得=(1,0,2),令x2=1得=(1,1,0).∴cos<>===.∵二面角D﹣AE﹣B是钝二面角,∴二面角D﹣AE﹣B的余弦值为﹣.20.已知椭圆离心率为,点A,B,D,E分别是C的左,右,上,下顶点,且四边形ADBE的面积为.(1)求椭圆C的标准方程;(2)已知F是C的右焦点,过F的直线交椭圆C于P,Q两点,记直线AP,BQ的交点为T,求证:点T横坐标为定值.解:(1)设椭圆C的半焦距为c,根据题意,,解得,所以椭圆的方程为+=1.(2)证明:由(1)知A(﹣3,0),B(3,0),F(2,0),设T(x0,y0),P(x1,y1),Q(x2,y2),由k TA=k PA,得=,k TB=k QB,得=,两式相除得=•,又+=1,故﹣1=﹣•=﹣,故=﹣,于是=•=﹣•,由于直线PQ经过点F,故设直线PQ的方程为x=my+2,联立椭圆的方程可得(5m2+9)y2+20my﹣25=0,所以,所以=﹣•=﹣•=﹣•=﹣•=,解得x0=,所以点T横坐标为定值.21.已知函数f(x)=e x(x+a),其中e是自然对数的底数,a∈R.(1)求函数f(x)的单调区间;(2)设g(x)=f(x﹣a)﹣x2,讨论函数g(x)零点的个数,并说明理由.解:(1)因为f(x)=e x(x+a),所以f'(x)=e x(x+a+1).………………………………………………………………(1分)由f'(x)>0,得x>﹣a﹣1;由f'(x)<0,得x<﹣a﹣1.………………………………………………………………所以f(x)的增区间是(﹣a﹣1,+∞),减区间是(﹣∞,﹣a﹣1).………………………(2)因为g(x)=f(x﹣a)﹣x2=xe x﹣a﹣x2=x(e x﹣a﹣x).由g(x)=0,得x=0或e x﹣a﹣x=0.………………………………………………………………………设h(x)=e x﹣a﹣x,又h(0)=e﹣a≠0,即x=0不是h(x)的零点,故只需再讨论函数h(x)零点的个数.因为h'(x)=e x﹣a﹣1,所以当x∈(﹣∞,a)时,h'(x)<0,h(x)单调递减;当x∈(a,+∞)时,h'(x)>0,h(x)单调递增.…………………………………………所以当x=a时,h(x)取得最小值h(a)=1﹣a.………………………………………①当h(a)>0,即a<1时,h(x)>0,h(x)无零点;…………………………………②当h(a)=0,即a=1时,h(x)有唯一零点;…………………………………………③当h(a)<0,即a>1时,因为h(0)=e﹣a>0,所以h(x)在(﹣∞,a)上有且只有一个零点.……………………………………………令x=2a,则h(2a)=e a﹣2a.设φ(a)=h(2a)=e a﹣2a(a>1),则φ'(a)=e a﹣2>0,所以φ(a)在(1,+∞)上单调递增,所以,∀a∈(1,+∞),都有φ(a)≥φ(1)=e﹣2>0.所以h(2a)=φ(a)=e a﹣2a>0.………………………………………………………所以h(x)在(a,+∞)上有且只有一个零点.所以当a>1时,h(x)有两个零点.………………………………………………………综上所述,当a<1时,g(x)有一个零点;当a=1时,g(x)有两个零点;当a>1时,g(x)有三个零点.……………………………………………………………(二)选考题:共10.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知圆C 的极坐标方程为ρ2+12ρcosθ+11=0.(1)求圆心C的直角坐标;(2)若直线l的参数方程是(t为参数),l与C交于A,B两点,,求l的斜率.解:(1)将x=ρcosθ,y=ρsinθ,x2+y2=ρ2代入ρ2+12ρcosθ+11=0,得x2+y2+12x+11=0,即(x+6)2+y2=25,所以圆C的圆心坐标为(﹣6,0);(2)在极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程得ρ2+12ρcosα+11=0.于是ρ1+ρ2=﹣12cosα,ρ1ρ2=11,,由,得,,tanα==±=,所以l的斜率为或.[选修4-5:不等式选讲]23.已知函数f(x)=x2+1,g(x)=|x﹣a|﹣|2x﹣1|,a≥.(1)当a=时,解不等式g(x2)<﹣;(2)对任意x1,x2∈R.若不等式f(x1)≥g(x2)恒成立,求实数a的取值范围.解:(1)当时,,不等式g(x2)<﹣,即,即,解得x2>4或x2<﹣3(舍去),由x2>4,解得x<﹣2或x>2,所以不等式的解集是(﹣∞,﹣2)∪(2,+∞).(2)由题意知,只需满足f(x)mix≥g(x)max即可,因为f(x)=x2+1,所以f(x)min=1,依题意,当时,g(x)=,得f(x)min≥g(x)max,得,即,所以,即a的取值范围是[,].。
2020~2021学年第一学期交大附中、龙岗中学第一次联考数学(文)试题注意:本试题共4页,三道大题.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{|3}M x x =<,2{|log }N y y x ==,则MN =( )A.RB.{|03}x x <<C.{|13}x x <<D.{|3}x x <2.设,a b R ∈,i 是虚数单位,则“0ab =”是“复数ba i+为纯虚数”的( )条件 A.必要不充分 B.充分不必要 C.充要 D.既不充分也不必要3.已知三条不重合的直线,,m n l ,两个不重合的平面,αβ,则下列说法正确的是( )A.若,,且,则B.若,,则C.若,,,,则D.若,,,则4.2018年5月至2019年春季,在阿拉伯半岛和伊朗西南部,沙漠蝗虫迅速繁衍,仅仅几个月,蝗虫数量增长了8000倍,引发了蝗灾,到2020年春季蝗灾已波及印度和巴基斯坦.假设蝗虫的日增长率为5%,最初有0M 只,则经过( )天能达到最初的16000倍. (参考数据:ln1.0500.0488,ln1.50.4055,ln16007.3778,ln160009.6803≈≈≈≈) A.197 B.198 C.199 D.2005.设实数,x y 满足约束条件10011x y x x y ⎧⎪+-≤≥--≤⎨-⎪⎩,则2z x y =+的最大值是( )m β⊥l m ∥αβ∥m n ∥n α⊂m α∥m α⊂n α⊂m β∥n β∥αβ∥αβ⊥m αβ=n β⊂n α⊥A.2B.0C.4-D.2-6.若双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F ,线段12F F 被抛物线22y bx =的焦点分成7:3的两段,则此双曲线的离心率为( )A.53 B.54 D.857.已知0,0a b >>,且191a b+=,则ab 的最小值为( ) A.100 B.81 C.36 D.98.已知向量(1,2)a =,(3,4)b =-,则向量b 在向量a 方向上的投影为( )1 D.1-9.在直三棱柱111ABC A B C -中,14AB AC AA ===,AB AC ⊥,则该直三棱柱111ABC A B C -的外接球的体积是( )A.48πB.C.16πD.10.设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且222(2cos 1)(cos sin )222A B B a b -=-,则ABC ∆是( )A .等腰三角形 B.直角三角形 C .等腰直角三角形 D .等腰或直角三角形 11.已知数列{}n a 前n 项和是n S ,且满足13a =,2218k k a a -=,21212k k a a +=,*k N ∈,则2021=S ( )A.202141- B.2021323⨯- C.1011349⨯- D.1010542⨯-12.下列关于函数2()(3)xf x x e =-的结论中,正确结论的个数是( )①()0f x >的解集是{|x x <<;②(3)f -是极大值,(1)f 是极小值;③()f x 没有最大值,也没有最小值; ④()f x 有最大值,没有最小值;⑤()f x 有最小值,没有最大值.A.1个B.2个C.3个D.4个二、填空题(共4小题,每小题5分,共20分)13.