低频减载
- 格式:doc
- 大小:789.00 KB
- 文档页数:49
第四节电力系统低频减载一、概述1)事故情况下,系统可能产生严重的有功缺额,因而导致系统频率大幅度下降。
2)所缺功率已经大大超过系统热备用容量,只能在系统频率降到某值以下,采取切除相应用户的办法来减少系统的有功缺额,使系统频率保持在事故允许的限额之内。
3)这种办法称为按频率自动减负荷。
中文简拼为“ZPJH”,英文为UFLS(Under Frequency Load Shedding)。
二、系统频率的事故限额(1)系统频率降低使厂用机械的出力大为下降,有时可能形成恶性循环,直至频率雪崩。
(2)系统频率降低使励磁机等的转速也相应降低,当励磁电流一定时,发送的无功功率会随着频率的降低而减少,可能造成系统稳定的破坏。
发生在局部的或某个厂的有功电源方面的事故可能演变成整个电力系统的灾难。
(3)电力系统频率变化对用户的不利影响主要表现在以下几个方面:①频率变化将引起异步电动机转速的变化,有这些电动机驱动的纺织、造纸等机械产品的质量将受到影响,甚至出现残、次品。
②系统频率降低将使电动机的转速和功率降低,导致传动机械的出力降低。
③国防部门和工业使用的测量、控制等电子设备将因为频率的波动而影响准确性和工作性能,频率过低时甚至无法工作。
“电力工业技术管理法规”中规定的频率偏差范围为±0.2~±0.5Hz。
(4)汽轮机对频率的限制。
频率下降会危及汽轮机叶片的安全。
因为一般汽轮机叶片的设计都要求其自然频率充分躲开它的额定转速及其倍率值。
系统频率下降时有可能因机械共振造成过大的振动应力而使叶片损伤。
容量在300MW 以上的大型汽轮发电机组对频率的变化尤为敏感。
例如我国进口的某350MW机组,频率为48.5Hz时,要求发瞬时信号,频率为47.5Hz时要求30s跳闸,频率为47Hz时,要求0s跳闸。
进口的某600MW机组,当频率降至47.5Hz时,要求9s跳闸。
(5)频率升高对大机组的影响。
电力系统因故障被解列成几个部分时,有的区域因有功严重缺额而造成频率下降,但有的区域却因有功过剩而造成频率升高,从而危及大机组的安全运行。
毕业设计开题报告电气工程及其自动化电力系统低频减载自动装置——控制电路一、前言电力系统的频率是电能质量的重要指标之一,在稳定状态下电力系统的频率一般是一个全系统统一的运行参数,在正常运行的情况下电力系统能够通过热备用容量来调节正常的有功缺额带来的频率的变化。
但是在系统出现事故的情况下,有可能产生严重的有功缺额,出现系统频率的大幅度下降。
在这个时候系统所缺少的有功功率已经远远大于系统的热备用容量,只能在系统的频率下降到某一预定值的时候,采取切除相应用户来减少系统的缺额,维持系统的频率稳定,这一方法我们称之为电力系统的低频减载。
1、低频减载的发展概况现代电力系统不断通过建设新型大规模变电站、大容量机组不断并入网内,使得电力系统的规模不断扩大,但同时也削弱了系统在大动下维持频率稳定的能力,极易发生恶性频率事故,导致全系统的瓦解。
国内外近些年来发生了一系列频率异常事故以及因此而导致大规模停电时事故,使得频率控制特别是极端事故下的频率控制成为近年来电力系统研究的热点问题之一。
如2007年欧盟“11。
4”停电事故和我国河南电网发生的“7。
1”事故等,故障分析表面都和频率调整有较大的联系。
面对这种严峻的局面,各国电力系统都把研究频率稳定作为十分重要的研究课题。
电力系统的频率稳定一般规划为电力系统的长期动态分析,主要研究电力系统受到扰动后同步稳定过程已基本结束时电力系统的频率动态行为。
