人教版高二第一学期期末考试数学(文)试题-含答案
- 格式:doc
- 大小:189.00 KB
- 文档页数:3
2020-2021学年高二(上)期末数学试卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设集合A={x|(x−7)(x+12)<0},B={x|x+6>0},则A∩B=( )A.{x|−6<x<12}B.{x|−6<x<7}C.{x|x>−12}D.{x|6<x<7}2. “四边形ABCD是菱形”是“四边形ABCD的对角线互相垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3. 双曲线x2−4y2=−8的渐近线方程为()A.y=±2xB.y=±12x C.y=±√2x D.y=±√22x4. “一尺之棰,日取其半,万世不竭”这句话出自《庄子•天下篇》,其意思为“一根一尺长的木棰,每天截取其一半,永远都取不完”.设第一天这根木棰被截取一半剩下a1尺,第二天被截取剩下的一半剩下a2尺,…,第五天被截取剩下的一半剩下a5尺,则a1+a2a5=()A.18B.20C.22D.245. 已知抛物线C的焦点到准线的距离大于2,则C的方程可能为()A.y2=4xB.y2=−3xC.x2=6yD.y=−8x26. 如图,在正方体ABCD−A1B1C1D1中,E为BB1的中点,若O为底面A1B1C1D1的中心,则异面直线C1E与AO所成角的余弦值为()A.√3015B.√3030C.815D.2√3015|PQ|=|PF2|,则动点Q的轨迹方程为( )A.(x+2)2+y2=34B.(x+2)2+y2=68C.(x−2)2+y2=34D.(x−2)2+y2=688. 如图,某人在一条水平公路旁的山顶P处测得小车在A处的俯角为30∘,该小车在公路上由东向西匀速行驶7.5分钟后,到达B处,此时测得俯角为45∘.已知小车的速度是20km/ℎ,且cos∠AOB=−3√38,则此山的高PO=()A.1kmB.√22km C.√3km D.√2km二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.)9. 设命题p:∀n∈N,6n+7为质数,则()A.¬p为假命题B.¬p:∃n∈N,6n+7不是质数C.¬p为真命题D.¬p:∀n∈N,6n+7不是质数10. 设S n是等差数列{a n}的前n项和,且a1=2,a3=8,则()A.a5=12B.公差d=3C.S2n=n(6n+1)D.数列{1a n a n+1}的前n项和为n6n+411. 已知a>b>0,且a+3b=1,则()A.ab的最大值为112B.ab的最小值为112C.1 a +3b的最小值为16 D.a2+15b2的最小值为58轴上,直线AP 与直线y =−3交于点C ,直线BP 与直线y =−3交于点D .设直线AP 的斜率为k ,则满足|CD|=36的k 的值可能为( )A.1B.−17C.110D.−7+2√109三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.)13. 设向量AB →=(1,2,4),CD →=(m,1,1),AB →⊥CD →,则实数m =________.14. 若双曲线x 26−y 2m =1的虚轴长为6√2,则该双曲线的离心率为________.15. 在△ABC 中,若B =π3,tan C =2√3,AC =2,则AB =________.16. 已知点P (m,n )是抛物线x 2=−8y 上一动点,则√m 2+n 2+4n +4+√m 2+n 2−4m +2n +5的最小值为________.四、解答题.本大题共6小题,共70分,解答应写出文字说期、证时过程或演算步骤.)17. △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .已知b 2+c 2−a 2=58bc ,sin C =2sin B .(1)求cos A ;(2)若△ABC 的周长为6+√15,求△ABC 的面积.18. 如图,在直三棱柱ABC −A 1B 1C 1中,AC ⊥BC ,AC =AA 1=2BC ,E ,F 分别为侧棱BB 1,CC 1的中点.(1)证明:BF//平面A 1C 1E ;(2)求B1C与平面A1C1E所成角的正弦值.19. 已知数列{a n}的首项为4.(1)若数列{a n−2n}是等差数列,且公差为2,求{a n}的通项公式;(2)在①a3−a2=48且a2>0,②a3=64且a4>0,③a2021=16a2a2017这三个条件中任选一个,补充在下面的问题中并解答.问题:若{a n}是等比数列,________,求数列{(3n−1)a n}的前n项和S n.注:如果选择多个条件分别解答,则按第一个解答计分.20. 如图,平面ABCDE⊥平面CEFG,四边形CEFG为正方形,点B在正方形ACDE的外部,且AB=BC=√5,AC=4.(1)证明:AD⊥CF;(2)求平面BFG与平面ABCDE所成锐二面角的余弦值.−y2=1有相同的焦点F.21. 已知抛物线C:y2=2px(p>0)与双曲线x23(1)求C的方程,并求其准线l的方程;(2)如图,过F且斜率存在的直线与C交于不同的两点A(x1,y1),B(x2,y2),直线OA与准线l交于点N,过点A作l的垂线,垂足为M.证明:y1y2为定值,且四边形AMNB为梯形.22. 已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为2√55,且焦距为8.(1)求C的方程;(2)设直线l的倾斜角为π3,且与C交于A,B两点,点O为坐标原点,求△AOB面积的最大值.参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】可求出集合A,B,然后进行交集的运算即可.2.【答案】A【解析】利用充分条件和必要条件的定义,结合平面几何知识进行判断,即可得到答案.3.【答案】B【解析】根据题意,将双曲线的方程变形为标准方程,分析可得其焦点位置以及a、b的值,利用双曲线的渐近线方程计算可得答案.4.【答案】D【解析】设这根木棰的长度为1尺,分别计算每一次截取的量可得剩余的量,可得答案.5.【答案】C【解析】利用已知条件推出p>2,然后判断选项的正误即可.6.【答案】D【解析】建立空间直角坐标系,利用向量夹角计算公式即可得出.7.【答案】B【解析】由椭圆的方程求出a,b,c的值,由此可得|PF1|+|PF2|=2a=2√17,再由已知可|QF1|=2√17,进而可以求解.8.【答案】设OP=x,由题意可得:Rt△OBP中,∠PBO=45∘;在Rt△OAP中,∠PAO=30∘,即可得出OB,OA.AB=×20=2.5.在△OAB中,利用余弦定理即可得出.二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.【答案】B,C【解析】先判断命题p为真命题,然后利用含有一个量词的命题的否得到¬p,利用命题的否定与原命题的真假相反得到答案.10.【答案】B,C,D【解析】本题先设等差数列{a n}的公差为d,根据已知条件即可计算出d的值,判断选项B,然后根据通项公式计算出a5的值,判断选项A,再根据等差数列的求和公式计算出S2n的表达式,判断选项C,最后计算出等差数列{a n}的通项公式,进一步计算出数列{}的通项公式,运用裂项相消法计算出数列{}的前n项和,判断选项D.11.【答案】A,C,D【解析】根据基本不等式的性质分别判断A,B,C,根据二次函数的性质判断D即可.12.【答案】A,D【解析】设出点P的坐标,求出直线PA,PB的斜率的乘积,然后再设出直线PA,PB的方程,进而可以求出点C,D的横坐标,进而可以求出|CD|,即可求解.三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.【答案】−6【解析】由题意利用两个向量垂直的性质,两个向量的数量积公式,计算求得m的值.14.【答案】215.【答案】8√1313【解析】由已知利用同角三角函数基本关系式可求sin C的值,进而根据正弦定理即可求解AB的值.16.【答案】3【解析】抛物线的准线为y=2,焦点F坐标为(0, −2),表示点P(m, n)与点F(0, −2)的距离与点P(m, n)与点A(2, −1)的距离之和,由抛物线的定义和两点之间线段最短可得最小值,进而可得结论.四、解答题.本大题共6小题,共70分,解答应写出文字说期、证时过程或演算步骤.17.【答案】解:(1)∵b2+c2−a2=58bc,∴cos A=b2+c2−a22bc =58bc2bc=516.(2)∵sin C=2sin B,∴c=2b.由余弦定理,得a2=b2+c2−2bc cos A=154b2,∴a=√152b.∵△ABC的周长为6+√15,∴3b+√152b=6+√15,解得b=2,∴S△ABC=12bc sin A=12×b×2b√1−(516)2=12×2×4×√23116=√2314.【解析】(1)由已知利用余弦定理即可求解cos A的值.(2)由已知利用正弦定理化简可得c=2b,由余弦定理得a=√152b,根据△ABC的周长,可求b的值,进而利用三角形的面积公式即可计算得解.18.(1)证明:在三棱柱ABC −A 1B 1C 1中,∵ BB 1=CC 1,BB 1//CC 1,E ,F 分别为侧棱BB 1,CC 1的中点, ∴ BE//FC 1,BE =FC 1,∴ 四边形BEC 1F 是平行四边形,∴ BF//EC 1 .∵ C 1E ⊂平面A 1C 1E ,BF ⊄平面A 1C 1E , ∴ BF//平面A 1C 1E .(2)解:以C 为坐标原点,CA →的方向为x 轴的正方向, 建立如图所示的空间直角坐标系C −xyz ,设BC =1,则A 1(2,0,2),C 1(0,0,2),E(0,1,1),B 1(0,1,2),C(0,0,0), C 1A 1→=(2,0,0),EC 1→=(0,−1,1) ,CB 1→=(0,1,2) . 设平面A 1C 1E 的法向量为n →=(x,y,z ),则{n →⋅C 1A 1→=2x =0,n →⋅EC 1→=−y +z =0,令y =1,得n →=(0,1,1),则sin <CB 1→⋅n →>=|cos <CB 1→⋅n →>|=3√5⋅√2=3√1010, 故B 1C 与平面A 1C 1E 所成角的正弦值为3√1010. 【解析】(1)推导出BE C 1F ,从而四边形BEC 1F 是平行四边形,进而BF // EC 1,由此能证明BF // 平面A 1C 1E .(2)以C 为原点,CA 为x 轴,CB 为y 轴,CC 1为z 轴,建立空间直角坐标系,利用向量法能求出B 1C 与平面A 1C 1E 所成角的正弦值. 19.【答案】解:(1)因为a 1=4,所以a n−2n=2+2(n−1)=2n,所以a n=2n+2n.(2)选①:a3−a2=48且a2>0;由题意,设数列{a n}的公比为q.