命题“[0,)x ∀∈+∞,30x x +≥”的否定是 .14.一块外表面均被涂为红色的正方体被分成64个大小相同的小正方体,若将这些小正方体均匀混合,则从中任意取出一块小正方体仅有一面涂成红色的概率是 . 15.函数2()2,()2,0f x x x g x ax a =-=+>,对于任意的1[1,2]x ∈-,存在0[1,2]x ∈-,使01()()f x g x =,则实数a 的取值范围是 .16.已知双曲线2222:1(0,0)y x C a b a b-=>>,圆222:(5)M x b y a ++=,若双曲线C 的一条渐近线与圆M 相切,则当229625ln b a a+-取得最小值时,双曲线C 的实轴长为 .三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分.17.(本题满分12分)已知函数1()cos cos )2f x x x x =-+,x R ∈. (I )求函数()f x 的最小正周期和对称轴;(Ⅱ)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,满足4c =,()1f C =,且ABC ∆的面积为43,求,a b 的值.18.(本题满分12分)已知数列{}n a 的前n 项和为n S ,满足233n n S a =-,*n N ∈.(I )求数列{}n a 的通项公式;(Ⅱ)设3log n n n b a a =+(*n N ∈),求数列{}n b 的前n 项和n T .19.(本题满分12分) 定义椭圆:C 22221x y a b+=(0a b >>)的“蒙日圆”方程为2222x y a b +=+.已知抛物线24x y =的焦点是椭圆C 的一个短轴端点,且椭圆C 的离心率为6. (I )求椭圆C 的标准方程和它的“蒙日圆”E 的方程;(Ⅱ)若斜率为1的直线l 与“蒙日圆”E 相交于,A B 两点,且与椭圆C 相切,O 为坐标原点,求OAB ∆的面积.20.(本题满分12分)如图,已知正方体1111ABCD A B C D -中,点,,,P Q R S 分别是棱1111,,,AB AD C D B C 的中点.(I )证明:,,,P Q R S 四点共面;(Ⅱ)证明:平面PQRS ⊥平面11ACC A ;(Ⅲ)若正方体1111ABCD A B C D -的棱长为2,点T 是线段PQ 上的一个动点,且动直线1TC 与平面PQRS 所成的角记为θ,求sin θ的最大值.21.(本题满分12分)已知函数()ln 1,f x x ax a R =-+∈. (I )求函数()f x 的单调区间;(Ⅱ)若不等式()0≤f x 恒成立,求实数a 的取值范围; (Ⅲ)当*n N ∈时,求证:111111ln(1)123123+++<+<+++++n n n.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(本题满分10分)[选修4-4:坐标系与参数方程] 在极坐标系中,曲线C 的方程为2sin()33πρθ-=.以极点为原点,以极轴为x 轴的正半轴,取相同的单位长度,建立平面直角坐标系,曲线E 的参数方程为2cos 4sin x y αα=⎧⎨=⎩,α为参数,R α∈.(I )求曲线C 的直角坐标方程和曲线E 的普通方程;(Ⅱ)若曲线C 与x 轴相交于点M ,与曲线E 相交于,A B 两点,求MA MB +的值.23.(本题满分10分)[选修4-5:不等式选讲] 已知函数()|2||2|f x x a x =-++.(I )当2a =时,求不等式()9f x ≤的解集;(Ⅱ)当a R ∈时,不等式()|23||2|70f x x x ++-+-≥恒成立,求实数a 的取值范围.数学(文)试题参考答案一、选择题(12×5分=60分)二、填空题(4×5分=20分)13..[0,)x ∃∈+∞,30x x +<; 14.38 15.1(0,]216.6 三、解答题(5×12分+10分=70分)17.(12分)(I )解:1()cos cos )2f x x x x =-+21cos cos 212cos 22sin(2)6xx x x x x π-+=-=-(3分)则函数()f x 的最小正周期为T π=;(4分) 令262x k πππ-=+,则函数()f x 的对称轴为:,32k x k Z ππ=+∈. (6分) (Ⅱ)()sin(2)16f C C π=-=,且0C π<<,则3C π=,(7分) 由1sin 2S ab C ==,可知16ab =,(9分)由余弦定理2222cos c a b ab C =+-及4,3c C π==,可知2232a b +=;(11分) 所以:4a b ==.(12分) 18.(12分)(I )当1n =时,11233S a =-,所以13a =;(2分)当2n ≥时,11233n n S a --=-,所以1122233n n n n n a S S a a --=-=-,于是13n n a a -=;(5分)所以,{}n a 是首项为3,公比是3的等比数列,于是3n n a =,*n N ∈.(7分) (Ⅱ)3log =3nn n n b a a n =++,*n N ∈(8分)1231(123)(3333(1)3(13)=21311(1)(33)22n n n n T n n n n n +=++++++++++-+-=++-)211(33)2n n T n n +=++-,*n N ∈.(12分)19.(满分12分)(I )抛物线24x y =的焦点为(0,1),则1b =, (1分)又3c e a ==,且222a b c =+,所以a c ==,(3分)于是椭圆的标准方程为:2213x y +=;“蒙日圆”E 方程为224x y +=. (5分)(Ⅱ)设直线AB l :y x m =+,1122(,),(,),A x y B x y由2233y x m x y =+⎧⎨+=⎩可得:2246330x mx m ++-=,令0∆=可得:24m =,2m =±. (7分) 方法1:“蒙日圆”E 方程为224x y +=,圆心为(0,0),半径2r =,则圆心距离d ==,(8分)||AB ===(10分)于是,11||222ABC S AB d ∆=⋅=⋅=.(12分) 方法2:由224y x m x y =+⎧⎨+=⎩,可得:222240x mx m ++-=,即20x mx += 则10x =,2x m=-,(7分)12||||AB x x =-=(9分)则圆心距离211d ==+,(10分) 于是,11||222222ABC S AB d ∆=⋅=⋅⋅=.(12分)20.(满分12分)证明:(I )连接11,BD B D ,因为1BB =1DD ,所以四边形11BB D D 是平行四边形,所以:BD=11B D ;又因为,P Q 是中点,所以12PQBD =; 又因为,R S 是中点,所以1112RSB D =; 所以PQRS =,所以四边形PQRS 平行四边形,所以,,,P Q R S四点共线.(3分)(Ⅱ)因为,R S 是中点,所以11RSB D =,又因为1111B D AC ⊥,所以11RS A C ⊥;(4分)又因为在正方体1111ABCD A B C D -中,1CC ⊥平面1111A B C D ,所以1CC RS ⊥,又1111AC CC C =,且111,A C CC ⊆平面11AAC C ,所以RS ⊥平面11AAC C,又RS ⊆平面PQRS,(6分)所以平面PQRS ⊥平面11ACC A ;(7分)(Ⅲ)方法1:设点1C 到平面PQRS 的距离为d ,则1sin dTC θ=, 当1TC 最小值时,sin θ最大,又由于1PQC ∆是等腰三角形,所以当T 移动到PQ 中点时,1TC PQ ⊥,此时1TC 最小; (9分)在1PQC ∆中,2PQ =,113PC QC ==,则记线段PQ 的中点为O 时,1342OC =; 又1111111111==23323C PQS C PRS P RSC RSC V V V S CC ---∆⋅=⋅⋅=⋅⋅=, 又16232PQS S ∆=⋅⋅=,所以1133PQS S d ∆⋅⋅=,所以3d =; 所以,()max 1102sin 51d OC θ==.