与电压的稳定和功角的稳定相比,频率稳定的研究显的很不够。
事实上功角失稳、电压崩溃和频率崩漏的发生许多情况下都是同时存在、相互关联并且相互激发的。
显然不能只重视前两者而忽略第三者。
近些年多次惨痛的大停电事故表明电力系统的频率稳定已经成为相当严重问题。
[1]2、电力系统低频减载的意义《电力系统安全稳定导则》将电力系统的扰动分为三类:第一类为常见的普通故障,要求系统在承受此类故障时能保持稳定运行与正常供电;第二类故障为出现概率较低的较严重的故障,要求系统在承受此类故障时能保证稳定运行,但允许损失部分负荷;第三类故障为罕见的严重复杂故障,电力系统在承受此类故障时,如不能保持系统稳定运行,则必须防止系统崩溃并尽量减少负荷损失。
第二节低频减载及低压减载一、自动低频减载的基本原理这部分我们将要介绍自动低频减载的基本原理:低频减载又称自动按频率减负载,或称低周减载(简称为AFL),是保证电力系统安全稳定的重要措施之一。
当电力系统出现严重的有功功率缺额时,通过切除一定的非重要负载来减轻有功缺额的程度,使系统的频率保持在事故允许限额之内,保证重要负载的可靠供电。
图11-7 自动低频减载(负载)的工作原理基本级的作用是根据系统频率下降的程序,依次切除不重要的负载,以便限制系统频率继续下降。
例如,当系统频率降至f1时,第一级频率测量元件启动,经延时△t1后执行元件CA1动作,切除第一级负载△P1;当系统频率降至f2时,第二级频率测量元件启动,经延时△t2后元件CA2动作,切除第二级负载△P2。
如果系统频率继续下降,则基本级的n级负载有可能全部被切除。
当基本级全部或部分动作后,若系统频率长时间停留在较低水平上,则特殊级的频率测量元件fsp启动,以延时△tsp1后切除第一级负载△Psp1;若系统频率仍不能恢复到接近于fn,则将继续切除较重要的负载,直至特殊级的全部负载切除完。
基本级第一级的整定频率一般为47.5-48.5Hz,最后一级的整定频率一般为46-46.5 Hz,相领两级的整定频率差取0.4-0.5 Hz。
当某一地区电网内的全部自动按频率减负载装置均已动作时,系统频率应恢复到48-49.5 Hz以上。
特殊级的动作频率可取47.5~48.5Hz,动作时限可取15~25s,时限级差取5s左右。
1. AFL的基本要求:能在各种运行方式和功率缺额的情况下,有效地防止系统频率下降至危险点以下。
切除的负载应尽可能少,无超调和悬停现象。
应能保证解列后的各孤立子系统也不发生频率崩溃。
变电站的馈电线路故障或变压器跳闸造成失压,负载反馈电压的频率衰减时,低频减负载装置应可靠闭锁。
电力系统发生低频振荡时,不应误动。
电力系统受谐波干扰时,不应误动。
2. 对自动低频减载闭锁方式的分析:(1)时限闭锁方式。
第四节电力系统低频减载一、概述1)事故情况下,系统可能产生严重的有功缺额,因而导致系统频率大幅度下降。
2)所缺功率已经大大超过系统热备用容量,只能在系统频率降到某值以下,采取切除相应用户的办法来减少系统的有功缺额,使系统频率保持在事故允许的限额之内。
3)这种办法称为按频率自动减负荷。
中文简拼为“ZPJH”,英文为UFLS(Under Frequency Load Shedding)。
二、系统频率的事故限额(1)系统频率降低使厂用机械的出力大为下降,有时可能形成恶性循环,直至频率雪崩。
(2)系统频率降低使励磁机等的转速也相应降低,当励磁电流一定时,发送的无功功率会随着频率的降低而减少,可能造成系统稳定的破坏。
发生在局部的或某个厂的有功电源方面的事故可能演变成整个电力系统的灾难。