由a3−a2=48,得4q2−4q=48,解得q=4或q=−3,又a2>0,所以q=4.所以a n=4×4n−1=4n,所以(3n−1)a n=(3n−1)4n,所以S n=2×4+5×42+⋯+(3n−1)×4n,4S n=2×42+5×43+⋯+(3n−1)×4n+1,两式相减,得−3S n=8+3(42+43+⋯+4n)−(3n−1)4n+1,+(1−3n)4n+1=(2−3n)4n+1−8,即−3S n=8+3×42−4n+11−4.所以S n=(3n−2)4n+1+83选②:a3=64且a4>0;由题意,设数列{a n}的公比为q.由a3=64,得4q2=64,解得q=±4,又a2>0,所以q=4.所以a n=4×4n−1=4n,所以(3n−1)a n=(3n−1)4n.所以S n=2×4+5×42+⋯+(3n−1)×4n,4S n=2×42+5×43+⋯+(3n−1)×4n+1,两式相减,得−3S n=8+3(42+43+⋯+4n)−(3n−1)4n+1,+(1−3n)4n+1=(2−3n)4n+1−8,即−3S n=8+3×42−4n+11−4所以S n=(3n−2)4n+1+8.3选③:a2021=16a2a2017;由题意,设数列{a n}的公比为q.由a2021=16a2a2017,得a2021=16a1a2018=64a2018,则q3=64,解得q=4,所以a n=4×4n−1=4n,所以(3n−1)a n=(3n−1)4n.所以S n=2×4+5×42+⋯+(3n−1)×4n,4S n=2×42+5×43+⋯+(3n−1)×4n+1,两式相减,得−3S n=8+3(42+43+⋯+4n)−(3n−1)4n+1,+(1−3n)4n+1=(2−3n)4n+1−8,即−3S n=8+3×42−4n+11−4.所以S n=(3n−2)4n+1+83(1)直接利用已知条件求出数列的通项公式,再得到{a n }的通项公式;(2)根据条件分别求出数列的通项公式,然后利用错位相减法,求出数列{(3n −1)a n }的前n 项和.20.【答案】(1)证明:∵ 四边形ACDE 为正方形,∴ AD ⊥CE .∵ 平面ABCDE ⊥平面CEFG ,平面ABCDE ∩平面CEFG =CE ,∴ AD ⊥平面FECG .又CF ⊂平面FECG ,∴ AD ⊥CF .(2)解:以C 为坐标原点,CD →的方向为x 轴的正方向,建立如图所示的空间直角坐标系C −xyz .∵ AB =BC =√5,AC =4, ∴ 点B 到AC 的距离为1,∴ G(0,0,4√2),F(4,4,4√2),B (−1,2,0),GF →=(4,4,0),BG →=(1,−2,4√2).设平面BFG 的一个法向量为n →=(x,y,z ),则n →⋅GF →=n →⋅BG →=0,即4x +4y =x −2y +4√2z =0,令y =4√2,得n →=(−4√2,4√2,3).取m →=(0,0,1)为平面ABCDE 的一个法向量,∴ cos ⟨m →,n →⟩=m →⋅n →|m →||n →|=3√73=3√7373, ∴ 平面BFG 与平面ABCDE 所成锐二面角的余弦值为3√7373.【解析】(1)由四边形ACDE 为正方形,可得AD ⊥CE ,再由面面垂直的性质可得AD ⊥平面FECG ,从而得到AD ⊥CF ;(2)以E 为坐标原点,建立空间直角坐标系A −xyz ,利用向量法能求出平面BFG 与平面ABCDE 所成锐二面角的余弦值.21.【答案】(1)解:∵ 双曲线x 23−y 2=1的右焦点为F (2,0),∴ p 2=2, 解得p =4,∴ C 的方程为y 2=8x ,其准线l 的方程为x =−2.(2)证明:由题意可知,直线AB 过点F 且斜率存在,设直线AB 的方程为y =k (x −2)(k ≠0),联立{y =k (x −2),y 2=8x,整理,得ky 2−8y −16k =0,则Δ=64+64k 2>0恒成立,y 1y 2=−16k k =−16,故y 1y 2为定值.由题意,得点N 在准线l 上,设点N (−2,m ),由k OA =k ON ,得y 1x 1=m −2, 又∵ y 2=−16y 1,∴ m =−2y 1x 1=−2y 1y 128=−16y 1=y 2,∴ BN//x 轴//AM .又∵ x 1≠x 2,|AM|≠|BN|,∴ 四边形AMNB 为梯形.【解析】(1)根据题意可得双曲线的右焦点为(2, 0),则,解得p ,进而可得C 的方程和准线l 的方程;(2)设直线AB 方程为y =k(x −2)(k ≠0),联立直线AB 与抛物线的方程得关于y 的一元二次方程,由韦达定理可得y 1∗y 2为定值;设点N 为(−2, m),由k OA =k ON ,推出可得m =y 2,进而可得BN // x 轴 // AM ,|AM|≠|BN ,即可得证.22.【答案】解:(1)依题意可知{e =c a =2√55,2c =8,a 2=b 2+c 2,解得a =2√5,c =4,故C 的方程为x 220+y 24=1.(2)依题意可设直线l 的方程为y =√3x +m .联立{y =√3x +m,x 220+y 24=1,整理得16x 2+10√3mx +5m 2−20=0,则Δ=300m2−64(5m2−20)>0,解得−8<m<8.设A(x1, y1),B(x2, y2),则x1+x2=−5√3m8,x1x2=5m2−2016,|AB|=√1+3√(x1+x2)2−4x1x2=√−5m2+3204,原点到直线l的距离d=√1+3=|m|2,则△AOB的面积S=12d⋅|AB|=12×|m|2×√−5m2+3204=√−5(m2−32)2+512016,当且仅当m2=32,即m=±4√2时,△AOB的面积有最大值2√5.【解析】(1)根据椭圆的离心率和焦距列方程组,解得a,b,c,进而可得椭圆的方程.(2)依题意可设直线l的方程为,联立直线l与椭圆的方程,得关于x的一元二次方程,可得△>0,解得−8<m<8.设A(x1, y1),B(x2, y2),由韦达定理可得x1+x2,x1x2,由点到直线的距离公式可得原点到直线l的距离d,再计算三角形AOB的面积最大值,即可.。
人教版高二年级(文科)第一学期期末考试数学试题一. 单项选择题(每题5分,共60分)1.设全集U =R ,集合A ={x |7-6x ≤0},集合B ={x |y =lg(x +2)},则(∁U A )∩B 等于( ) A.⎝⎛⎭⎫-2,76 B.⎝⎛⎭⎫76,+∞ C.⎣⎡⎭⎫-2,76 D.⎝⎛⎭⎫-2,-76 2. 下列命题中是假命题的是( ) A .∀x ∈⎝⎛⎭⎫0,π2,x >sin x B .∀x ∈R,3x >0 C .∃x 0∈R ,sin x 0+cos x 0=2D .∃x 0∈R ,lg x 0=0 3. 设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S 11S 9=( )A .1B .-1C .2D .124.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3C .π6D .π35. 函数f (x )的导函数f ′(x )有下列信息: ①f ′(x )>0时,-1<x <2; ②f ′(x )<0时,x <-1或x >2; ③f ′(x )=0时,x =-1或x =2. 则函数f (x )的大致图象是( )6. 若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( )A .x =k π2-π6(k ∈Z)B .x =k π2+π6(k ∈Z) C .x =k π2-π12(k ∈Z)D .x =k π2+π12(k ∈Z)7.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n =( )A .4B .5C .2D .38.已知正方体ABCD A 1B 1C 1D 1中,E ,F 分别是A 1D 1,A 1C 1的中点,则异面直线AE 和CF 所成的角的余弦值为( )A .32 B .33010C .3010D .129. 已知四棱锥P ABCD 的三视图如图所示,则四棱锥P ABCD 的四个侧面中面积最大的是( )A .3B .25C .6D .810.设变量x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,2x -y -3≤0,则目标函数z =2x +3y 的最大值为( )A .7B .8C .22D .2311. 过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为椭圆的右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( )A .22B .33C .12D .1312.正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是( )A .[3,+∞)B .(-∞,3]C .(-∞,6]D .[6,+∞)二.填空题(共20分,每题5分)13.某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为14. 如图,平行六面体ABCD A 1B 1C 1D 1中,既与AB 共面又与CC 1共面的棱有________条.15. 欧阳修《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿,可见“行行出状元”,卖油翁的技艺让人叹为观止,若铜钱是直径为2 cm 的圆,中间有边长为0.5 cm 的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为________.16. 已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+2x ,x <0,若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围 三.解答题(共70分)17. (10分)已知命题“∀x ∈R ,x 2-5x +152a >0”的否定为假命题,则实数a 的取值范围.18.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.19.(12分)某高级中学共有学生2 000名,各年级男、女生人数如下表:高一年级 高二年级高三年级女生 373 x y 男生377370z19. (1)求x 的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少名?20.(12分)如图,四棱锥P ABCD 中,AB ∥CD ,AB =2CD ,E 为PB 的中点.(1)求证:CE ∥平面PAD .(2)在线段AB 上是否存在一点F ,使得平面PAD ∥平面CEF ?若存在,证明你的结论,若不存在,请说明理由.21.(12分)等差数列{a n }的各项均为正数,a 1=1,前n 项和为S n ;数列{b n }为等比数列,b 1=1,且b 2S 2=6,b 2+S 3=8.(1)求数列{a n }与{b n }的通项公式; (2)求1S 1+1S 2+…+1S n .22.(12分)如图所示,已知抛物线C :y 2=4x 的焦点为F ,直线l 经过点F 且与抛物线C 相交于A ,B 两点.(1)若线段AB 的中点在直线y =2上,求直线l 的方程; (2)若线段|AB |=20,求直线l 的方程.参考答案二.填空题;13. 100 14. 515. 14π. 16. (1,3]。