(12分)方法2:如图,平面PQRS 平面111AAC C OO =,则过1C 作11C H OO ⊥,交线段1OO 的延长线于点H ,又由(1)知平面PQRS ⊥平面11AAC C ,111C H AA C C ⊆平面,所以111C H AAC C⊥平面;(8分)所以动直线1TC 在平面PQRS 上的射影为TH ,则1C TH θ=∠,于是111sin sin C HC TH TC θ=∠=,当1TC 最小值时,sin θ最大,又由于1PQC ∆是等腰三角形,所以当T 移动到PQ 中点O 时,1TC PQ ⊥,此时1TC 最小,所以()1max 1sin C H OC θ=.(10分)由于1,O O 是线段11,AC A C 的四等分点,则在平面11AAC C中可知13C H =; 又由于1PQC ∆中,PQ =113PC QC ==,则1OC =; 于是()1max 1sin C H OC θ=.(12分)21.(满分12分)(I )()ln 1,0f x x ax x =-+>,1()f x a x'=- (1分)①当0a ≤时,()0f x '≥,所以()f x 在(0,)+∞上递增;(2分)②当0a >时,令()0f x '=,则1x a=, 当10x a <<时,()0f x '>;当1x a>时,()0f x '<, 所以()f x 在区间1(0,)a 上递增,在1(,)a+∞上递减. (4分)(Ⅱ)方法1:构造函数()ln 1,0f x x ax x =-+>,1()f x a x'=- ①当0a ≤时,由(Ⅰ)()f x 在(0,)+∞上递增,又(1)10f a =->,不符合题意,舍; (5分)②当0a >时,由(Ⅰ)知()f x 在区间1(0,)a 上递增,在1(,)a+∞上递减;所以max 11()()ln()0f x f a a==≤,解得:1a ≥.(7分)综上:1a ≥ 方法2:分离参数()ln 10f x x ax =-+≤恒成立,等价于ln 1x a x+≥,0x >(5分)设ln 1()x g x x +=,0x >,2ln ()xg x x-'=,令()0g x '=,1x =,则 当01x <<时,()0g x '>;当1x >时,()0g x '<,所以()g x 在区间(0,1)上递增,在(1,)+∞上递减;所以max ()(1)1g x g ==,所以:1a ≥(7分)(Ⅲ)由(I )知,当1a =时,()0f x ≤恒成立,即ln 1x x ≤-(仅当1x =时等号成立) (8分) ①当*1,k x k N k +=∈时,11ln 1k k k k ++<-,即11ln k k k+<; 所以,2ln11<,31ln 22<,41ln 33<,……,11ln n n n+<; 上述不等式相加可得:2341111lnln ln ln112323n n n+++++<+++…+, 即:2341111ln112323n n n+⋅⋅<+++…+,即:111ln(1)123n n+<+++…+,*n N ∈; (10分)②当*,1k x k N k =∈+时,ln 111k k k k <-++,即111ln 1k k k -+⎛⎫<- ⎪+⎝⎭,即11ln 1k k k +>+ 所以,21ln12>,31ln 23>,41ln 34>,……,11ln 1n n n +>+; 上述不等式相加可得:23411111lnln ln ln1232341n n n +++++>+++…+, 即:23411111ln1232341n n n +⋅⋅>+++…+, 即:1111ln(1)2341n n +>+++…+,*n N ∈;(12分)综上:当*n N ∈时,111111ln(1)123123+++<+<+++++n n n. 22.(满分10分)(I )因为曲线C 的极坐标方程为2sin()33πρθ-=,所以:sin cos 30ρθ-θ-=;又因为:sin cos y x ρθ,ρθ==,所以:30y --=,即曲线C 的直角坐标方程30y -+=.(3分)曲线E 的参数方程为2cos 4sin x y αα=⎧⎨=⎩,消去参数α,可得曲线E 的普通方程221416x y +=; (5分)(Ⅱ)由于曲线C 30y -+=,则(M ,且倾斜角为3π, (6分)设曲线C的参数方程为122x ty t⎧=⎪⎪⎨⎪=⎪⎩,t为参数,且,A B两点的参数分别为12,t t,则将曲线C的参数方程代入曲线E的普通方程可得:27160t--=,由韦达定理可知:12t t+=,12167t t=-,(8分)1212||||||||||7MA MB t t t t+=+=-==. (10分)23.(满分10分)(I)当2a=时,|22||2|9x x-++≤,当1x≥时,2229x x-++≤,3x≤,所以13x≤≤;当21x-<<时,2229x x-++≤,5x≥-,所以21x-<<;当2x≤-时,2229x x---≤,3x≥-,所以32x-≤≤-;综上:不等式的解集为:{|33}x x-≤≤. (5分)(Ⅱ)当a R∈时,不等式()|23||2|70f x x x++-+-≥恒成立,即:不等式|2||23|7x a x-++≥恒成立,只需要()min|2||23|7x a x-++≥(7分)由于|2||23||(2)(23)|x a x x a x-++≥--+,当且仅当(2)(23)0x a x-+≤时等号成立;即:|2||23||3|x a x a-++≥+,所以:|3|7a+≥,(8分)解得:4a≥或10a≤-.(10分)。
陕西省交大附中、龙岗中学2021届高三上学期第一次联考物理试题一、选择题(本大题共15小题,共50分,1-10为单项选择题。
每小题3分,共30分。
11-15为多项选择题,全部选对得4分,选对但不全得2分,错选或不答得0分,共20分)1. 在物理学的研究中用到的思想方法很多,下列有关各图的说法中正确的是( )A. ①③采用的是放大的思想方法B. ②④⑤采用的是控制变量的思想方法C. ④⑤采用的是猜想的思想方法D. ①③⑤采用的是放大的思想方法2.中欧班列在欧亚大陆开辟了“生命之路”,为国际抗疫贡献了中国力量。
某运送防疫物资的班列由40节质量相等的车厢组成,在车头牵引下,列车沿平直轨道匀加速行驶时,第2节对第3节车厢的牵引力为F。
若每节车厢所受摩擦力、空气阻力均相等,则倒数第3节对倒数第2节车厢的牵引力为()A. FB. 19 20FC.19FD.20F3.某同学利用图甲所示装置研究摩擦力的变化情况。
实验台上固定一个力传感器,传感器用棉线拉住物块,物块放置在粗糙的长木板上。
水平向左拉木板,传感器记录的F t 图像如图乙所示。
下列说法正确的是()A.实验中必须让木板保持匀速运动B.最大静摩擦力与滑动摩擦力之比约为10:7C.图乙中曲线就是摩擦力随时间的变化曲线22D.只用图乙中数据可得出物块与木板间的动摩擦因数 4.2020年3月9日,我国在西昌卫星发射中心成功发射北斗系统第54颗导航卫星,北斗导航工程实现2020年“开门红”。
北斗卫星导航系统由地球同步静止轨道卫星、与同步静止轨道卫星具有相同周期的地球同步倾斜轨道卫星,以及比它们轨道低一些的中轨道卫星组成。
它们均为圆轨道卫星,轨道分布情况如图所示,则( )A .地球同步倾斜轨道卫星可相对静止在北京上空B .地球同步倾斜轨道卫星的轨道高度大于同步静止轨道卫星的轨道高度C .所有同步卫星绕地球运动的速率都一定小于中轨道卫星绕地球运动的速率D .质量相等的中轨道卫星与同步轨道卫星相比,中轨道卫星所具有的机械能较大 5.如图所示,水龙头开口A 处的直径d 1=2cm ,A 离地面B 的高度h=80cm ,当水龙头打开时,从A 处流出的水流速度v 1=1m/s ,在空中形成一完整的水流束,不计空气阻力.则该水流束在地面B 处的截面直径d 2约为(g 取10 m/s 2)( )A .2 cmB .0.98 cmC .4 cmD .应大于2 cm ,但无法计算6.如图所示,理想变压器原线圈接在()m sin u U t ωϕ=+的交流电源上,副线圈接三个阻值相同的电阻R ,不计电表内电阻影响。