(3)电力系统频率变化对用户的不利影响主要表现在以下几个方面:①频率变化将引起异步电动机转速的变化,有这些电动机驱动的纺织、造纸等机械产品的质量将受到影响,甚至出现残、次品。
②系统频率降低将使电动机的转速和功率降低,导致传动机械的出力降低。
③国防部门和工业使用的测量、控制等电子设备将因为频率的波动而影响准确性和工作性能,频率过低时甚至无法工作。
“电力工业技术管理法规”中规定的频率偏差范围为±0.2~±0.5Hz。
(4)汽轮机对频率的限制。
频率下降会危及汽轮机叶片的安全。
因为一般汽轮机叶片的设计都要求其自然频率充分躲开它的额定转速及其倍率值。
系统频率下降时有可能因机械共振造成过大的振动应力而使叶片损伤。
容量在300MW 以上的大型汽轮发电机组对频率的变化尤为敏感。
例如我国进口的某350MW机组,频率为48.5Hz时,要求发瞬时信号,频率为47.5Hz时要求30s跳闸,频率为47Hz时,要求0s跳闸。
进口的某600MW机组,当频率降至47.5Hz时,要求9s跳闸。
(5)频率升高对大机组的影响。
电力系统因故障被解列成几个部分时,有的区域因有功严重缺额而造成频率下降,但有的区域却因有功过剩而造成频率升高,从而危及大机组的安全运行。
低频减载的工作原理以低频减载的工作原理为标题,本文将详细介绍低频减载的工作原理及其应用。
一、低频减载的概念低频减载是一种节能减排的技术,通过降低设备的负载率,减少设备的能耗,实现节能减排的目的。
低频减载技术广泛应用于工业生产、电力输配、交通运输等领域,取得了显著的节能效果。
二、低频减载的原理低频减载的工作原理主要包括两个方面:负载识别和负载调节。
1. 负载识别负载识别是低频减载的第一步,通过对设备的负载进行监测和分析,确定设备的负载率。
负载识别可以通过传感器、智能控制系统等设备实现。
传感器可以测量设备的电流、电压、功率因数等参数,从而得到设备的负载情况。
智能控制系统可以通过分析传感器采集的数据,对设备的负载进行识别和判断。
2. 负载调节负载调节是低频减载的核心步骤,通过对设备的负载进行调节,降低设备的负载率,实现节能减排的目的。
负载调节可以通过调整设备的工作模式、控制设备的运行速度等方式实现。
例如,在电机驱动系统中,可以通过调整电机的转速、降低电机的负载来实现低频减载。
在工业生产中,可以通过控制设备的开关、调整设备的工作时间来实现低频减载。
三、低频减载的应用低频减载广泛应用于各个领域,取得了显著的节能效果。
1. 工业生产在工业生产中,往往存在着负载波动的情况。
通过低频减载技术,可以对设备的负载进行调节,降低设备的能耗,提高生产效率。
例如,在制造业中,通过对设备的低频减载,可以降低设备的能耗,减少生产成本。
2. 电力输配电力输配系统中,负载的波动会导致电网的负荷不平衡,进而影响电力供应的稳定性。
通过低频减载技术,可以对电力输配系统中的负载进行调节,保持电网的负荷平衡,提高电力供应的可靠性。
3. 交通运输在交通运输领域,低频减载技术可以应用于电动车辆的控制系统中。
通过对电动车辆的负载进行调节,可以延长电池的使用寿命,提高电动车辆的续航里程,减少能源的消耗。
四、低频减载的优势低频减载技术具有以下优势:1. 节能减排:低频减载可以降低设备的能耗,减少能源的消耗,实现节能减排的目的。
电力系统低频减载校核和仿真计算一、引言电力系统低频减载校核和仿真计算是电力系统运行中非常重要的一项技术工作。
在电力系统中,低频减载是指额定工作状态下,电力系统在遭受外界干扰或内部故障后,系统运行稳定性的能力。
对电力系统进行低频减载校核和仿真计算是保证电力系统稳定运行的关键。