2020-2021学年高二(上)期末数学试卷(文科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若a<b<0,那么下列不等式中正确的是()A.ab<b2B.ab>a2C.1a <1bD.1a>1b2. 抛物线y=−4x2的准线方程为()A.y=−116B.y=116C.x=−1D.x=13. 下列求导结果正确的是()A.(cosπ6)′=−sinπ6B.(3x)′=x⋅3x−1C.(log2x)′=log2exD.(sin2x)′=cos2x4. 已知命题p:∃x0∈(1, +∞),使得;命题q:∀x∈R,2x2−3x+5> 0.那么下列命题为真命题的是()A.p∧qB.(¬p)∨qC.p∨(¬q)D.(¬p)∧(¬q)5. 已知在△ABC中,角A,B,C的对边分别为a,b,c.若,则B=()A. B. C. D.6. 若变量x,y满足约束条件,则z=2x+y的最小值为()A. B.6 C. D.47. 等比数列{a n}的前n项和为S n,若S2n=4(a1+a3+...+a2n−1)(n∈N∗),a1a2a3=−27,则a5=()A.81B.24C.−81D.−248. 已知a>0,b>0,且3a+2b=ab,则a+b的最小值为()A. B. C. D.9. 已知双曲线的一条渐近线平行于直线,且该双曲线的一个焦点在直线l上,则此双曲线的方程为()A. B. C. D.10. 若函数f(x)=e x−2ax2+1有两个不同的极值点,则实数a的取值范围是()A. B. C. D.二、选择题:(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多项是符合题目要求的,把正确答案的选项涂在答题卡上.全部选对的得5分,部分选对的得2分,有选错的得0分.))11. 已知在数列{a n}中,a5=4,其前n项和为S n,下列说法正确的是()A.若{a n}为等差数列,a2=1,则S10=45B.若{a n}为等比数列,a1=1,则a3=±2C.若{a n}为等差数列,则a1a9≤16D.若{a n}为等比数列,则a2+a8≥812. 已知曲线C:mx2+ny2=1,下列说法正确的是()A.若m=n>0,则C是圆,其半径为.B.若m>0,n=0,则C是两条直线.C.若n>m>0,则C是椭圆,其焦点在y轴上.D.若mn<0,则C是双曲线,其渐近线方程为.三、填空题(每题5分,满分20分,将答案填在答题纸上))13. 设等差数列{a n}的前n项和为S n,若2a5=a3+4,则S13=________.14. 设点P是曲线上的任意一点,曲线在点P处的切线的倾斜角为α,则α的取值范围是________.(用区间表示)15. 若△ABC的三边长分别为3,5,7,则该三角形的内切圆半径等于________.16. 设椭圆的左焦点为F,直线x=m与椭圆C相交于A,B两点.当△ABF的周长最大时,△ABF的面积为b2,则椭圆C的离心率e=________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.))17. 设命题p:实数x满足x2−4mx+3m2<0(m>0);命题q:实数x满足.若¬p是¬q的充分不必要条件,求实数m的取值范围.18. 已知数列{a n}的前n项和为S n,且2S n=3a n−3.(Ⅰ)求数列{a n}的通项公式;a n,,求数列{c n}的前n项和T n.(Ⅱ)设b n=log319. 已知函数f(x)=x3−2x2+x.(1)求曲线y=f(x)在点(−1, −4)处的切线方程;(2)求曲线y=f(x)过点(1, 0)的切线方程.20. 已知在△ABC中,角A,B,C的对边分别为a,b,c,且a+b+c=12.(Ⅰ)若a=2,b=5,求cos A的值;(Ⅱ)若sin A cos2=2sin C,且△ABC的面积为10sin C,试判断△ABC的形状并说明理由.21. 已知椭圆经过如下四个点中的三个,,P2(0, 1),,.(Ⅰ)求椭圆M的方程;(Ⅱ)设直线l与椭圆M交于A,B两点,且以线段AB为直径的圆经过椭圆M的右顶点C (A,B均不与点C重合),证明:直线l过定点.22. 已知函数f(x)=ln x+ax2+(2a+1)x+1.(Ⅰ)讨论f(x)的单调性;(Ⅱ)当a<0时,证明:f(x)≤−−1.参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】利用不等式的基本性质即可判断出.2.【答案】B【解析】利用抛物线的标准方程及其性质即可得出.3.【答案】C【解析】根据基本初等函数和复合函数的求导公式对每个选项的函数求导即可.4.【答案】B【解析】根据条件判断命题p,q的真假,结合复合命题真假关系进行判断即可.5.【答案】A【解析】利用正弦定理以及同角三角函数的关系式,直接求角B的大小6.【答案】C【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.7.【答案】C【解析】设等比数列{a n}的公比为q,由S2n=4(a1+a3+...+a2n−1)(n∈N∗),令n=1,则S2=4a1,可得a2=3a1,根据a1a2a3=−27,可得a23=−27,解得a2.利用等比数列的通项公式即可得出.8.【答案】B【解析】将3a+2b=ab变形为,再由“乘1法”,即可得解.9.【答案】B【解析】根据渐近线的方程和焦点坐标,利用a、b、c的关系和条件列出方程求出a2、b2,代入双曲线的方程即可.10.【答案】C【解析】由导数与极值的关系知可转化为方程f′(x)=0在R上有两个不同根,结合函数的性质可求.二、选择题:(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多项是符合题目要求的,把正确答案的选项涂在答题卡上.全部选对的得5分,部分选对的得2分,有选错的得0分.)11.【答案】A,C【解析】对于A,利用等差数列通项公式列出方程组,求出a1=0,d=1,由此能求出S10;对于B,利用等比数列能通项公式求出q2=2,进而能求出a3;对于C,利用等差数列通项公式得a1+a9=2a5=8,当a1,a9一正一负时,a1a9≤16成立,当a1,a9均大于0时,则a1a9≤()2=16;对于D,{a n}为等比数列时,a2a8==16,当a2,a8均大于0时,a2+a8≥2=8,当a2,a8均小于0时,a2+a8=−(−a2−a8)≤−2=−(8)12.【答案】A,B,D【解析】通过m,n的取值,判断曲线的形状,即可判断选项.三、填空题(每题5分,满分20分,将答案填在答题纸上)13.【答案】52【解析】利用等差数列{a n}的通项公式列方程求得a1+6d=4,再由S13==13(a1+6d),能求出结果.14.【答案】【解析】求出原函数的导函数,利用配方法求得导函数的值域,再由直线的斜率等于倾斜角的正切值,即可求得曲线在点P处的切线的倾斜角α的范围.15.【答案】【解析】由已知结合余弦定理可求C,易得三角形的面积,所以内切圆半径满足关系:S=(a+b+c)r.16.【答案】【解析】判断三角形周长取得最大值时,求出m的值,利用三角形的面积,列出方程,求解椭圆的离心率即可.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【答案】由x2−4mx+5m2<0,得(x−m)(x−5m)<0,又m>0,所以m<x<3m,由,得0<4−x<5因为¬p是¬q的充分不必要条件,所以q是p的充分不必要条件.设A=(3, m)B=(2,则B是A的真子集,故或即.【解析】求出命题p,q为真命题的等价条件,根据¬p是¬q的充分不必要条件,转化为q是p的充分不必要条件,进行转化求解即可.18.【答案】(1)当n=1时,2a6=2S1=2a1−1,∴a8=1当n≥2时,8a n=2S n−2S n−2=(3a n−3)−(8a n−1−3)即:,∴数列{a n}为以3为首项,4为公比的等比数列.∴(2)由(Ⅰ)知,a n=n,所以b n=log3故.即①所以②①②得所以.【解析】(Ⅰ)直接利用数列的递推关系式求出数列的通项公式;(Ⅱ)利用乘公比错位相减法的应用求出数列的和.19.【答案】解:(1)由题意得f′(x)=3x2−4x+1,∴f′(−1)=8,∴曲线y=f(x)在点(−1, −4)处的切线方程为y+4=8(x+1),即8x−y+4=0.(2)设切点为(x0, y0),∵切点在函数图象上,∴y0=x03−2x02+x0,故曲线在该点处的切线为y −(x 03−2x 02+x 0)=(3x 02−4x 0+1)(x −x 0).∵ 切线过点(1, 0),∴ 0−(x 03−2x 02+x 0)=(3x 02−4x 0+1)(1−x 0)即(x 0−1)2(2x 0−1)=0,解得x 0=1或x 0=12,当x 0=1时,切点为(1,0),∵ f ′(1)=0,∴ 切线方程为y −0=0⋅(x −1)即y =0.当x 0=12时,切点为(12,18), ∵ f ′(12)=−14, ∴ 切线方程为y −0=−14(x −1)即x +4y −1=0.综上可得,切线方程为y =0或x +4y −1=0.【解析】(Ⅰ)求出原函数的导函数,得到函数在x =−1处的导数,再由直线方程的点斜式得答案;(Ⅱ)设出切点坐标,得到函数在切点处的切线方程,代入已知点的坐标,求得切点坐标,进一步求解过点(1, 0)的切线方程.利用导数研究某一点的切线方程问题(含参问题).20.【答案】(1)∵ a +b +c =12,a =2,∴ c =5. ∴ -(2)∵ △ABC 为直角三角形,, ∴,即sin A +sin B +sin A cos B +cos A sin B =4sin C ,∴ sin A +sin B +sin (A +B)=4sin C ,∵ A +B +C =π,A +B =π−C .∴ sin A +sin B =3sin C ,由正弦定理得a +b =3c ,∵ a +b +c =12,可得8c =12.从而a +b =9.又∵ △ABC 的面积为10sin C ,∴.即ab=20,∴a=5,b=5,又∵c=6,可得cos B==,可得B为直角,∴△ABC为直角三角形.【解析】(1)由题意可求c的值,进而根据余弦定理即可求解cos A的值.(2)由已知利用三角函数恒等变换的应用化简已知等式可得sin A+sin B=3sin C,由正弦定理得a+b=3c,解得c,可得a+b=9,利用三角形的面积公式可求ab=20,解得a,b的值,即可判断得解.21.