2020-2021西安交通大学附属中学高中必修一数学上期中第一次模拟试题(带答案)一、选择题1.设常数a ∈R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x≥a ﹣1},若A ∪B=R ,则a 的取值范围为( ) A .(﹣∞,2) B .(﹣∞,2]C .(2,+∞)D .[2,+∞)2.已知函数f (x )=23,0{log ,0x x x x ≤>那么f 1(())8f 的值为( )A .27B .127C .-27D .-1273.函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .4.三个数0.32,20.3,0.32log 的大小关系为( ).A .20.30.3log 20.32<< B .0.320.3log 220.3<<C .20.30.30.3log 22<<D .20.30.30.32log 2<<5.设log 3a π=,0.32b =,21log 3c =,则( ) A .a c b >>B .c a b >>C .b a c >>D .a b c >>6.若函数()(1)(0xxf x k a a a -=-->且1a ≠)在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )A .B .C .D .7.如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .()()U M P S ⋂⋂ðD .()()U M P S ⋂⋃ð8.设集合{1,2,3},{2,3,4}A B ==,则A B =UA .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 9.函数()111f x x =--的图象是( ) A . B .C .D .10.若0.23log 2,lg0.2,2a b c ===,则,,a b c 的大小关系为A .c b a <<B . b a c <<C . a b c <<D .b c a <<11.函数f(x)=23x x +的零点所在的一个区间是 A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)12.已知函数2()log (23)(01)a f x x x a a =--+>≠,,若(0)0f <,则此函数的单调减区间是()A .(,1]-∞-B .[1)-+∞,C .[1,1)-D .(3,1]--二、填空题13.如果定义在区间[3+a ,5]上的函数f(x)为奇函数,那么a 的值为________.14.设函数()212log ,0log (),0x x f x x x >⎧⎪=⎨-<⎪⎩ ,若()()f a f a >-,则实数a 的取值范围是__________. 15.已知2a =5b =m ,且11a b+=1,则m =____. 16.2017年国庆期间,一个小朋友买了一个体积为a 的彩色大气球,放在自己房间内,由于气球密封不好,经过t 天后气球体积变为kt V a e -=⋅.若经过25天后,气球体积变为原来的23,则至少经过__________天后,气球体积小于原来的13. (lg30.477,lg 20.301≈≈,结果保留整数)17.非空有限数集S 满足:若,a b S ∈,则必有ab S ∈.请写出一个..满足条件的二元数集S =________.18.已知函数(12)(1)()4(1)x a x f x ax x⎧-<⎪=⎨+≥⎪⎩,且对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,则a 的取值范围是________19.已知()2x a x af x ++-=,g(x)=ax+1 ,其中0a >,若()f x 与()g x 的图象有两个不同的交点,则a 的取值范围是______________. 20.给出下列结论: ①已知函数是定义在上的奇函数,若,则;②函数的单调递减区间是; ③已知函数是奇函数,当时,,则当时,;④若函数的图象与函数的图象关于直线对称,则对任意实数都有.则正确结论的序号是_______________________(请将所有正确结论的序号填在横线上).三、解答题21.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike ”计划在甲、乙两座城市共投资160万元,根据行业规定,每个城市至少要投资30万元,由前期市场调研可知:甲城市收益P 与投入(a 单位:万元)满足426P a =,乙城市收益Q 与投入(b 单位:万元)满足124Q b =+,设甲城市的投入为(x 单位:万元),两个城市的总收益为()(f x 单位:万元).(1)写出两个城市的总收益()(f x 万元)关于甲城市的投入(x 万元)的函数解析式,并求出当甲城市投资72万元时公司的总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大? 22.已知函数2()(2)3f x x a x =+--.(1)若函数()f x 在[]2,4-上是单调函数,求实数a 的取值范围;(2)当5a =,[1,1]x ∈-时,不等式()24f x m x >+-恒成立,求实数m 的范围. 23.某单位建造一间背面靠墙的小房,地面面积为212m ,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,屋顶的造价为5800元.如果墙高为3m ,且不计房尾背面和地面的费用,问怎样设计房屋能使总造价最低?最低造价是多少?24.已知函数()()22log f x x a x =+-是R 上的奇函数,()2g x t x a =--.(1)求a 的值;(2)记()f x 在3,24⎡⎤-⎢⎥⎣⎦上的最大值为M ,若对任意的3,24x ⎡⎤∈-⎢⎥⎣⎦,()M g x ≤恒成立,求t 的取值范围.25.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营情况良好的某种消费品专卖店以5.8万元的优惠价转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3600元后,逐步偿还转让费(不计息).在甲提供的资料中有:①这种消费品的进价为每件14元;②该店月销量Q (百件)与销售价格P (元)的关系如图所示;③每月需各种开支2000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?26.已知函数()f x 是R 上的奇函数,且当0x >时,()f x =1()2x.①求函数()f x 的解析式;②画出函数的图象,根据图象写出函数()f x的单调区间.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:当时,,此时成立,当时,,当时,,即,当时,,当时,恒成立,所以a的取值范围为,故选B.考点:集合的关系2.B解析:B【解析】【分析】利用分段函数先求f(1)8)的值,然后在求出f1(())8f的值.【详解】f =log2=log22-3=-3,f =f(-3)=3-3=.【点睛】本题主要考查分段函数求值以及指数函数、对数函数的基本运算,属基础题.3.C解析:C【解析】【分析】确定函数是奇函数,图象关于原点对称,x>0时,f(x)=log a x(0<a<1)是单调减函数,即可得出结论.【详解】由题意,f(﹣x)=﹣f(x),所以函数是奇函数,图象关于原点对称,排除B、D;x>0时,f(x)=log a x(0<a<1)是单调减函数,排除A.故选C.【点睛】本题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.4.A解析:A 【解析】 【分析】利用指数函数与对数函数的单调性即可得出. 【详解】∵0<0.32<1,20.3>1,log 0.32<0, ∴20.3>0.32>log 0.32. 故选A . 【点睛】本题考查了指数函数与对数函数的单调性,属于基础题.5.C解析:C 【解析】 【分析】先证明c<0,a>0,b>0,再证明b>1,a<1,即得解. 【详解】 由题得21log 3c =2log 10<=,a>0,b>0. 0.30log 3log 1,22 1.a b πππ====所以b a c >>.