二、低频减载校核和仿真计算的意义和目的1. 保证电力系统的稳定性电力系统的稳定性对于保障电网运行和电力供应至关重要。
低频减载校核和仿真计算可以确定电力系统在面对外部扰动或内部故障时的稳定性,为电力系统稳定运行提供保障。
2. 优化电力系统运行通过对电力系统进行低频减载校核和仿真计算,可以发现系统存在的潜在问题和瓶颈,进而优化电力系统运行,提高电力系统的运行效率和可靠性。
3. 保证电网安全在电力系统运行中,低频减载校核和仿真计算可以有效地预防电网运行中可能出现的故障和事故,保证电网的安全运行。
三、基于matlab的电力系统低频减载校核和仿真计算的工作流程1. 收集系统参数和数据需要收集电力系统的参数和运行数据,包括电力系统的拓扑结构、负荷情况、发电机参数等。
2. 建立电力系统模型在matlab中,可以利用Simulink等工具,根据收集到的电力系统参数和数据,建立电力系统模型。
3. 进行低频减载校核和仿真计算利用matlab的仿真功能,进行电力系统的低频减载校核和仿真计算,分析系统在不同工况下的稳定性和可靠性。
4. 优化方案设计根据低频减载校核和仿真计算的结果,设计相应的优化方案,包括调整发电机参数、增加补偿设备等。
5. 验证和评估对优化方案进行验证和评估,确保方案的有效性和可行性。
四、个人观点和理解在进行基于matlab的电力系统低频减载校核和仿真计算时,需要充分理解电力系统的运行原理和稳定性分析方法,熟练掌握matlab工具在电力系统仿真计算中的应用技巧,才能够有效地开展相关工作。
需要加强对电力系统技术的学习和研究,不断改进和提高电力系统的运行稳定性和可靠性。
低频减载净负荷
低频减载净负荷是指在电力系统中,通过采用低频减载技术,减少系统负荷的一种操作方式。
低频减载是指在电力系统达到负荷峰值时,通过减少系统负荷,提高系统的供电能力。
低频减载净负荷是指在低频减载操作下的系统负荷值。
净负荷是指在一定时间范围内,系统实际需求的负荷值减去系统自身能够提供的负荷值。
低频减载净负荷的计算方法可以根据具体的系统情况而定,一般来说,可以通过监测系统的负荷曲线和电力供应能力来计算。
在低频减载操作中,通过减少系统负荷,可以提高系统的供电能力,减少电力系统的运行风险,保障系统的稳定运行。
低频减载净负荷是电力系统运行中的一个重要指标,对于电力系统的规划、运营和调度具有重要的意义。
通过合理地控制低频减载净负荷,可以提高电力系统的供电能力,提高系统的经济性和稳定性。
基于电力系统微机型低频减载装置原理与应用概述1. 引言1.1 背景介绍电力系统微机型低频减载装置是电力系统中一种重要的设备,可以有效减少系统运行中的低频振荡,提高系统的稳定性和可靠性。
在传统的电力系统中,由于负荷变化、故障等原因,系统中会出现低频振荡现象,导致电网运行不稳定,甚至出现系统失稳的情况。
为了解决这一问题,研究人员设计了微机型低频减载装置,通过控制电力系统的功率调节和频率响应,实现对低频振荡的有效抑制。
随着电力系统的发展,微机型低频减载装置在实际应用中得到了广泛的推广和应用。
这种装置具有快速响应、精确控制、高效降载等特点,可以有效改善电力系统的稳定性和可靠性,提高系统的运行效率和安全性。
深入研究微机型低频减载装置的原理和应用,对于提升电力系统的运行水平具有重要意义。
本文将对电力系统微机型低频减载装置的概述、原理、应用进行详细阐述,分析装置的性能特点和案例应用,最终得出结论并展望未来的发展方向。
通过本文的研究,可以更好地认识和理解微机型低频减载装置在电力系统中的作用和价值,为电力系统的稳定运行提供参考和指导。