【答案】(1);由题意,点与点,根据椭圆的对称性且椭圆过其中的三个点可知,点和点,又因为点与点,即椭圆过点,P3(,),P7(0, 1),所以,且,故a6=4,b2=3,所以,椭圆M的方程为.(2)证明:直线l恒过点.由题意,可设直线AB的方程x=ky+m(m≠2),联立消去x2+4)y2+2kmy+m2−4=0,设A(x1, y8),B(x2, y2),则有,①又以线段AB为直径的圆过椭圆的右顶点C,∴,由,,得(x2−2)(x2−8)+y1y2=5,将x1=ky1+m,x6=ky2+m代入上式得,将①代入上式求得或m=2(舍),则直线l恒过点.【解析】(Ⅰ)由椭圆的对称性可得椭圆过点,,P2(0, 1),代入椭圆的方程,列方程组,解得a,b,进而可得椭圆的方程.(Ⅱ)设直线AB的方程x=ky+m(m≠2),A(x1, y1),B(x2, y2),联立直线AB与椭圆的方程可得关于y的一元二次方程,由韦达定理可得y1+y2,y1y2,由线段AB为直径的圆过椭圆的右顶点C,得,用坐标表示,可得m,进而可得答案.22.【答案】(1)因为f(x)=ln x+ax2+(2a+5)x+1,所以,当a≥7时,f′(x)≥0恒成立,+∞)上单调递增;当a<0时,令f′(x)>5,所以,令f′(x)<0,则2ax+2<0,所以f(x)的增区间为,减区间为.综上:当a≥3时,f(x)的增区间为(0;当a<0时,f(x)的增区间为.(2)证明:由(Ⅰ)知,当a<0时max=f(−),,令g(t)=ln t−t+3(t>0),则,令g′(t)>0,则5<t<1,则t>1,所以g(t)在(6, 1)上单调递增,+∞)上单调递减,故g(t)max=g(1)=0,所以ln t−t+3≤0又因为,所以则,从而,所以.【解析】(Ⅰ)对f(x)求得,对a分类讨论,利用导数与单调性的关系求解即可;(Ⅱ)由(Ⅰ)可知f(x)max=f(−),,令g(t)=ln t−t+1(t>0),利用导数可得g(t)的最大值为0,可得,从而可得.。
2017—2018学年度第一学期高二数学期末考试题文科(提高班)一、选择题(每题5分,共60分)1.在相距2km的A、B两点处测量目标C,若∠CAB=75°,∠CBA=60°,则A、C两点之间的距离是()A.2km B.3kmC.km D.3km2.已知椭圆()的左焦点为,则()A.9B.4C.3D.23.在等差数列中,,则的前5项和=()A.7B.15C.20D.254.某房地产公司要在一块圆形的土地上,设计一个矩形的停车场.若圆的半径为10m,则这个矩形的面积最大值是()A.50m2B.100m2C.200m2D.250m25.如图所示,表示满足不等式的点所在的平面区域为()A.B.C.D.6.焦点为(0,±6)且与双曲线有相同渐近线的双曲线方程是()A.B.C.D.7.函数的导数为()A.B.C.D.8.若<<0,则下列结论正确的是()A.b B.D.C.-29.已知命题:命题.则下列判断正确的是()A.p是假命题B.q是真命题C.是真命题D.是真命题10.某观察站与两灯塔、的距离分别为300米和500米,测得灯塔在观察站北偏东30,灯塔在观察站正西方向,则两灯塔、间的距离为()A.500米B.600米C.700米D.800米11.方程表示的曲线为()A.抛物线B.椭圆C.双曲线D.圆12.已知数列的前项和为,则的值是()A.-76B.76C.46D.13二、填空题(每题5分,共20分)13. 若,,是实数,则的最大值是_________14. 过抛物线的焦点作直线交抛物线于、两点,如果,那么=___________.15. 若双曲线的顶点为椭圆长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是____________.16. 直线是曲线y=ln x(x>0)的一条切线,则实数b=___________2017—2018学年度第一学期高二数学期末考试文科数学(提高班)答题卡一、选择题(共12小题,每题5分)题号123456789101112答案C C B C B B B A C C A A二、填空题(共4小题,每题5分)13、2 14、815、 16、三、解答题(共6小题,17题10分,其他每小题12分)17. 已知数列(Ⅰ)求数列的通项公式;(Ⅱ)求证数列是等比数列;18. 已知不等式组的解集是,且存在,使得不等式成立.(Ⅰ)求集合;(Ⅱ)求实数的取值范围.19. 某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:(其中是仪器的月产量).(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(利润=总收益-总成本)20. 根据下列条件,求双曲线的标准方程.(1)经过点,且一条渐近线为;(2)与两个焦点连线互相垂直,与两个顶点连线的夹角为.21. 已知函数在区间上有最小值1和最大值4,设.(1)求的值;(2)若不等式在区间上有解,求实数k的取值范围.22. 已知函数().(1)求曲线在点处的切线方程;(2)是否存在常数,使得,恒成立?若存在,求常数的值或取值范围;若不存在,请说明理由.文科(提高班)一.选择题(每题5分,共60分)1.考点:1.2 应用举例试题解析:由题意,∠ACB=180°-75°-60°=45°,由正弦定理得=,所以AC=·sin60°=(km).答案:C2.考点:2.1 椭圆试题解析:,因为,所以,故选C.答案:C3.考点:2.5 等比数列的前n项和试题解析:.答案:B4.考点:3.3 二元一次不等式(组)与简单的线性规划问题试题解析:如图,设矩形长为,则宽为,所以矩形面积为,故选C答案:C5.考点:3.3 二元一次不等式(组)与简单的线性规划问题试题解析:不等式等价于或作出可行域可知选B答案:B6.考点:2.2 双曲线试题解析:与双曲线有共同渐近线的双曲线方程可设为,又因为双曲线的焦点在y轴上,∴方程可写为.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为.答案:B7.考点:3.2 导数的计算试题解析:,故选B.答案:B8.考点:3.1 不等关系与不等式试题解析:根据题意可知,对两边取倒数的得,综上可知,以此判断:A.正确;因为:,所以:,B错误;,两个正数相加不可能小于,所以C错误;,D错误,综上正确的应该是A.答案:A9.考点:1.3 简单的逻辑联结词试题解析:当时,(当且仅当,即时取等号),故为真命题;令,得,故为假命题,为真命题;所以是真命题.答案:C10.考点:1.2 应用举例试题解析:画图可知在三角形ACB中,,,由余弦定理可知,解得AB=700.答案:C11.考点:2.1 椭圆试题解析:方程表示动点到定点的距离与到定直线的距离,点不在直线上,符合抛物线的定义;答案:A12.考点:2.3 等差数列的前n项和试题解析:由已知可知:,所以,,,因此,答案选A.答案:A二.填空题(每题5分,共20分)13.考点:3.4 基本不等式试题解析:,,即,则,化简得,即,即的最大值是2.答案:214.考点:2.3 抛物线试题解析:根据抛物线方程知,直线过焦点,则弦,又因为,所以.答案:815.考点:2.2 双曲线试题解析:椭圆长轴的端点为,所以双曲线顶点为,椭圆离心率为,所以双曲线离心率为,因此双曲线方程为答案:16.考点:3.2 导数的计算试题解析:设曲线上的一个切点为(m,n),,∴,∴.答案:三、解答题(共6小题,17题10分,其他每小题12分)17.考点:2.3 等差数列的前n项和试题解析:(Ⅰ)设数列由题意得:解得:(Ⅱ)依题,为首项为2,公比为4的等比数列(Ⅲ)由答案:(Ⅰ)2n-1;(Ⅱ)见解析;(Ⅲ){1,2,3,4}18.考点:3.2 一元二次不等式及其解法试题解析:(Ⅰ)解得;(Ⅱ)令,由题意得时,.当即,(舍去)当即,.综上可知,的取值范围是.答案:(Ⅰ);(Ⅱ)的取值范围是19.考点:3.4 生活中的优化问题举例试题解析:(1)(2)当时,∴当时,有最大值为当时,是减函数,∴当时,的最大值为答:每月生产台仪器时,利润最大,最大利润为元.答案:(1);(2)每月生产台仪器时,利润最大,最大利润为元20.考点:双曲线试题解析:(1)由于双曲线的一条渐近线方程为设双曲线的方程为()代入点得所以双曲线方程为(2)由题意可设双曲线的方程为则两焦点为,两顶点为由与两个焦点连线垂直得,所以由与两个顶点连线的夹角为得,所以,则所以方程为21.考点:3.2 一元二次不等式及其解法试题解析:(1),因为,所以在区间上是增函数,故,解得.(2)由已知可得,所以,可化为,化为,令,则,因,故,记,因为,故,所以的取值范围是22.考点:3.3 导数在研究函数中的应用试题解析:(1),所求切线的斜率所求切线方程为即(2)由,作函数,其中由上表可知,,;,由,当时,,的取值范围为,当时,,的取值范围为∵,恒成立,∴答案:(1)(2)存在,,恒成立100. 在中,角所对的边分别为,且满足,.(I )求的面积;(II)若,求的值.46.考点:正弦定理余弦定理试题解析:(Ⅰ)又,,而,所以,所以的面积为:(Ⅱ)由(Ⅰ)知,而,所以所以答案:(1)2(2)。
高二第一学期数学(文)期末试卷及答案5套一.选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}|14,2,1,4,8,9A x Z x B =∈-≤≤=--,设C A B =,则集合C 的元素个数为( )A. 9B. 8C. 3D. 2 2.设复数11z i i=++,则||z =()A .12D. 23.下列全称命题中假命题的个数是( )①21x +是整数()x ∈R ;②对所有的x ∈R ,3x >;③对任意一个x ∈Z ,221x +为奇数. A .0 B .1 C .2 D .3 4、已知0.6222,log 3,log sin5a b c ππ===,则( ) A.c b a << B.c a b << C.b a c << D. a c b <<5.某公司2013—2018年的年利润x (单位:百万元)与年广告支出y (单位:百万元)的统计资料如表所示:A .利润中位数是16,x 与y 有正相关关系B .利润中位数是17,x 与y 有正相关关系C .利润中位数是17,x 与y 有负相关关系D .利润中位数是18,x 与y 有负相关关系6.过点(4,5)P 引圆222410x y x y +--+=的切线,则切线长是 ( )A .3BC .4D .57.已知非零向量(,0)a t =,(1,3)b =-,若4a b =-,则2a b +与b 的夹角为( )A .3π B.2π C.6πD.23π8. 执行如下图的程序框图,那么输出S 的值是( ) A. 2 B.1 C. 12D. -1 9.点(,1)6P π-是函数()sin()(0,)2f x x m ωϕωϕ=++><π的图象的一个对称中心,且点P 到该图象的对称轴的距离的最小值为π.