数列的通项与求和
- 格式:docx
- 大小:37.00 KB
- 文档页数:3
常见数列通项公式的求法类型一:公式法1(或定义法)1()n n a a p p +-=为常数1()n na q q a +=为非零常数 例1. 已知数列{}n a 满足11a =,12n n a a +-=*()n N ∈,求数列{}n a 的通项公式。
例2.已知数列{}n a 满足12a =,13n na a += *()n N ∈,求数列{}n a 的通项公式。
变式练习:1.已知数列{}n a 满足12a =,110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。
2.已知数列{}n a 满足16a =-,13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。
3. 已知数列{}n a 满足11a =,212=a ,11112n n na a a -++=(2)n ≥,求数列{}n a 的通项公式。
4.已知数列{}n a 满足11a =,13n n a a +=*()n N ∈,求数列{}n a 的通项公式。
类型二:(累加法))(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解例:已知数列{}n a 满足121n n a a n +=++*()n N ∈,11a =,求数列{}n a 的通项公式。
变式练习:1.已知数列{}n a 满足211=a ,n a a n n 21+=+,*()n N ∈求数列{}n a 的通项公式。
2.已知数列{}n a 满足11a =,11(1)n n a a n n -=+-,(2)n ≥,求数列{}n a 的通项公式。
3.已知数列{}n a 满足1231nn n a a +=+⨯+, *()n N ∈,13a =,求数列{}n a 的通项公式。
4.已知数列{}n a 中,12a =,11ln(1)n n a a n+=++,求数列{}n a 的通项公式。
数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型、S n 是数列{a n }的前n 项的和【注意】漏检验n 的值(如n 1的情况【例1】.(1)已知正数数列{a n }的前n 项的和为S n, 且对任意的正整数n 满足2足 a n1 ,求数列{%}的 通项公式。
(2)数列{引中,为1对所有的正整数n 都有 a 〔 a ? a 3L a 。
n 2 ,求数列{a n }的通项公式【作业一】1-1.数列 a n 满足 a1 3a2 32% L3n1an?(n N *),3求数列a n 的通项公式.a 一(二).累加、累乘型如a namf(n),或f(n)a n【方法】:S 1 (n 1) S n S ni (n 2)S n S ni”代入消兀消a n o型一:I a n a nif (n),用累加法求通项公式(推导等差数列通项公式的方法)【方法】a n a n 1 f(n),an 1 a n 2f(nD,a 2 a i f (2) n 2,从而 a n a i f (n) f(n 1) L f (2),检验 n 1 的情 况 型二:|勉f(n),用累乘法求通项公式(推导等比an 1数列通项公式的方法)【方法】n 2,鬼业L 色f(n) f(n 1) L f(2)a n 1 a n 2a即冬f(n) f(n 1) L f(2),检验n 1的情 q况【小结】一般情况下,“累加法”(“累乘法”)里只有 n 1个等式相加(相乘).11【例 2】.(1)已知 a12 , an an 1 n^W(n 2),求a n .n2 (2)已知数列a n 满足an1 =an,且a1 - ?n 23求an .【例3】.(2009广东高考文数)在数列{a n}中,, 一1、n 1 b冬…a 1,a ni (1n)a n "2厂.设b n n,求数列{b n}的通项公式n 1 n (c,p为非零常数,c 1,p 1)【方法】构造a n 1 x c(a n x),即a n 1 ca n (c 1)x ,故(c 1)x p,即{a n 卫}为 c 1等比数列【例4】.a1 1 , a n 1 2a n 3,求数列{a n}的通项公式。
数列专题1:根据递推关系求数列的通项公式根据递推关系求数列的通项公式主要有如下几种类型一、nS是数列{}n a的前n项的和11(1)(2)nn nS naS S n-=⎧=⎨-≥⎩【方法】:“1n nS S--”代入消元消n a。
【注意】漏检验n的值(如1n=的情况【例1】.(1)已知正数数列{}na的前n项的和为nS,且对任意的正整数n满足1na=+,求数列{}na的通项公式。
(2)数列{}na中,11a=对所有的正整数n都有2123na a a a n⋅⋅⋅⋅=L,求数列{}n a的通项公式【作业一】1-1.数列{}na满足21*123333()3nnna a a a n N-++++=∈L,求数列{}na的通项公式.(二).累加、累乘型如1()n na a f n--=,1()nnaf na-=导等差数列通项公式的方法)【方法】1()n n a a f n --=, 12(1)n n a a f n ---=-, ……,21(2)a a f -=2n ≥,从而1()(1)(2)n a a f n f n f -=+-++L ,检验1n=的情况()f n =,用累乘法求通项公式(推导等比数列通项公式的方法)【方法】2n ≥,12121()(1)(2)n n n n a a a f n f n f a a a ---⋅⋅⋅=⋅-⋅⋅L L即1()(1)(2)n a f n f n f a =⋅-⋅⋅L ,检验1n =的情况【小结】一般情况下,“累加法”(“累乘法”)里只有1n -个等式相加(相乘).