1.2 研究意义电力系统是现代社会中至关重要的基础设施之一,其稳定性和可靠性对整个社会经济运行起着重要作用。
电力系统中存在着各种各样的故障和问题,如电网过载、频率波动等。
在这些问题中,低频减载是一种常见且严重的问题,它会导致电力系统中设备的过热和其他损坏,甚至造成系统的不稳定。
研究电力系统微机型低频减载装置具有重要的意义。
通过研究低频减载装置,可以有效地防止电力系统中出现低频减载问题,提高电网的稳定性和可靠性。
低频减载装置的研究可以促进电力系统的智能化和自动化,提高系统的运行效率和性能。
通过研究低频减载装置,可以为电力系统的安全运行提供更多的技术支持和保障,为实现电力系统的可持续发展做出贡献。
对电力系统微机型低频减载装置进行研究具有重要的意义和价值。
1.3 研究目的本研究的目的是探讨基于电力系统微机型低频减载装置的原理与应用,以提高电力系统的稳定性和可靠性。
第六章__电力系统自动低频减载及其他安全控制装置教程电力系统自动低频减载及其他安全控制装置是电力系统的重要组成部分,对于保障电力系统的安全运行起着至关重要的作用。
本章将重点介绍电力系统自动低频减载及其他安全控制装置的基本原理、功能以及应用。
一、电力系统自动低频减载装置低频减载是指在电力系统运行过程中发生频率异常低于额定值时,自动剔除部分负载以保证系统的稳定运行。
主要包括以下三个装置:1.动作频率调节装置(DFR):动作频率调节装置通过检测电力系统的频率并根据预定的频率范围进行动作,当频率低于阈值时,自动剔除部分负载以提高频率。
DFR能够有效地防止系统陷入不稳定状态,消除负荷崩溃现象。
2.电动机本动闭锁装置:电动机本动闭锁装置能够监测电动机运行时的频率,并在频率低于设定阈值时自动断开电源,以保护电动机免受过载和频率异常的损害。
3.自动联络机欠频停机装置:自动联络机欠频停机装置是用于电力系统的主发电机组的保护装置。
它能够检测系统频率并在频率低于设定值时自动停机,以保护主发电机组免受过负荷和频率异常的影响。
二、其他安全控制装置除了自动低频减载装置外,电力系统还需要其他一些安全控制装置来确保系统的可靠运行。
主要包括以下几个装置:1.过热保护装置:过热保护装置用于保护发电机、变压器和电缆等设备免受过热损坏。
它能够检测设备的温度,并在温度超过设定阈值时自动断开电源,以防止设备过热。
2.过电流保护装置:过电流保护装置是用于保护电力系统各个设备免受过电流损害的装置。
它能够检测电流并在电流超过设定阈值时自动断开电源,以保护设备。
3.漏电保护装置:漏电保护装置主要用于保护人身安全。
它能够检测设备中的漏电流,并在漏电流超过设定值时自动切断电源,以防止电击事故的发生。
4.短路保护装置:短路保护装置用于保护电力系统免受短路故障的损害。
它能够检测电流的变化并在出现短路时迅速切断电源,以保护设备和系统。
总之,电力系统自动低频减载及其他安全控制装置对于保障电力系统的安全运行具有重要的作用。
低频减载和一二次调频的关系
低频减载是指通过控制发送信号的能量或频率,来减少通信系统
的功耗的一种技术。
而一二次调频则是一种调制技术,通过改变信号
的频率,将基带信号调制到较高的频率带上传输。
二者有一定的关系,即低频减载可以在一定程度上影响一二次调
频的效果。
在低频减载技术中,通过降低发送信号的能量或频率,可
以减少功耗,从而降低通信系统的负载。
这样做有利于提高系统的效
率和性能。
同时,一二次调频技术也可以通过调制信号的频率,来减少系统
的负载。
通过调节信号的频率,可以使得信号在传输过程中,具备更