①(f x ②()f x 的值域为[0,2]③(f x ()f x 在5[,2]3ππ上单调递增(A )1(B )2(C )3(D )410.分别在区间[1,6]和[1,4]内任取一个实数,依次记为m 和n ,则m >n 的概率为 ( ) A .710B .310C .35D .2511.若两个正实数,x y 满足141x y +=,且存在这样的,x y 使不等式234y x m m +<+有解,则实数m 的取值范围是()A .()1,4- B. ()4,1- C.()(),41,-∞-+∞ D.()(),30,-∞-+∞12.已知椭圆和双曲线有共同焦点12,F F ,P 是它们的一个交点,且123F PF π∠=,记椭圆和双曲线的离心率分别为12,e e ,则121e e 的最大值为()8题图A . 二.填空题:本大共4小题.每小题5分,满分20分.13.已知双曲线C :22221y x a b -=的焦距为()1,2P 在双曲线C 的渐近线上,则双曲线C 的方程为____________________ .22110025y x -=. 14.已知复数z 满足(1)13i z i +=+,则z =________2i - 15.已知函数)(ln 21)(2R a x a x x f ∈+=,若函数)(x f 的图象在2=x 处的切线方程为0=+-b y x ,则实数=a .2-16.已知数列}{n a 的前n 项和为n S ,121,2a a ==,且1(2)2n n nS a n =+≥,则数列}{n a 的通项公式为_____________.1,12(1),2n n a n n =⎧=⎨-≥⎩三.解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤. 17(本题满分10分)某银行对某市最近5年住房贷款发放情况(按每年6月份与前一年6月份为1年统计)作了统计调查,得到如下数据:(1)试求z 与x +a ′. (2)利用(1)中所求的线性回归方程估算2019年房贷发放数额.参考公式:18(本小题满分12分)如图,在ABC ∆中,点D 在BC 边上,AD AC ⊥,cos 3B =AB =BD =. (1)求ABD ∆的面积; (2)求线段DC 的长.19(本小题满分12分)按规定:车辆驾驶员血液酒精浓度在2080mg /100ml :(不含80)之间,属酒后驾车;在80mg /100ml (含80)以上时,属醉酒驾车.某市交警在某路段的一次拦查行动中,依法检查了250辆机动车,查出酒后驾车和醉酒驾车的驾驶员20人,右图是对这20人血液中酒精含量进行检查所得结果的频率分布直方图.(1)根据频率分布直方图,求:此次抽查的250人中,醉酒驾车的人数;(2)从血液酒精浓度在[)70,90范围内的驾驶员中任取2人,求恰有1人属于醉酒驾车的概率.20(本小题满分12分)已知等差数列{}n a 的前项和为n S ,且31379,,,S a a a =成等比数列. (1)求数列{}n a 的通项公式;(2)若数列{}n a 的公差不为0,数列{}n b 满足2nn na b =,求数列{}n b 的前项和n T . 21(本小题满分12分)已知动圆过定点A (0,2),且在x 轴上截得的弦长为4. (1)求动圆圆心的轨迹C 的方程;(2)点P 为轨迹C 上任意一点,直线l 为轨迹C 上在点P 处的切线,直线l 交直线:y =-1于点R ,过点P 作PQ ⊥l 交轨迹C 于点Q ,求△PQR 的面积的最小值. 22.(本小题满分l2分)已知函数212f (x )ln x ax x,a R.=-+∈(1)求函数f (x )的单调区间;AB CD(2)是否存在实数a ,使得函数f (x )的极值大于0?若存在,求a 的取值范围;若不存在,说明理由.答案一.选择题:1. D2. B3. C 4、A 5. B 6.B 7.A 8. A 9. D 10.A 11. C 12.D.2i - 15.2- 16.1,12(1),2n n a n n =⎧=⎨-≥⎩三.解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤. 17(本题满分10分)[解] (1)计算得=3,=2.2,错误!错误!t 错误!=55,错误!错误!t i z i =45,所以b ==1.2,a =2.2-1.2×3=-1.4,所以z =1.2t -1.4.注意到t =x -2 013,z =(y -50)÷10, 代入z =1.2t -1.4,整理得y =12x -24120.(2)当x =2 019时,y =108,即2017年房贷发放的实际值约为108亿元. 18(本小题满分12分) 解:(1)在ABD ∆中,(2)在ABC ∆中,由余弦定理得B BC AB BD AB AD cos 2222⋅⋅-+=ADB ∠ +ADC ∠=180,19(本小题满分12分) 解: (1)由频率分布直方图可知:血液酒精浓度在[)80,90内范围内有:0.0120102⨯⨯=人……………2血液酒精浓度在[)90,100内范围内有:0.00520101⨯⨯=人……………4所以醉酒驾车的人数为213+=人……………6分(2)因为血液酒精浓度在[)70,80内范围内有3人,记为,,,a b c [)80,90范围内有2人,记为,,d e 则从中任取2人的所有情况为(,),(,),(,),(,)a b a c a d a e ,(,),(,)b c b d ,(,)b e ,(,),(,),(,)c d c e d e 共10种………………………………………………………8分恰有一人的血液酒精浓度在[)80,90范围内的情况有(,),(,)a d a e ,(,),(,),(,),(,)b d b e c d ce ,共6种…………………………………10分设“恰有1人属于醉酒驾车”为事件A,则分20(本小题满分12分) 【解析】 (1)由题得,,设等差数列的公差为,则,化简,得或.当时,,得,∴,即;当时,由,得,即;(2)由(1()1n +++ ()1n ⎛+++由①-②可得3112⎛⎫⎛⎫++-⎪⎝⎭21(本小题满分12分)已知动圆过定点A (0,2),且在x 轴上截得的弦长为4. 解:(1)设C (x ,y ),|CA |2-y 2=4,即x 2=4y .∴动圆圆心的轨迹C 的方程为x 2=4y .……………5分 (2)C 的方程为x 2=4y ,即y =x 2,故y ′=x .设P (t ≠0),PR 所在的直线方程为y -=(x -t ),即y =x -,则点R 的横坐标x R =, |PR |=|x R -t |=.……7分PQ 所在的直线方程为y -=-(x -t ),即y =-x +2+,由消去y 得+x -2-=0,由x P +x Q =-得点Q 的横坐标为x Q =--t , ……………9分 又|PQ |=|x P -x Q |==.…10分∴S △PQR =|PQ ||PR |=.不妨设t >0,记f (t )=(t >0),则当t =2时,f (t )min =4.由S △PQR =[f (t )]3,得△PQR 的面积的最小值为16.…12分22.(本小题满分l2分)(1)解:函数f(x)的定义域为),0(+∞.分①当a=0,0)(',0>∴>x f x∴函数f(x)单调递增区间为),0(+∞ . ……2分②当0=/a 时,令f'(x)=001,02=--∴>x ax x . a 41+=∆∴.(i)当0≤∆,即时,得012≤--x ax ,故0)('≥x f ,∴函数f(x)的单调递增区间为)0(∞+,. ……3分 (ii)当0>∆,即时,方程012=--x ax 的两个实根分别为分,则0,021<<x x ,此时,当),0(+∞∈x 时,0)('>x f .∴函数f(x)的单调递增区间为),0(+∞,……………5分 若a>0,则0,021><x x ,此时,当),0(2x x ∈时,0)('>x f ,当),(2+∞∈x x 时,0)('<x f ,∴函数f(x)综上所述,当a>0时,函数f(x)当0≤a 时,函数f(x)的单调递增区间为),0(+∞,无单调递减区间.……………6分 (2)解:由(1)得当0≤a 时,函数f(x)在(0,+∞)上单调递增,故函数f(x)无极值;………7分当a>0时,函数f(x)则f(x)分而01222=--x ax ,即1222+=x ax ,……8分分在),0(+∞上为增函数.又h(1)=0,则h(x)>0等价于x>1.等价于12>x . ………10分即在a>0时,方程012=--x ax 的大根大于1,设1)(2--=x ax x φ,由于)(x φ的图象是开口向上的抛物线,且经过点(0,-1),对称轴,则只需0)1(<φ,即a-1-1<0解得a<2,而a>0,故实数a 的取值范围为(0,2).………12分说明:若采用下面的方法求出实数a 的取值范围的同样给1分.1在),0(+∞是减函数,a=20,2),从而实数a 的取值范围为(0,2).2a>0,通过分类讨论得出实数a 的取值范围为(0,2).高二第一学期数学(文)期末试卷及答案一、选择题(共计10小题,每小题4分,计40分,在每小题给出的4个选项中,只有一个选项是正确的。
...2019学年度第一学期高二级期末联考试卷文科数学一、选择题:(每小题5分,共60分)1.已知全集{}1,2,3,4,5,6U =, 集合{}1,3,5A =, {}1,2B =, 则=)(B C A U ( ) A.∅ B.{}5 C.{}3 D.{}3,52.如图,在边长为2的正方形内随机取一个点,则此点在正方形的内切圆内部的概率为( ) A .4π B .44π- C .14π- D .4ππ-3.直线x +3y +2=0的倾斜角为( )A .30° B.60° C.150° D .120° 4.已知22ππα-<<,且sin cos 2αα+=,则α的值为( ) (A )-12π (B )12π (C )- 512π (D )512π 5.已知在等比数列{}n a 中,23654a a a =,若1002008=a ,则=2018a ( ) A.200 B.400 C. 1600 D.20126.函数221,1,()log (1),1x x f x x x ⎧-≤=⎨->⎩的零点个数为( )A .1B .2C .3D .47.定义!12n n =⨯⨯⨯.右图是求10!的程序框图,则在判断框内应填的条件是( ) A .10i < B.10i ≤ C.11i ≤ D.10i >(第2题图)(第7题图)...8.在四边形ABCD 中,“AB =2DC ”是“四边形ABCD 为梯形”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件9.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y-2≥0,x-y-2≤0,y≥1, 则目标函数z =x +2y 的最小值为( )A .2B .3C .4D .510.已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为( )A .1612+πB .3212+πC .2412+πD .3220+π11.