【例2】. (1) 已知211=a ,)2(1121≥-+=-n n a a n n,求n a .(2)已知数列{}n a 满足12n n n aa n +=+,且321=a ,求n a .【例3】.(2009广东高考文数)在数列{}n a 中,11111,(1)2n n n n a a a n ++==++.设n na b n =,求数列{}n b 的通项公式(三).待定系数法1n n a ca p +=+ (,1,1c,p c p ≠≠为非零常数)【方法】构造1()n n a x c a x ++=+,即1(1)n n a ca c x +=+-,故(1)c x p -=, 即{}1n p a c +-为等比数列【例4】. 11a =,123n n a a +=+,求数列{}n a 的通项公式。
数列的通项和求和公式推导数学中的数列是由一系列按照规律排列的数所组成的序列。
对于给定的数列,我们通常希望能够找到一个通项公式来表示数列的第n项,同时也希望能够求解数列的前n项和。
在本文中,我们将讨论如何推导数列的通项公式和求和公式。
一、等差等差数列是最常见的数列之一,它的特点是每一项与前一项之间的差值都相等。
假设等差数列的首项为a1,公差为d,第n项为an。
1. 推导通项公式我们可以观察到,等差数列每一项与首项之间存在一个公差的倍数关系,即:an = a1 + (n-1)d这个等式可以通过数学归纳法推导得出。
假设等式对于n=k成立,即:ak = a1 + (k-1)d那么对于n=k+1,我们有:ak+1 = a1 + kd通过对上述两个等式进行代换,得到:ak+1 = (a1 + (k-1)d) + d = a1 + kd由此可见,当等式对于n=k成立时,等式对于n=k+1也成立。
因此,等差数列的通项公式为:an = a1 + (n-1)d2. 推导求和公式为了推导等差数列的求和公式,我们可以考虑将数列按照首项与末项、次首项与次末项等进行配对求和。
我们可以观察到这些配对的和都相等,都等于等差数列的中间项和。
设等差数列的首项为a1,末项为an,共有n项。
那么有:a1 + an = a1 + (a1 + (n-1)d) = 2a1 + (n-1)da2 + an-1 = (a1 + d) + (a1 + (n-2)d) = 2a1 + (n-1)d...ak + an-k+1 = (a1 + (k-1)d) + (a1 + (n-k)d) = 2a1 + (n-1)d将上述k个等式相加,得到:2(a1 + a2 + ... + an-k+1) + (n-k)(d + d + ... + d) = k(2a1 + (n-1)d)化简后可得:2S + (n-k)kd = k(2a1 + (n-1)d)其中,S表示等差数列的前n项和。
数列的通项与求和计算方法总结(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数列的通项与求和计算方法总结第一章 数列通项公式的十种求法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n na n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。
评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2nna 是等差数列,再直接利用等差数列的通项公式求出31(1)22n na n =+-,进而求出数列{}n a 的通项公式。
二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
数列的通项与求和数列是数学中一个重要的概念,广泛应用于各个领域中。
在数列中,通项与求和是两个重要的概念。
本文将详细介绍数列的通项与求和的概念、性质和计算方法。
一、数列的通项数列的通项是指数列中第n个数的一般表示式。
在数列中,通项通常使用公式或递推关系给出。
1.1 公式求通项对于一些特殊的数列,可以通过观察数列中数的规律来得到通项的公式。
常见的数列包括等差数列和等比数列。
1.1.1 等差数列如果数列中的相邻两项之差固定为常数d,则该数列为等差数列。
等差数列的通项公式可以通过以下公式计算得到:an = a1 + (n - 1)d其中,an表示等差数列的第n项,a1表示等差数列的首项,d表示等差数列的公差,n表示项数。
1.1.2 等比数列如果数列中的相邻两项的比固定为常数q,则该数列为等比数列。
等比数列的通项公式可以通过以下公式计算得到:an = a1 * q^(n - 1)其中,an表示等比数列的第n项,a1表示等比数列的首项,q表示等比数列的公比,n表示项数。
1.2 递推关系求通项对于一些数列,无法通过观察数列中数的规律找到通项的公式,可以通过递推关系来得到通项。
递推关系是指数列中的每一项与前面一项之间的关系。
递推关系通过以下公式表示:an = f(an-1)其中,an表示数列的第n项,an-1表示数列的第n-1项,f表示递推关系。
二、数列的求和数列的求和是指将数列中的一定项数的数相加的运算。
数列的求和可以使用两种方法进行计算,即通项法和递推法。
2.1 通项法求和通项法是指根据数列的通项公式,将数列的每一项相加来计算数列的求和。
使用通项法计算数列的求和需要明确求和的起始项和结束项。
例如,对于等差数列an = 2n + 1,求前10项的和,可以使用通项法:Sn = (a1 + an) * n / 2其中,Sn表示数列的前n项和,a1表示数列的首项,an表示数列的第n项,n表示项数。