故答案为C 【点睛】(1)本题主要考查指数函数对数函数的单调性,考查实数大小的比较,意在考查学生对这些知识的掌握水平和分析推理能力.(2)实数比较大小,一般先和“0”比,再和“±1”比.6.A解析:A 【解析】 【分析】由题意首先确定函数g (x )的解析式,然后结合函数的解析式即可确定函数的图像. 【详解】∵函数()(1)xxf x k a a -=--(a >0,a ≠1)在R 上是奇函数,∴f (0)=0,∴k =2, 经检验k =2满足题意, 又函数为减函数, 所以01a <<, 所以g (x )=log a (x +2)定义域为x >−2,且单调递减, 故选A . 【点睛】本题主要考查对数函数的图像,指数函数的性质,函数的单调性和奇偶性的应用等知识,意在考查学生的转化能力和计算求解能力.7.C解析:C 【解析】 【分析】先根据图中的阴影部分是M∩P 的子集,但不属于集合S ,属于集合S 的补集,然后用关系式表示出来即可. 【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S). 故选C . 【点睛】本题主要考查了Venn 图表达集合的关系及运算,同时考查了识图能力,属于基础题.8.A解析:A 【解析】由题意{1,2,3,4}A B =U ,故选A. 点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.9.B解析:B 【解析】 【分析】 把函数1y x=先向右平移一个单位,再关于x 轴对称,再向上平移一个单位即可. 【详解】 把1y x = 的图象向右平移一个单位得到11y x =-的图象, 把11y x =-的图象关于x 轴对称得到11y x =--的图象, 把11y x =--的图象向上平移一个单位得到()111f x x =--的图象, 故选:B . 【点睛】本题主要考查函数图象的平移,对称,以及学生的作图能力,属于中档题.10.B解析:B 【解析】 【分析】由对数函数的单调性以及指数函数的单调性,将数据与0或1作比较,即可容易判断. 【详解】由指数函数与对数函数的性质可知,a =()3log 20,1,b ∈=lg0.20,c <=0.221>,所以b a c <<,故选:B. 【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.11.B解析:B 【解析】试题分析:因为函数f(x)=2x +3x 在其定义域内是递增的,那么根据f(-1)=153022-=-<,f (0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(-1,0),选B . 考点:本试题主要考查了函数零点的问题的运用.点评:解决该试题的关键是利用零点存在性定理,根据区间端点值的乘积小于零,得到函数的零点的区间.12.D解析:D 【解析】 【分析】求得函数()f x 的定义域为(3,1)-,根据二次函数的性质,求得()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,再由(0)0f <,得到01a <<,利用复合函数的单调性,即可求解. 【详解】由题意,函数2()log (23)a f x x x =--+满足2230x x --+>,解得31x -<<,即函数()f x 的定义域为(3,1)-,又由函数()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,因为(0)0f <,即(0)log 30a f =<,所以01a <<,根据复合函数的单调性可得,函数()f x 的单调递减区间为(3,1]--, 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及复合函数的单调性的判定,着重考查了推理与运算能力,属于基础题.二、填空题13.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a =-5∴a =-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于解析:-8【解析】 ∵f(x)定义域为[3+a ,5],且为奇函数, ∴3+a =-5,∴a=-8.点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.14.【解析】【分析】【详解】由题意或或或则实数的取值范围是故答案为 解析:(1,0)(1,)-??【解析】 【分析】 【详解】由题意()()f a f a >-⇒2120 log log a a a >⎧⎪⎨>⎪⎩或()()1220log log a a a <⎧⎪⎨->-⎪⎩01a a a >⎧⎪⇒⎨>⎪⎩或11a a a a<⎧⎪⇒>⎨->-⎪⎩或10a -<<,则实数a 的取值范围是()()1,01,-⋃+∞,故答案为()()1,01,-⋃+∞.15.10【解析】因为2a=5b=m 所以a=log2mb=log5m 由换底公式可得=logm2+logm5=logm10=1则m=10点睛:(1)在对数运算中先利用幂的运算把底数或真数进行变形化成分数指数解析:10 【解析】因为2a =5b =m ,所以a =log 2m ,b =log 5m , 由换底公式可得11a b+=log m 2+log m 5=log m 10=1,则m =10. 点睛:(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底或指数与对数互化.(2)熟练地运用对数的三个运算性质并配以代数式的恒等变形是对数计算、化简、证明常用的技巧.16.68【解析】由题意得经过天后气球体积变为经过25天后气球体积变为原来的即则设天后体积变为原来的即即则两式相除可得即所以天点睛:本题主要考查了指数函数的综合问题考查了指数运算的综合应用求解本题的关键是解析:68 【解析】由题意得,经过t 天后气球体积变为kt V a e -=⋅,经过25天后,气球体积变为原来的23, 即25252233kk a ea e --⋅=⇒=,则225ln 3k -=, 设t 天后体积变为原来的13,即13kt V a e a -=⋅=,即13kte -=,则1ln 3kt -=两式相除可得2ln2531ln3k kt -=-,即2lg25lg 2lg30.3010.477130.3681lg30.4771lg 3t --===≈--, 所以68t ≈天点睛:本题主要考查了指数函数的综合问题,考查了指数运算的综合应用,求解本题的关键是先待定t 的值,建立方程,在比较已知条件,得出关于t 的方程,求解t 的值,本题解法比较巧妙,充分考虑了题设条件的特征,对观察判断能力要求较高,解题时根据题设条件选择恰当的方法可以降低运算量,试题有一定的难度,属于中档试题.17.{01}或{-11}【解析】【分析】因中有两个元素故可利用中的元素对乘法封闭求出这两个元素【详解】设根据题意有所以必有两个相等元素若则故又或所以(舎)或或此时若则此时故此时若则此时故此时综上或填或【解析:{0,1}或{-1,1}, 【解析】 【分析】因S 中有两个元素,故可利用S 中的元素对乘法封闭求出这两个元素. 【详解】设{}(),S a b a b =<,根据题意有22,,a ab b S ∈,所以22,,a b ab 必有两个相等元素.若22a b =,则=-a b ,故2ab a =-,又2a a =或2a b a ==-,所以0a =(舎)或1a =或1a =-,此时{}1,1S =-.若 2a ab =,则0a =,此时2b b =,故1b = ,此时{}0,1S =. 若2b ab =,则0b =,此时2a a =,故1a =,此时{}0,1S =. 综上,{}0,1S =或{}1,1S =-,填{}0,1或{}1,1-.【点睛】集合中元素除了确定性、互异性、无序性外,还有若干运算的封闭性,比如整数集,对加法、减法和乘法运算封闭,但对除法运算不封闭(两个整数的商不一定是整数),又如有理数集,对加法、减法、乘法和除法运算封闭,但对开方运算不封闭.一般地,若知道集合对某种运算封闭,我们可利用该运算探究集合中的若干元素.18.