设椭圆的两个焦点分别为12F F 、,过1F 作椭圆长轴的垂线交椭圆于点P ,若12F PF ∆为等腰直角三角形,则椭圆的 离心率为( )ABC、2112.下列说法正确的个数是( )①“若4a b +≥,则, a b 中至少有一个不小于2”的逆命题是真命题 ② 命题“设,a b ∈R ,若6a b +≠,则3a ≠或3b ≠”是一个真命题 ③“2000,0x x x ∃∈-<R ”的否定是“2,0x x x ∀∈->R ” ④ 1a b +>是a b >的一个必要不充分条件第10题图俯视图正视图侧视图A .0B .1C .2D .3二、填空题:(每小题5分,共20分)13.若命题“2,20x R x x m ∃∈-+≤”是假命题,则m 的取值范围是_______14. 已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=_______15.设m 是常数,若点F (0,5)是双曲线y 2m -x 29=1的一个焦点,则m =________.16. 设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线02=--y x 的最大距离为______.三、解答题:(6小题,共70分)17.(本小题满分10分)在ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若223cos cos20A A +=,且ΔABC 为锐角三角形,7a =,6c =,求b 的值;(2)若a ,3A π=,求b c +的取值范围.18.(本小题满分12分)圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y =7m +4 (m ∈R).(1)证明:不论m 取什么实数,直线l 与圆恒相交于两点; (2)求⊙C 与直线l 相交弦长的最小值.19.(本小题满分12分)在等差数列{}n a 中,24a =,前4项之和为18. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=⋅,求数列{n b }的前n 项和n T .20.(本小题满分12分)为了了解甲、乙两名同学的数学学习情况,对他们的7次数学测试成绩(满分100分)进行统计,作出如下的茎叶图,其中,x y处的数字模糊不清.已知甲同学成绩的中位数是83,乙同学成绩的平均分是86分.(Ⅰ)求x和y的值;(Ⅱ)现从成绩在[90,100]之间的试卷中随机抽取两份进行分析,求恰抽到一份甲同学试卷的概率.甲乙6 37 87 x 1 8 3 3 y2 3 9 0 1 6(第20题图)21.(本小题满分12分)如图,四棱锥P ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD 上,且CE∥AB.(1)求证:CE⊥平面PAD;(2)若PA=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥PABCD的体积.22.(本小题满分12分)已知椭圆的中心在原点O ,短轴长为直线ca x 2=交x 轴于点A ,右焦点为F ,且2OF FA =,过点A 的直线l 交椭圆于,P Q 两点 (1)求椭圆的方程(2)若0OP OQ ⋅=,求直线l 的方程2019学年度第一学期高二级期末联考试卷文科数学(参考答案)一、选择题:(每小题5分,共60分) 1-6:DACACC 7-12:BABADC二、填空题:(每小题5分,共20分) 13. m>1 14. 2115. 16 16.三、解答题:(6小题,共70分) 17.(本小题满分10分)在ΔABC 中,角,,的对边分别为,,.(1)若,且ΔABC 为锐角三角形,,,求的值;(2)若,,求的取值范围.17.解:(1)∵,∴,又∵为锐角,,而,即,解得(舍负),∴................................5分 (2)方法一:(正弦定理)由正弦定理可得,∵,∴,∴,∴...............................10分方法二:(余弦定理)由余弦定理可得,即,∴,又由两边之和大于第三边可得,∴............................10分18.(本小题满分12分)圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y =7m +4 (m ∈R).(1)证明:不论m 取什么实数,直线l 与圆恒相交于两点; (2)求⊙C 与直线l 相交弦长的最小值.[解析] (1)将方程(2m +1)x +(m +1)y =7m +4,变形为(2x +y -7)m +(x +y -4)=0. 直线l 恒过两直线2x +y -7=0和x +y -4=0的交点, 由x +y -4=02x +y -7=0得交点M (3,1). 又∵(3-1)2+(1-2)2=5<25,∴点M (3,1)在圆C 内,∴直线l 与圆C 恒有两个交点.……………………………6分(2)由圆的性质可知,当l ⊥CM 时,弦长最短. 又|CM |==,∴弦长为l =2=2=4. ……………………………………12分 19.(本小题满分12分)在等差数列中,,前4项之和为18.(Ⅰ)求数列的通项公式; (Ⅱ)设,求数列{}的前n 项和.19.解:(Ⅰ)设等差数列的公差为d .由已知得 ……………2分 解得 ………………4分所以a n =n +2. ……………………………………………………………………………5分 (Ⅱ)由(Ⅰ)可得b n =, …………………………………………………………6分∴① ………………7分2=②…………………8分①-②得:…………………………………………9分…………………………………………11分∴…………………………………………………………………12分20.(本小题满分12分)为了了解甲、乙两名同学的数学学习情况,对他们的7次数学测试成绩(满分100分)进行统计,作出如下的茎叶图,其中处的数字模糊不清.已知甲同学成绩的中位数是83,乙同学成绩的平均分是86分.(Ⅰ)求和的值;(Ⅱ)现从成绩在[90,100]之间的试卷中随机抽取两份进行分析,求恰抽到一份甲同学试卷的概率.20. 本题主要考查茎叶图,样本的数字特征,古典概型,考查数据处理能力和运算求解能力,考查或然与必然的数学思想.满分12分.解:(Ⅰ)甲同学成绩的中位数是83,, …………… 3分乙同学的平均分是86分,, . ………… 6分(Ⅱ)甲同学成绩在[90,100]之间的试卷有二份,分别记为,,乙同学成绩在[90,100]之间的试卷有三份,分别记为,,,“从这五份试卷中随机抽取两份试卷”的所有可能结果为:,,,,,,,,,共有10种情况,…………………………………………… 9分记“从成绩在[90,100]之间的试卷中随机抽取两份,恰抽到一份甲同学试卷”为事件,则事件包含的基本事件为:,,,,,共有6种情况……11分则,答:从成绩在[90,100]之间的试卷中随机抽取两份进行分析,恰抽到一份甲同学试卷的概率为. ………………12分21.(本小题满分12分)如图,四棱锥P ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.(1)求证:CE ⊥平面PAD ;(2)若PA =AB =1,AD =3,CD =,∠CDA =45°,求四棱锥PABCD 的体积.21.解:(1)证明:因为PA ⊥底面ABCD ,CE ⊂平面ABCD ,所以PA ⊥CE .…………2分 因为AB ⊥AD ,CE ∥AB ,所以CE ⊥AD . …………4分 又PA ∩AD =A ,所以CE ⊥平面PAD . …………6分 (2)由(1)可知CE ⊥AD .在Rt △ECD 中,CE =CD ·sin45°=1,DE =CD ·cos45°=1, 又因为AB =1,则AB =CE . 又CE ∥AB ,AB ⊥AD ,所以四边形ABCE 为矩形,四边形ABCD 为梯形.…………8分 因为AD =3,所以BC =AE =AD -DE =2, …………9分S ABCD =21(BC +AD )·AB =21(2+3)×1=25, …………10分V PABCD =31S ABCD ·PA =31×25×1=65.于是四棱锥PABCD 的体积为65.…………12分...... 22.已知椭圆的中心在原点,短轴长为,直线交轴于点,右焦点为,且,过点的直线交椭圆于两点(1)求椭圆的方程(2)若,求直线的方程22【解】(1) 椭圆方程为:(2)设直线的方程为:,且设 联立 消去,得:则从而求得: 由 得 : ,求得所以的方程为:。
2015-2016学年某某省某某市油田高中高二(上)期末数学试卷(文科)一、选择题:在下列各小题的四个选项中,只有一项是符合题目要求的.请将正确选项涂到答题卡上.1.设a,b,c∈R,且a>b,则()A.ac>bc B.C.a2>b2D.a3>b32.满足f(x)=f′(x)的函数是()A.f(x)=1﹣x B.f(x)=x C.f(x)=0 D.f(x)=13.△ABC中,若a=1,c=2,B=60°,则△ABC的面积为()A.B.C.1 D.4.“1<x<2”是“x<2”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是()A.B.C.D.6.已知等差数列{a n}中,a7+a9=16,a4=1,则a12的值是()A.15 B.30 C.31 D.647.若变量x,y满足约束条件,则z=2x﹣y的最小值为()A.﹣1 B.0 C.1 D.28.在下列函数中,最小值是2的是()A.(x∈R且x≠0)B.C.y=3x+3﹣x(x∈R)D.)9.抛物线x2=4y上与焦点的距离等于4的点的纵坐标是()A.l B.K C.3 D.y﹣1=k(x﹣2)10.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=()A.1 B.2 C.4 D.811.从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是()A.B.C.D.12.设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2014)2f(x+2014)﹣4f(﹣2)<0的解集为()A.(﹣∞,﹣2012)B.(﹣2012,0) C.(﹣∞,﹣2016)D.(﹣2016,﹣2014)二、填空题:(本题共4个小题,每小题5分,共20分)13.曲线y=x3+x﹣2的一条切线平行于直线y=4x﹣1,则切点P0的坐标为.14.抛物线y=x2的准线方程是.15.函数y=1+3x﹣x3的极大值是,极小值是.16.已知F是双曲线C:x2﹣=1的右焦点,P是C的左支上一点,A(0,6).当△APF 周长最小时,该三角形的面积为.三、解答题:(本题共6小题,17题10分,18-22每小题10分,共70分)解答题应给出必要的文字说明,证明过程或演算步骤.)17.