2.2 递推法求和递推法是指通过数列的递推关系,将数列的前一项和当前项相加来计算数列的求和。
一、数列通项公式的求法(1)已知数列的前n 项和n S ,求通项n a ; (2)数学归纳法:先猜后证;(3)叠加法(迭加法):112211()()()n n n n n a a a a a a a a ---=-+-++-+L ;叠乘法(迭乘法):1223322111a a a a a a a a a a a a n n n n n n n ⋅⋅⋅=-----ΛΛ. 【叠加法主要应用于数列{}n a 满足1()n n a a f n +=+,其中()f n 是等差数列或等比数列的条件下,可把这个式子变成1()n n a a f n +-=,代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出n a ,从而求出n s 】(4)构造法(待定系数法):形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列;【用构造法求数列的通项或前n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前n 项和.】 (5)涉及递推公式的问题,常借助于“迭代法”解决.【根据递推公式求通项公式的常见类型】 ①1+1=,()n n a a a a f n =+型,其中()f n 是可以和数列,用累加法求通项公式,即1思路(叠加法)1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得111()n n i a a f n -=-=∑,即111()n n i a a f n -==+∑例题1:已知11a =,1n n a a n -=+,求n a解:∵1n n a a n -=+ ∴1n n a a n --=,依次类推有:122321122n n n n a a n a a n a a -----=--=--=、、…∴将各式叠加并整理得12n n i a a n =-=∑,121(1)2n nn i i n n a a n n ==+=+==∑∑ 思路(转化法)1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n na a f n p p p ---=+,我们令n n n a b p =,那么问题就可以转化为类型一进行求解了.例题: 已知12a =,1142n n n a a ++=+,求n a解:∵1142n n n a a ++=+ ∴142nn n a a -=+,则111442nn n nn a a --⎛⎫=+ ⎪⎝⎭, ∵令4n n na b =,则112nn n b b -⎛⎫-= ⎪⎝⎭,依此类推有11212n n n b b ---⎛⎫-= ⎪⎝⎭、22312n n n b b ---⎛⎫-= ⎪⎝⎭、…、22112b b ⎛⎫-= ⎪⎝⎭∴各式叠加得1212nnn i b b =⎛⎫-= ⎪⎝⎭∑,即122111*********n n n n n n n n i i i b b ===⎛⎫⎛⎫⎛⎫⎛⎫=+=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑ ∴1441422n nnn n n n a b ⎡⎤⎛⎫=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦②1+1=,()n n a a a a f n =⋅型,其中()f n 是可以求积数列,用累乘法求通项公式,即1(2)(1)f f a思路(叠乘法):1(1)n n a f n a -=-,依次类推有:12(2)n n a f n a --=-、23(3)n n a f n a --=-、…、21(1)af a =, 将各式叠乘并整理得1(1)(2)(3)na f f f a =⋅⋅⋅…(2)(1)f n f n ⋅-⋅-,即(1)(2)(3)n a f f f =⋅⋅⋅…1(2)(1)f n f n a ⋅-⋅-⋅例题:已知11a =,111n n n a a n --=+,求n a . 解:∵111n n n a a n --=+ ∴111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a = ∵11a =∴将各式叠乘并整理得112311n a n n n a n n n ---=⋅⋅⋅+-…2143⋅⋅,即12311n n n n a n n n ---=⋅⋅⋅+- (212)43(1)n n ⋅⋅=+ ③1+1=,n n a a a pa q =+型(其中p q 、是常数),可以采用待定系数法、换元法求通项公式,即1()11n n q q a p a p p +-=---,设1n n qba p=--,则1n n b pb +=.利用②的方法求出n b 进而求出n a 当1p =时,数列{}n a 是等差数列;当0,0p q ≠=时,数列{}n a 是等比数列; 当0p ≠且1,0p q ≠≠时,可以将递推关系转化为111n n q q a p a p p +⎛⎫+=+ ⎪--⎝⎭,则数列1nq a p ⎧⎫+⎨⎬-⎩⎭是以11qa p +-为首项,p 为公比的等比数列.