高的抗干扰能力和传输速度。
这样既可以减少系统的功耗,也可以提
高系统的可靠性和稳定性。
因此,可以说低频减载和一二次调频是相辅相成的。
低频减载可
以通过降低功耗,为一二次调频提供更好的工作条件,而一二次调频
则可以通过调制信号的频率,进一步降低系统的负载,提高通信的效
率和性能。
这种相互作用,有助于提高通信系统的整体质量和可靠性。
电力系统自动低频减载电力系统频率及有功功率的自动调节1. 电力系统自动调频1.1电力系统频率波动的原因频率是电能质量的重要指标之一,在稳态条件下,电力系统的频率是一个全系统一致的运行参数。
系统频率的波动直接原因是发电机输入功率&输出功率之间的不平衡,众所周知,单一电源的系统频率是同步发电机转速的函数:60np f =n ――电机的转速,r/min ; f ――电力系统的频率,HZ ; p ――电机的极对数;对于一般的火力发电机组,发电机的极对数为1,额定转速为3000 r/min ,亦即额定频率为50HZ 。
此时,系统频率又可以用同步发电机的角速度的函数来表示:π2w f =为了研究系统频率变换的规律,需要研究同步发电机的运动规律。
同步发电机组的运动方程为:dtdw JT T T e m =∆=-mT ――输入机械转距;e T ――输出电磁转距(忽略空载转距,即负荷转距);J ――发电机组的转动惯量;dtdw ――发电机组的角加速度;由于功率和力矩之间存在转换关系(P=wT )上式经过规格化处理和拉氏变换后,可得传递函数:w H P P S e m ∆=-2P――原动机功率(发电机的输入功率);mP――发电机电磁功率;eH――发电机组的惯性常数;S――角速度变化量;w由此可知,当原动机功率和发电机电磁功率之间产生不平衡的时候,必然引起发电机转速的变化,即引起系统频率的变化。
在众多发电机组并联运行的电力系统中,尽管原动机功率P不是恒定不变的,但它主要m取决与本台发电机的原动机和调速器的特性,因而是相对容易控制的因素;而发电机电磁功率P的变化则不仅与本台发电机的电磁特性有关,更取决于电力系统的负荷特性,是难以控e制的因素,而这正是引起电力系统频率波动的主要原因。
1.2调频的必要性电力系统的频率变动对用户、发电厂和电力系统本身都会产生不良的影响,所以必须保持频率在额定值50hz上下,且其偏移量不能超过一定范围。
低频减载电流闭锁定值
低频减载电流闭锁定值是保护装置在电力系统低频减载过程中的一个参数。
当系统出现异常时,保护装置会根据设定的低频减载电流闭锁定值来判断是否需要进行低频减载操作。
以下是关于低频减载电流闭锁定值的一些解释:
1.低频减载:当电力系统负荷过大或出现异常时,为防止系统崩溃,需要通过降低负荷来保证系统的稳定运行。
低频减载是一种常用的负荷控制手段,通过控制发电机的输出功率来实现负荷的降低。
2.低频减载电流闭锁定值:低频减载电流闭锁定值是保护装置在低频减载过程中判断是否需要进行负荷降低的一个参数。
当系统中的电流达到这个设定值时,保护装置会自动进行低频减载操作,以保证系统的稳定运行。
3.设定原则:低频减载电流闭锁定值的设定需要综合考虑电力系统的负荷情况、系统稳定性、设备承受能力等因素。
一般来说,低频减载电流闭锁定值应设定在系统正常运行时电流的110%-120%之间,以确保系统在异常情况下能够及时进行负荷降低,避免系统崩溃。
4.应用场景:低频减载电流闭锁定值在电力系统的保护装置中具有重要作用,特别是在系统负荷过大或出现异常时,可以有效保证系统的稳定运行。
在实际应用中,需要根据具体的电力系统情况来合理设定低频减载电流闭锁定值。