【解析】【分析】根据判断出函数在上为增函数由此列不等式组解不等式组求得的取值范围【详解】由于对任意的时都有所以函数在上为增函数所以解得故答案为:【点睛】本小题主要考查根据函数的单调性求参数的取值范围 解析:[1,0)-【解析】 【分析】 根据()()12120f x f x x x ->-判断出函数在R 上为增函数,由此列不等式组,解不等式组求得a 的取值范围.【详解】由于对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,所以函数在R 上为增函数,所以1210124a a a a ->⎧⎪<⎨⎪-≤+⎩,解得10a -≤<.故答案为:[)1,0-. 【点睛】本小题主要考查根据函数的单调性求参数的取值范围,考查指数函数的单调性,考查分式型函数的单调性,属于基础题.19.(01)【解析】结合与的图象可得点睛:数形结合是数学解题中常用的思想方法数形结合的思想可以使某些抽象的数学问题直观化生动化能够变抽象思维为形象思维有助于把握数学问题的本质在运用数形结合思想分析和解决解析:(0,1), 【解析】(),,2x x a x a x af x a x a≥++-⎧==⎨<⎩, 结合()f x 与()g x 的图象可得()0,1.a ∈点睛:数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念及其几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围20.①③【解析】①正确根据函数是奇函数可得f(3)=-f(-3)=1而f(-1)=2所以f(3)<f(-1);②错根据复合函数的单调性可知函数的单调递减区间为(2+∞);③正确奇函数关于原点对称所以可根解析:①③【解析】①正确,根据函数是奇函数,可得,而,所以;②错,根据复合函数的单调性可知函数的单调递减区间为;③ 正确,奇函数关于原点对称,所以可根据的解析式,求得的解析式;④,根据对数函数的定义域,不能是任意实数,而需,由,所以正确的序号是①③.【点睛】本题以多项选择题的形式考查函数的某些性质,综合性比较高,选项②错的比较多,涉及复合函数单调区间的问题,谨记“同增异减”,同时函数的定义域,定义域是比较容易忽视的问题,做题时要重视.三、解答题21.(1)()14236 4f x x x=-+,30130x≤≤,66万元(2)甲城市投资128万元,乙城市投资32万元【解析】【分析】()1由题知,甲城市投资x万元,乙城市投资160x-万元,求出函数的解析式,利用当甲城市投资72万元时公司的总收益;()()12364f x x =-+,30130x ≤≤,令t =,则t ∈,转化为求函数2,6143y t t ∈=-++最值,即可得出结论.【详解】()1由题知,甲城市投资x 万元,乙城市投资160x -万元,所以()()11616023644f x x x =+-+=-+, 依题意得3016030x x ≥⎧⎨-≥⎩,解得30130x ≤≤,故()1364f x x =-+,30130x ≤≤, 当72x =时,此时甲城市投资72万元,乙城市投资88万元,所以总收益()136664f x x =-+=. ()()12364f x x =-+,30130x ≤≤令t =t ∈.2,6143y t t ∈=-++当t =,即128x =万元时,y 的最大值为68万元, 故当甲城市投资128万元,乙城市投资32万元时, 总收益最大,且最大收益为68万元. 【点睛】本题考查实际问题的应用,二次函数的性质以及换元法的应用,考查转化思想以及计算能力,属于中档题.22.(1)(,6][6,+)∞∞--U ;(2)3(,)4∞-. 【解析】 【分析】(1)首先求函数的对称轴22a x -=-,令242a --≥或 222a --≤-,求实数a 的取值范围;(2)不等式等价于21x x m ++>恒成立,令()21g x x x =++,转化为()min g x m >,[]1,1x ∈-恒成立,求m 的取值范围. 【详解】解:(1)函数()f x 的对称轴为22a x -=-, 又函数()f x 在[]2,4-上是单调函数,242a -∴-≥或 222a --≤-, 解得6a ≤-或6a ≥.∴实数a 的取值范围为(,6][6,)-∞-+∞U ;(2)当5a =,[]1,1x ∈-时,()24f x m x >+-恒成立,即21x x m ++>恒成立, 令()21g x x x =++,()min g x m >恒成立,函数()g x 的对称轴[]11,12x =-∈-,∴()min 1324g x g ⎛⎫=-= ⎪⎝⎭,即34m >, m ∴的范围为3(,)4-∞.【点睛】本题考查二次函数单调性,恒成立的的综合问题,属于基础题型.23.当底面的长宽分别为3m ,4m 时,可使房屋总造价最低,总造价是34600元 【解析】设房屋地面的长为米,房屋总造价为元.24.(1) 1a = (2) [)4,+∞ 【解析】 【分析】(1)根据函数()f x 是R 上的奇函数,得到()00f = ,即可求得a 的值;(2)由(1)可得函数()g x 的解析式,分别求得函数()f x 和()g x 的单调性与最值,进而得出关于t 的不等式,即可求解. 【详解】(1)因为())22log f x x a x =+是R 上的奇函数,所以()00f = ,即log 0a =,解得1a =. (2)由(1)可得())22log 1f x x x =+,()212121x t g x t x x t -++⎧=--=⎨+-⎩ 1,21,2x x ≥< .因为奇函数())22log log f x x ==,所以()f x 在3,24⎡⎤-⎢⎥⎣⎦上是减函数,则()f x 在3,24⎡⎤-⎢⎥⎣⎦上的最大值为233log 144M f ⎫⎛⎫⎛⎫⎪=-=-= ⎪ ⎪⎪⎝⎭⎝⎭⎭,因为()2121x t g x x t -++⎧=⎨+-⎩ 1,21,2x x ≥<,所以()g x 在31,42⎡⎫-⎪⎢⎣⎭上是增函数,在1,22⎡⎤⎢⎥⎣⎦上是减函数,则()g x 的最小值为34g ⎛⎫-⎪⎝⎭和()2g 中的较小的一个. 因为33521442g t t ⎛⎫⎛⎫-=⨯-+-=- ⎪ ⎪⎝⎭⎝⎭,()22213g t t =-⨯++=-, 所以()()min 23g x g t ==-, 因为对任意的3,24x ⎡⎤∈-⎢⎥⎣⎦,()M g x ≤恒成立,所以13t ≤-, 解得4t ≥.故t 的取值范围为[)4,+∞. 【点睛】本题主要考查了函数的基本性质的综合应用,以及恒成立问题的求解,其中解答中熟记函数的基本性质,合理应用奇偶性、单调性和最值列出相应的方程或不等式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 25.(1)当P =19.5元,最大余额为450元;(2)20年后 【解析】 【分析】(1)根据条件关系建立函数关系,根据二次函数的图象和性质即可求出函数的最值; (2)根据函数的表达式,解不等式即可得到结论. 【详解】设该店月利润余额为L ,则由题设得L =Q (P ﹣14)×100﹣3600﹣2000,①由销量图,易得Q =250,14P 20340,20P 262p p -+⎧⎪⎨-+<⎪⎩剟„代入①式得L =(250)(14)1005600,14P 20340(14)100560,20P 262P P P P -+-⨯-⎧⎪⎨⎛⎫-+-⨯-< ⎪⎪⎝⎭⎩剟„ (1)当14≤P ≤20时,2(250)(14)1005600200780075600L P P p p =-+-⨯-=-+-,当P =19.5元,L max =450元,当20<P ≤26时,23340(14)100560615656022L P P P p ⎛⎫=-+-⨯-=-+- ⎪⎝⎭,当P =613元时,L max =12503元. 综上:月利润余额最大,为450元,(2)设可在n 年内脱贫,依题意有12n ×450﹣50000﹣58000≥0,解得n ≥20,即最早可望在20年后脱贫. 【点睛】本题主要考查实际函数的应用问题,根据条件建立函数关系,利用二次函数的图象和性质是即可得到结论,属于中档题.26.①1)22,(0)()0,(0)(,(0)xxx f x x x ⎧-<⎪⎪==⎨⎪⎪>⎩n ;②单调递减区间为(,0),(0,)-∞+∞,无单调递增区间. 【解析】 【分析】 【详解】试题分析:①考察了利用函数的奇偶性求分段函数的解析式,根据求什么设什么所以设,那么,那么,求得的解析式,又因为,即求得函数的解析式;②根据上一问解析式,画出分段函数的图像,观察函数的单调区间. 试题解析:解: ①∵函数()f x 是定义在R 上的奇函数,∴(0)0f =. 当0x <时,0x ->,1()()()22xx f x f x -=--=-=-.∴函数()f x 的解析式为1)22,(0)()0,(0)(,(0)xxx f x x x ⎧-<⎪⎪==⎨⎪⎪>⎩n②函数图象如图所示:由图象可知,函数()f x 的单调递减区间为(,0),(0,)-∞+∞,无单调递增区间. 考点:1.分段函数的解析式;2.函数的图像.。