(10分)(2015秋•某某期末)设双曲线C的两个焦点为(﹣,0),(),一个顶点(1,0),求双曲线C的方程,离心率及渐近线方程.18.(12分)(2013•潍坊模拟)已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m﹣2)x+1=0无实根.若“p或q”为真,“p且q”为假.某某数m的取值X围.19.(12分)(2014•某某二模)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(1)求角A的大小;(2)若a=4,b+c=8,求△ABC的面积.20.(12分)(2015•某某)等差数列{a n}中,a2=4,a4+a7=15.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=2+n,求b1+b2+b3+…+b10的值.21.(12分)(2015秋•某某期末)已知f(x)=ax﹣lnx,x∈(0,e],a∈R.(1)若a=1,求f(x)的极小值;(2)是否存在实数a,使f(x)的最小值为3.22.(12分)(2015秋•某某期末)如图,椭圆E:+=1(a>b>0)经过点A(0,﹣1),且离心率为.(I)求椭圆E的方程;(II)经过点(1,1),且斜率为k的直线与椭圆E交于不同两点P,Q(均异于点A),问直线AP与AQ的斜率之和是否为定值,若是,求出这个定值;若不是,请说明理由.2015-2016学年某某省某某市油田高中高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:在下列各小题的四个选项中,只有一项是符合题目要求的.请将正确选项涂到答题卡上.1.设a,b,c∈R,且a>b,则()A.ac>bc B.C.a2>b2D.a3>b3【考点】不等关系与不等式.【专题】不等式的解法及应用.【分析】对于A、B、C可举出反例,对于D利用不等式的基本性质即可判断出.【解答】解:A、3>2,但是3×(﹣1)<2×(﹣1),故A不正确;B、1>﹣2,但是,故B不正确;C、﹣1>﹣2,但是(﹣1)2<(﹣2)2,故C不正确;D、∵a>b,∴a3>b3,成立,故D正确.故选:D.【点评】熟练掌握不等式的基本性质以及反例的应用是解题的关键.2.满足f(x)=f′(x)的函数是()A.f(x)=1﹣x B.f(x)=x C.f(x)=0 D.f(x)=1【考点】导数的运算.【专题】计算题.【分析】分别利用求导法则求出各项的导函数f′(x),即可判断f(x)=f′(x)的函数,得到正确答案.【解答】解:A、由f(x)=1﹣x,得到f′(x)=﹣1≠1﹣x=f(x),本选项错误;B、由f(x)=x,得到f′(x)=1≠x=f(x),本选项错误;C、由f(x)=0,得到f′(x)=0=f(x),本选项正确;D、由f(x)=1,得到f′(x)=0≠1=f(x),本选项错误,故选C【点评】此题考查学生灵活运用求导的法则化简求值,是一道基础题.3.△ABC中,若a=1,c=2,B=60°,则△ABC的面积为()A.B.C.1 D.【考点】三角形的面积公式.【专题】解三角形.【分析】利用三角形面积公式S△ABC=即可得出.【解答】解:S△ABC===.故选B.【点评】本题考查了三角形面积公式S△ABC=,属于基础题.4.“1<x<2”是“x<2”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】不等式的解法及应用.【分析】设A={x|1<x<2},B={x|x<2},判断集合A,B的包含关系,根据“谁小谁充分,谁大谁必要”的原则,即可得到答案.【解答】解:设A={x|1<x<2},B={x|x<2},∵A⊊B,故“1<x<2”是“x<2”成立的充分不必要条件.故选A.【点评】本题考查的知识点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关键.5.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是()A.B.C.D.【考点】椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程.【分析】由已知可知椭圆的焦点在x轴上,由焦点坐标得到c,再由离心率求出a,由b2=a2﹣c2求出b2,则椭圆的方程可求.【解答】解:由题意设椭圆的方程为.因为椭圆C的右焦点为F(1,0),所以c=1,又离心率等于,即,所以a=2,则b2=a2﹣c2=3.所以椭圆的方程为.故选D.【点评】本题考查了椭圆的标准方程,考查了椭圆的简单性质,属中档题.6.已知等差数列{a n}中,a7+a9=16,a4=1,则a12的值是()A.15 B.30 C.31 D.64【考点】等差数列.【专题】计算题.【分析】利用通项公式求出首项a1与公差d,或利用等差数列的性质求解.【解答】解:解法1:∵{a n}为等差数列,设首项为a1,公差为d,∴a7+a9=a1+6d+a1+8d=2a1+14d=16 ①;a4=a1+3d=1 ②;由①﹣②得a1+11d=15,即a12=15.解法2:由等差数列的性质得,a7+a9=a4+a12,∵a7+a9=16,a4=1,∴a12=a7+a9﹣a4=15.故选:A.【点评】解法1用到了基本量a1与d,还用到了整体代入思想;解法2应用了等差数列的性质:{a n}为等差数列,当m+n=p+q(m,n,p,q∈N+)时,a m+a n=a p+a q.特例:若m+n=2p(m,n,p∈N+),则a m+a n=2a p.7.若变量x,y满足约束条件,则z=2x﹣y的最小值为()A.﹣1 B.0 C.1 D.2【考点】简单线性规划.【专题】不等式的解法及应用.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得A(0,1).∴z=2x﹣y的最小值为2×0﹣1=﹣1.故选:A.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.8.在下列函数中,最小值是2的是()A.(x∈R且x≠0)B.C.y=3x+3﹣x(x∈R)D.)【考点】基本不等式.【专题】计算题.【分析】利用均值定理求函数最值需要满足三个条件即一“正”,二“定”,三“等号”,选项A不满足条件一“正”;选项B、D不满足条件三“等号”,即等号成立的条件不具备,而选项C三个条件都具备【解答】解:当x<0时,y=<0,排除A,∵lgx=在1<x<10无解,∴大于2,但不能等于2,排除B ∵sinx=在0<x<上无解,∴)大于2,但不能等于2,排除D对于函数y=3x+3﹣x,令3x=t,则t>0,y=t+≥2=2,(当且仅当t=1,即x=0时取等号)∴y=3x+3﹣x的最小值为2故选C【点评】本题考察了均值定理求函数最值的方法,解题时要牢记口诀一“正”,二“定”,三“等号”,并用此口诀检验解题的正误9.抛物线x2=4y上与焦点的距离等于4的点的纵坐标是()A.l B.K C.3 D.y﹣1=k(x﹣2)【考点】抛物线的简单性质.【专题】计算题;函数思想;综合法;圆锥曲线的定义、性质与方程.【分析】通过抛物线方程可知其准线方程为y=﹣1,进而利用定义即得结论.【解答】解:由题意,抛物线准线方程为:y=﹣1,设点P在抛物线上,且与焦点的距离等于4,则y P+1=4,即y P=3,故选:C.【点评】本题考查抛物线的简单性质,注意解题方法的积累,属于基础题.10.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=()A.1 B.2 C.4 D.8【考点】等比数列的性质;等比数列的通项公式.【分析】由公比为2的等比数列{a n} 的各项都是正数,且a3a11=16,知.故a7=4=,由此能求出a5.【解答】解:∵公比为2的等比数列{a n} 的各项都是正数,且 a3a11=16,∴.∴a7=4=,解得a5=1.故选A.【点评】本题考查等比数列的通项公式的应用,是基础题.解题时要认真审题,仔细解答.11.从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是()A.B.C.D.【考点】椭圆的简单性质.【专题】计算题;压轴题;圆锥曲线的定义、性质与方程.【分析】依题意,可求得点P的坐标P(﹣c,),由AB∥OP⇒k AB=k OP⇒b=c,从而可得答案.【解答】解:依题意,设P(﹣c,y0)(y0>0),则+=1,∴y0=,∴P(﹣c,),又A(a,0),B(0,b),AB∥OP,∴k AB=k OP,即==,∴b=c.设该椭圆的离心率为e,则e2====,∴椭圆的离心率e=.故选C.【点评】本题考查椭圆的简单性质,求得点P的坐标(﹣c,)是关键,考查分析与运算能力,属于中档题.12.设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2014)2f(x+2014)﹣4f(﹣2)<0的解集为()A.(﹣∞,﹣2012)B.(﹣2012,0) C.(﹣∞,﹣2016)D.(﹣2016,﹣2014)【考点】利用导数研究函数的单调性.【专题】导数的综合应用.【分析】通过观察2f(x)+xf′(x)>x2,不等式的左边像一个函数的导数,又直接写不出来,对该不等式两边同乘以x,∵x<0,∴会得到2xf(x)+x2f′(x)<x3,而这时不等式的左边是(x2f(x))′,所以构造函数F(x)=x2f(x),则能判断该函数在(﹣∞,0)上是减函数.这时F(x+2014)=(x+2014)2f(x+2014),F(﹣2)=4f(﹣2),而到这会发现不等式(x+2014)2f(x+2014)﹣4f(﹣2)<0可以变成F(x+2014)<F(﹣2),从而解这个不等式便可,而这个不等式利用F(x)的单调性可以求解.【解答】解:由2f(x)+xf′(x)>x2,(x<0);得:2xf(x)+x2f′(x)<x3即[x2f(x)]′<x3<0;令F(x)=x2f(x);则当x<0时,F'(x)<0,即F(x)在(﹣∞,0)上是减函数;∴F(x+2014)=(x+2014)2f(x+2014),F(﹣2)=4f(﹣2);即不等式等价为F(x+2014)﹣F(﹣2)<0;∵F(x)在(﹣∞,0)是减函数;∴由F(x+2014)<F(﹣2)得,x+2014>﹣2,∴x>﹣2016;又x+2014<0,∴x<﹣2014;∴﹣2016<x<﹣2014.∴原不等式的解集是(﹣2016,﹣2014).故答案选D.【点评】本题考查函数的单调性与导数的关系,两个函数乘积的导数的求法,而构造函数是解本题的关键.二、填空题:(本题共4个小题,每小题5分,共20分)13.曲线y=x3+x﹣2的一条切线平行于直线y=4x﹣1,则切点P0的坐标为(1,0)或(﹣1,﹣4).【考点】利用导数研究曲线上某点切线方程.【专题】计算题.【分析】先求导函数,然后令导函数等于4建立方程,求出方程的解,即可求出切点的横坐标,从而可求出切点坐标.