思路(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1qp μ=-,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1111n n q q a a p p p -⎛⎫+=+ ⎪--⎝⎭,即1111n nq qa a p p p -⎛⎫=++ ⎪--⎝⎭ 例题:已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式 解:设()12n n a a μμ++=+,即3μ=∵11a =∴数列{}3n a +是以134a +=为首项、2为公比的等比数列∴113422n n n a -++=⋅=,即123n n a +=-④1+1=,n n n a a a pa q =+型,其中p q 、是常数且0,1q q ≠≠,111n n n n a a p q q q q ++=⋅+,设n n n a b q =,则11n np b b q q+=⋅+思路(构造法):11n n n a pa rq --=+,设11n n n n a a q q μλμ--⎛⎫+=+ ⎪⎝⎭,则()11n n q p q rq λμλ-=⎧⎪⎨-=⎪⎩,从而解得p q r p q λμ⎧=⎪⎪⎨⎪=⎪-⎩那么n na r qp q ⎧⎫+⎨⎬-⎩⎭是以1a r q p q +-为首项,p q 为公比的等比数列 例题:已知11a =,112n n n a a --=-+,求n a 。
数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。
求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。
一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。
例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。
1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。
二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。
例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。
2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。
例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。
3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。
4.1公式和差公式是指通过首项、末项和项数计算公差的公式。
已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。
数列的通项与求和
数列是数学中的重要概念,广泛应用于各个领域。
在数列中,每一
个数字都有其特定的位置和规律。
通项与求和是数列中两个基本问题,本文将围绕这两个问题展开探讨。
一、数列的通项
数列的通项是指数列中任意一项与其位置之间的关系式。
通项可以
用来计算数列中任意一项的值,从而更好地理解数列的规律和特点。
下面将以等差数列和等比数列为例,介绍数列的通项计算方法。
1. 等差数列
等差数列的通项公式为:an = a1 + (n-1)d,其中an表示第n项,a1
表示首项,d表示公差。
首先确定首项和公差的值,然后代入公式即可
计算出任意一项的值。
例如,对于等差数列1, 3, 5, 7, 9,首项a1=1,
公差d=2,第n项的值可以通过an = 1 + (n-1)x2求得。
2. 等比数列
等比数列的通项公式为:an = a1 x r^(n-1),其中an表示第n项,a1
表示首项,r表示公比。
首先确定首项和公比的值,然后代入公式即可
计算出任意一项的值。
例如,对于等比数列2, 4, 8, 16, 32,首项a1=2,公比r=2,第n项的值可以通过an = 2 x 2^(n-1)求得。
二、数列的求和
数列的求和是指将数列中所有项的值相加得到的结果。
通过求和,
可以获得数列的总和,从而更好地了解数列的变化和特征。
下面将以
等差数列和等比数列为例,介绍数列的求和计算方法。
1. 等差数列求和
等差数列的求和公式为:Sn = (n/2)(a1 + an),其中Sn表示前n项和,n表示项数,a1表示首项,an表示第n项。
根据公式,首先确定项数、首项和最后一项的值,然后代入公式即可计算出数列的总和。
例如,
对于等差数列1, 3, 5, 7, 9,共有5项,首项a1=1,最后一项an=9,根
据公式Sn = (5/2)(1 + 9),可以得到数列的总和为25。
2. 等比数列求和
等比数列的求和公式为:Sn = (a1(1-r^n))/(1-r),其中Sn表示前n项和,a1表示首项,r表示公比。
根据公式,首先确定首项、公比和项数
的值,然后代入公式即可计算出数列的总和。
例如,对于等比数列2, 4, 8, 16, 32,共有5项,首项a1=2,公比r=2,根据公式Sn = (2(1-
2^5))/(1-2),可以得到数列的总和为62。
通过数列的通项与求和的计算,我们可以更好地理解数列的规律和
特点。
在实际应用中,数列的通项与求和被广泛应用于金融、工程等
领域中的问题求解,对于对数列的探索和分析也有着重要的意义。
总结起来,数列的通项与求和是数学中的重要问题。
通过通项公式,我们能够计算数列中任意一项的值;而求和公式则帮助我们得到数列
的总和。
掌握这两个问题的计算方法,有助于我们更好地理解数列的
规律和变化,应用于实际问题的解决中。
希望通过本文的介绍,读者能够对数列的通项与求和有一个更深入的理解和掌握。