高三数学试卷(理科)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时间120分钟。
2.请将各题答案填写在答题卡上。
3.本试卷主要考试内容:高考全部内容。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合()(){}380A x x x =++<,则A Z =∩A . {}83x x -<<-B . {}4,5,6,7C . {}38x x << D .{}7,6,5,4----2.若z =,则A . 2z 的实部为1B . 2z 的实部为1-C . 2z 的虛部为-D . 2z 的虚部为3.某地区7月1日至7月10日白天的平均气温的折线图如图所示,则下列判断错误的是A .从7月2日到7月5日白天的平均气温呈下降趋势B .这10天白天的平均气温的极差大于6℃C .这10天中白天的平均气温为26℃的频率最大D .这10天中白天的平均气温大于26℃的有5天 4.若函数()f x 的图象关于点()1,0对称,则A . ()1f x +为偶函数B . ()1f x -为偶函数C . ()1f x +为奇函数D . ()1f x -为奇函数 5.在平行四边形ABCD 中,7CD ED =,且BE AD DE λμ=+,则λμ+= A . 5- B . 6- C .5 D .6 6.函数()()22sin 2cos sin f x x x x =-的最小正周期为A .4π B . 2πC . πD . 34π7.若随机变量X 的分布列为则DX =A .16B .32C .18D .648.在ABC ∆中,3B π=,且ABC ∆的面积为,则ABC ∆外接圆的半径的最小值是A .B .6C .D .129.若从1,3,5,7中选取两个数,从0,2,4,6,8中选取两个数,将这四个数组成一个无重复数字的四位数,则不同的四位数的总个数为A .1296B .1320C .1440D .1524 10.某三棱锥的三视图如图所示,则该三棱锥的体积为A .12 B .1. C .32D .2 11.已知函数()()3213e 3xf x x x x a =--++,若()0f x >对x ∈R 恒成立,则a 的取值范團是 A . ()3,+∞ B . ()0,+∞ C .22,3e ⎛⎫-+∞ ⎪⎝⎭D . 24,3e ⎛⎫-+∞ ⎪⎝⎭12.已知双曲线C 的方程为2214x y m m+=+,给出下列四个结论: ①m 的取值范围是()4,0-; ②C 的焦距与m 的取值无关;③当C 的离心率不小于2时,m 的最小值为3-;④存在实数m ,使得点()2,m m 在C 上. 其中结论正确的个数为A .1B .2C .3D .4第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分把答案填在答题卡的相应位置. 13.若1tan 2α=,则sin cos sin 2cos αααα-=- . 14.椭圆22149x y +=上一点到两焦点的距离之和为 . 15.若函数()()991log 2log 4f x x x x ⎛⎫=+->⎪⎝⎭),则()f x 的值域为 . 16.已知底面为矩形的四棱锥P ABCD -的每个顶点都在球O 的球面上, PA AD ⊥,PA AB =,PB =,且BC =.若球O 的体积为323π,则棱PB 的中点到平面PCD 的距离为 .三、解答题:本大题共6小题,共70分解答应写出必要的文字说明、证明过程或演算步骤.17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. (一)必考题:共60分 17.(12分)在递增的等比数列{}n a 中,39a =,2430a a +=. (1)求数列{}n a 的通项公式;(2)若32log n n b a =,求数列{}n b 的前n 项和n S . 18.(12分)(1)根据6至10月份的数据,求出v 关于u 的线性回归方程;(2)该公司销售部门打算11月份对该地区投入广告费15万元,但公司决策部门规定,当纯利润预测不低于35万元时才能对该地区继续投人广告,否则终止投入广告,试判断销售部门对该地区是否继续投入广告.附:回归直线y bx a =+的斜率和截距的最小二乘估计分别为1221ni i i nii x y nx yb x nx==-∑=-∑,a y bx =-.19.(12分)如图,菱形ABCD 的对角线AC 与BD 交于点E ,8BD =,6AC =,将ACD ∆沿AC 折到PAC ∆的位置使得4PD =.(1)证明:PB AC ⊥.(2)求平面PAB 与平面PCD 所成锐二面角的余弦值. 20.(12分)已知抛物线C :22y px =(0p >)的焦点为F ,点,22p E ⎛⎫- ⎪⎝⎭,EF =. (1)求抛物线C 的方程;(2)已知过点F 的直线l 交抛物线C 于P ,Q 两点,当E 到l 的距离最大时,求EPQ ∆的面积. 21.(12分) 已知函数()ln xf x x e=-. (1)若曲线()y f x =存在一条切线与直线y ax =垂直,求a 的取值范围. (2)证明:()23ln sin 4f x x x x <--. (二)选考题:共10分.请考生从第22,23两题中任选-题作答. 如果多做,则按所做的第一个题目计分. 22.[选修4-4:坐标系与参数方程](10分) x = 4cos a ,在直角坐标系xOy 中,曲线C 的参数方程为{4cos 44sin x y αα==-+(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为3cos 4sin m ρθρθ+=. (1)求C 的极坐标方程;(2)若l 与C 相交,求m 的取值范围. 23.[选修4- 5:不等式选讲](10分) 已知函数()3f x x a x a =-+-. (1)求不等式()1f x x a >+-的解集;(2)若()f x >对x ∈R 恒成立,求a 的取值范围.高三数学试卷参考答案(理科)1.D 因为{}83A x x =-<<-,所以{}7,6,5,4A Z =----∩.2.B 因为21z =--,所以2z 的实部与虚部分别为1-,-3.D 从7月2日到7月5日白天的平均气温呈下降趋势这10天白天的平均气温的极差大于6℃.这10天中白天的平均气温为26℃的频率为0. 3,比其他平均气温的频率都要大.这10天中白天的平均气温大于26℃的只有4天.故选D .4.C 因为函数()f x 的图象关于点()1,0对称,所以将()f x 的图象向左平移1个单位长度后所得图象关于原点对称,故选C .5.A 因为7CD ED =,所以6CE DE =-,则6BE BC CE AD DE =+=-,所以165λμ+=-=-.6.A ()1sin 2cos 2sin 42f x x x x ==,因为sin 4y x =的最小正周期为242ππ=,所以()f x 的最小正周期为4π. 7.D ∵100.3200.5300.116EX =⨯+⨯+⨯=,∴2222160.160.340.5140.164DX =⨯+⨯+⨯+⨯=.8.A 由三角形的面积公式可得1sin 2ac B ==36ac =.由余弦定理可得222b a c =+-2cos 236ac B ac ac ac -==≥,即6b ≥,则ABC ∆外接圆的半径2sin 32b R B==⨯(当且仅当6a c ==时,等号成立).9.A 若0被选中,则不同的四位数的个数211314433C C C A 432N ==;若0不被选中,则不同的四位数的个数2241444C C A 864N ==.故不同的四位数的总个数为4328641296+=.10.B 由三视图可知,该三棱锥的两个顶点为正方体的顶点,另外两个顶点是正方体棱的中点,其直观图如图所示.正视图的面积为1132222111222⨯-⨯⨯⨯-⨯⨯=,故该三棱锥的体积为一132132⨯⨯=.11.D ()()()()22222x f x x e x e x x x '=--+---,设函数()()1x x g x e x g x e =-+'=-,易证()()010g x g =>≥.令()0f x '>,得2x >;令()0f x '<,得2x <.所以()2min 403f x e a =-+>,故243a e >-. 12.C 由题意得()40m m +<,则40m -<<,故①正确.因为40m -<<,所以24a m =+,2b m =-,2224c a b =+=,则2c =,从而C 的焦距为4,与m 的取值无关,故②正确.若C的离心率不小于2,则2e ==,解得3m -≤,故③不正确.假设存在实数m ,使得点()2,m m 在C 上,则4214m m m m+=+,则42340m m m ++-=.设函数()4234f m m m m =++-,因为()2100f -=>,()150f -=-<,从而存在()2,1m ∈--,使得()0f m =,故④正确. 13. 13 1sin cos tan 1123sin 2cos tan 232αααααα---===---14.6 因为49<,所以29a =,所以椭圆22149x y +=上一点到两焦点的距离之和为26a =. 15.()0,1 因为()9922log log 1x f x x x +⎛⎫==+ ⎪⎝⎭,所以()f x 在1,4⎛⎫+∞ ⎪⎝⎭上单调递减,又2119x <+<,所以()f x 的值域为()0,1.16.3∵PA AB =,PB =,∴PA AB ⊥,又PA AD ⊥,AD AB A =∩, ∴PA ⊥平面ABCD .∵底面ABCD 为矩形,∴侧棱PC 为球O 的直径.设球O 的半径为R ,则343233R ππ=,即2R =,又22R ==,解得2AB =.如图,过A 作AG PD ⊥于G ,取棱PA 的中点F ,连接EF .易证CD ⊥平面APD ,则CD AG ⊥,从而AG ⊥平面PCD .由等面积法可得3AG ==,则F 到平面PCD PCD的距离为12AG =∵EF AB CD ∥∥,∴EF CD ∥,则E 到平面PCD PCD 的距离等于F 到平面PCD 的距离, 故棱PB 的中点到平面PCD17.解:(1)由题意可得231324113301a a q a a a q a q q ⎧==⎪+=+=⎨>⎪⎩,解得11a =,3q =.故1113n n n a a q --==.(2)由(1)可得2123n n a -=,则32log 21n n b a n ==-,故()2121135212n n n S n n +-=++++-==.18.解:(1)由表中数据可得()1101113129115u =⨯++++=, ()12325302616245v =⨯++++=,515222151********3.16155115i i i i i u v uvb u u==-∑-⨯⨯===-⨯-∑, 24 3.11110.1a v bu =-=-⨯=-,故v 关于u 的线性回归方程为 3.110.1v u =-. (2)当15u =时, 3.11510.136.435v =⨯-=>, 所以该公司销售部门将对该地区继续投入广告. 19.(1)证明:因为ABCD 是菱形,所以AC BD ⊥, 则BE AC ⊥,PE AC ⊥.因为BE ⊂平面PBE ,PE ⊂平面PBE ,且BE PE E =∩,所以AC ⊥平面PBE . 因为PB ⊂平面PBE ,所以PB AC ⊥.(2)解:取DE 的中点O ,连接OP ,取CD 的中点F ,连接OF . 因为8BD =,所以4DE PE ==.因为4PD =,所以PD PE =,所以PO DE ⊥.由(1)可知AC ⊥平面PBE ,所以平面PBD ⊥平面ABCD ,则PO ⊥平面ABCD .故以O 为坐标原点,OF ,OD ,OP 的方向分别为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系O xyz -.由题中数据可得()3,2,0A --,()0,6,0B-,()3,2,0C -,()0,2,0D ,(0,0,P,则()3,4,0AB DC ==-,(BP =,(0,DP =-.设平面PAB 的法向量为()111,,m x y z =,则11134060m AB x y m BP y ⎧⎪⋅=-=⎨⋅=+=⎪⎩,令4x =,得(4,3,m =-. 设平面PCD 的法向量为()222,,n x y z =,则22234020n DC x y n DP y ⎧⎪⋅=-=⎨⋅=-+=⎪⎩,令4x =,得(n =.n . DP =-2y2+2/3z2=0,设平面PAB 与平面PCD 所成的锐二面角为θ,则cos 91m nm nθ⋅===. 20.解:(1)因为,22p E ⎛⎫- ⎪⎝⎭,,02p F ⎛⎫⎪⎝⎭,EF =,=解得4p =,故抛物线C 的方程为28y x =. (2)由题意知,()2,0F ,因为直线l 过点F , 所以当EF l ⊥时,点E 到l 的距离最大. 因为201222EF k -==---,所以直线l 的斜率为2,联立方程组()2228y x y x⎧=-⎨=⎩,消去y 得2640x x -+=. 设()11,P x y ,()22,Q x y ,则126x x +=, 所以126410PQ x x p =++=+=.因为EF =,所以EPQ ∆的面积为1102⨯⨯=21.(1)解:()11f x x e'=-.因为()f x 的定义域为()0,+∞,所以111x e e->-. 因为曲线()y f x =存在一条切线与直线y ax =垂直,所以11a e->-, 解得0a <或a e >,则a 的取值范围为()(),0,e -∞+∞∪. (2)证明: ()11e xx e x f x e'-=-=. 当()0,x e ∈时,()0f x '>;当(),x e ∈+∞时,()0f x '<. 所以()()max ln 0ef x f e e e==-=. 设函数()2ln g x x x =-,则()21212x g x x x x-'=-=.当x ⎛∈ ⎝⎭时, ()0g x '<;当x ⎫∈+∞⎪⎪⎝⎭时,()0g x '>.所以()min 11111ln ln 2222222g x g ⎛==-=+⎝⎭.因为1ln 22>=, ()min 34g x >. 因为333sin ,444x ⎡⎤∈-⎢⎥⎣⎦,所以23ln sin 04x x x -->. 又()()max 0f x f x =≤,所以()23ln sin 4f x x x x <--. 22.解:(1)由{4cos 44sin x y αα==-+,得()22416x y ++=,即2280x y y ++=,则C 的极坐标方程为28sin 0ρρθ+=, 即8sin 0ρθ+=(或8sin ρθ=-). (2)因为l 的极坐标方程为340x y m +-=,所以l 的直角坐标方程为340x y m +-=.由(1)知,曲线C 表示圆心()0,4C -,半径为4的圆, 则C 到l 的距离1645m d +=<, 解得364m -<<,即m 的取值范围为()36,4-.23.解:(1)由()1||f x x a >+-,得31x a ->,则31x a -<-或31x a ->,即31x a <-或31x a >+,故不等式()1f x x a >+-的解集为()(),3131,a a -∞-++∞∪.(2)因为()()1332f x x a x a x a a >+----=≥, 所以()f x 的最小值为2a .因为()f x >x ∈R 2a <, 又180a +≥,所以[)918,2,4a ⎛⎤∈--⋃+∞ ⎥⎝⎦.。