【解答】解:由y=x3+x﹣2,得y′=3x2+1,由已知得3x2+1=4,解之得x=±1.当x=1时,y=0;当x=﹣1时,y=﹣4.∴切点P0的坐标为(1,0)或(﹣1,﹣4).故答案为:(1,0)或(﹣1,﹣4)【点评】利用导数研究函数的性质是导数的重要应用之一,导数的广泛应用为我们解决函数问题提供了有力的帮助.本小题主要考查利用导数求切点的坐标.14.抛物线y=x2的准线方程是y=﹣1.【考点】抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】先将抛物线方程化为标准方程,进而可求抛物线的准线方程.【解答】解:由题意,抛物线的标准方程为x2=4y,∴p=2,开口朝上,∴准线方程为y=﹣1,故答案为:y=﹣1.【点评】本题的考点是抛物线的简单性质,主要考查抛物线的标准方程,属于基础题.15.函数y=1+3x﹣x3的极大值是3,极小值是﹣1.【考点】利用导数研究函数的极值.【专题】计算题;函数思想;方程思想;转化思想;导数的综合应用.【分析】求导数得y'=﹣3x2+3,从而得到函数的增区间为(﹣1,1),减区间为(﹣∞,﹣1)和(1,+∞).由此算出函数的极大值和极小值,可得M﹣N的值.【解答】解:∵函数y=1+3x﹣x3求导数,得y′=﹣3x2+3,∴令y′=0得x=±1,当x<﹣1时,y'<0;当﹣1<x<1时,y′>0;当x>1时,y′<0∴函数在区间(﹣∞,﹣1)和(1,+∞)上为减函数,在区间(﹣1,1)上为增函数.因此,函数的极大值M=f(1)=3,极小值N=f(﹣1)=﹣1,故答案为:3;﹣1;【点评】本题给出三次多项式函数,求函数的极大值与极小值之差.着重考查了利用导数研究函数的单调性和函数极值求法等知识,属于中档题.16.已知F是双曲线C:x2﹣=1的右焦点,P是C的左支上一点,A(0,6).当△APF周长最小时,该三角形的面积为12.【考点】双曲线的简单性质.【专题】计算题;开放型;圆锥曲线的定义、性质与方程.【分析】利用双曲线的定义,确定△APF周长最小时,P的坐标,即可求出△APF周长最小时,该三角形的面积.【解答】解:由题意,设F′是左焦点,则△APF周长=|AF|+|AP|+|PF|=|AF|+|AP|+|PF′|+2≥|AF|+|AF′|+2(A,P,F′三点共线时,取等号),直线AF′的方程为与x2﹣=1联立可得y2+6y﹣96=0,∴P的纵坐标为2,∴△APF周长最小时,该三角形的面积为﹣=12.故答案为:12.【点评】本题考查双曲线的定义,考查三角形面积的计算,确定P的坐标是关键.三、解答题:(本题共6小题,17题10分,18-22每小题10分,共70分)解答题应给出必要的文字说明,证明过程或演算步骤.)17.(10分)(2015秋•某某期末)设双曲线C的两个焦点为(﹣,0),(),一个顶点(1,0),求双曲线C的方程,离心率及渐近线方程.【考点】双曲线的简单性质.【专题】计算题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】利用双曲线C的两个焦点为(﹣,0),(),一个顶点(1,0),可得a=1,c=,b=1,即可求双曲线C的方程,离心率及渐近线方程.【解答】解:∵双曲线C的两个焦点为(﹣,0),(),一个顶点(1,0),∴a=1,c=,∴b=1,∴双曲线C的方程为x2﹣y2=1,离心率e=,渐近线方程:y=±x.【点评】本题考查双曲线的方程与性质,考查学生的计算能力,正确求出双曲线的几何量是关键.18.(12分)(2013•潍坊模拟)已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m﹣2)x+1=0无实根.若“p或q”为真,“p且q”为假.某某数m的取值X围.【考点】复合命题的真假;一元二次方程的根的分布与系数的关系.【专题】分类讨论;简易逻辑.【分析】根据题意,首先求得p、q为真时m的取值X围,再由题意p,q中有且仅有一为真,一为假,分p假q真与p真q假两种情况分别讨论,最后综合可得答案.【解答】解:由题意p,q中有且仅有一为真,一为假,若p为真,则其等价于,解可得,m>2;若q为真,则其等价于△<0,即可得1<m<3,若p假q真,则,解可得1<m≤2;若p真q假,则,解可得m≥3;综上所述:m∈(1,2]∪[3,+∞).【点评】本题考查命题复合真假的判断与运用,难点在于正确分析题意,转化为集合间的包含关系,综合可得答案.19.(12分)(2014•某某二模)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(1)求角A的大小;(2)若a=4,b+c=8,求△ABC的面积.【考点】余弦定理;正弦定理.【专题】计算题;解三角形.【分析】(1)由正弦定理将已知等式化成角的正弦的形式,化简解出sinA=,再由△ABC是锐角三角形,即可算出角A的大小;(2)由余弦定理a2=b2+c2﹣2bccosA的式子,结合题意化简得b2+c2﹣bc=16,与联解b+c=8得到bc的值,再根据三角形的面积公式加以计算,可得△ABC的面积.【解答】解:(1)∵△ABC中,,∴根据正弦定理,得,∵锐角△ABC中,sinB>0,∴等式两边约去sinB,得sinA=∵A是锐角△ABC的内角,∴A=;(2)∵a=4,A=,∴由余弦定理a2=b2+c2﹣2bccosA,得16=b2+c2﹣2bccos,化简得b2+c2﹣bc=16,∵b+c=8,平方得b2+c2+2bc=64,∴两式相减,得3bc=48,可得bc=16.因此,△ABC的面积S=bcsinA=×16×sin=4.【点评】本题给出三角形的边角关系,求A的大小并依此求三角形的面积,着重考查了正余弦定理的运用和三角形的面积公式等知识,属于中档题.20.(12分)(2015•某某)等差数列{a n}中,a2=4,a4+a7=15.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=2+n,求b1+b2+b3+…+b10的值.【考点】等差数列的性质.【专题】计算题;等差数列与等比数列.【分析】(Ⅰ)建立方程组求出首项与公差,即可求数列{a n}的通项公式;(Ⅱ)b n=2+n=2n+n,利用分组求和求b1+b2+b3+…+b10的值.【解答】解:(Ⅰ)设公差为d,则,解得,所以a n=3+(n﹣1)=n+2;(Ⅱ)b n=2+n=2n+n,所以b1+b2+b3+…+b10=(2+1)+(22+2)+…+(210+10)=(2+22+...+210)+(1+2+ (10)=+=2101.【点评】本题考查等差数列的通项,考查数列的求和,求出数列的通项是关键.21.(12分)(2015秋•某某期末)已知f(x)=ax﹣lnx,x∈(0,e],a∈R.(1)若a=1,求f(x)的极小值;(2)是否存在实数a,使f(x)的最小值为3.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【专题】导数的综合应用.【分析】(1)当a=1时,f(x)=x﹣lnx,f′(x)=1﹣=,利用极值与函数的单调性的关系即可得出;(2)对a分类讨论:当a≤0时,当0<<e时,≥e时,利用导数研究函数的单调性即可得出.【解答】解:(1)当a=1时,f(x)=x﹣lnx,f′(x)=1﹣=,∴当0<x<1时,f′(x)<0,此时f(x)单调递减;当1<x<e时,f′(x)>0,此时f(x)单调递增.∴f(x)的极小值为f(1)=1.(2)假设存在实数a,使f(x)=ax﹣lnx,x∈[0,e]有最小值3,f′(x)=a﹣=,①当a≤0时,f(x)在(0,e]上单调递减,f(x)min=f(e)=ae﹣1=3,a=(舍去),∴此时f(x)最小值不为3;②当0<<e时,f(x)在(0,)上单调递减,在上单调递增,∴f(x)2,满足条件;min==3,解得a=e③≥e时,f′(x)≤0,函数f(x)在(0,e]上单调递减,∴f(x)min=f(e)=ae﹣1=3,解得a=,舍去.综上可得:存在实数a=e2,使得当x∈(0,e]时,f(x)有最小值为3.【点评】本题考查了利用导数研究函数的单调性极值与最值,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.22.(12分)(2015秋•某某期末)如图,椭圆E:+=1(a>b>0)经过点A(0,﹣1),且离心率为.(I)求椭圆E的方程;(II)经过点(1,1),且斜率为k的直线与椭圆E交于不同两点P,Q(均异于点A),问直线AP与AQ的斜率之和是否为定值,若是,求出这个定值;若不是,请说明理由.【考点】椭圆的简单性质.【专题】综合题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)由题意可得b=1,结合椭圆的离心率及隐含条件求得a,则椭圆E的方程可求;(Ⅱ)设出直线PQ的方程,联立直线方程和椭圆方程,然后借助于根与系数的关系整体运算得答案.【解答】解:(Ⅰ)由题意知,b=1,结合a2=b2+c2,解得,∴椭圆的方程为;(Ⅱ)由题设知,直线PQ的方程为y=k(x﹣1)+1 (k≠2),代入,得(1+2k2)x2﹣4k(k﹣1)x+2k(k﹣2)=0,由已知△>0,设P(x1,y1),Q(x2,y2),x1x2≠0,则,,从而直线AP与AQ的斜率之和:==.【点评】本题考查椭圆方程的求法,考查了椭圆的简单性质,涉及直线和圆锥曲线位置关系的问题,常采用联立直线方程和圆锥曲线方程,利用根与系数的关系求解,是中档题.。
高二数学(文科)第一学期期末考试试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共150分.第Ⅰ卷(选择题共60分)一、选择题(每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目 要求的.)1.命题“若b a >,则c b c a +>+”的逆否命题为( ) A .若b a <,则c b c a +<+. B .若b a ≤,则c b c a +≤+. C .若c b c a +<+,则b a <. D .若c b c a +≤+,则b a ≤. 2.抛物线2y x =的焦点坐标是( )A .()1,0B .1,04⎛⎫ ⎪⎝⎭C .10,8⎛⎫ ⎪⎝⎭ D .10,4⎛⎫ ⎪⎝⎭3.命题p :存在实数m ,使方程210x mx ++=有实数根,则“非p ”形式的命题是( )A .存在实数m ,使得方程210x mx ++=无实根. B .不存在实数m ,使得方程210x mx ++=有实根. C .对任意的实数m ,使得方程210x mx ++=有实根. D .至多有一个实数m ,使得方程210x mx ++=有实根.4. 顶点在原点,坐标轴为对称轴的抛物线过点()2,3-,则它的方程是( )A .292x y =-或243y x = B .292y x =-或243x y = C .243x y = D .292y x =-5.函数2221x y x =+的导数是( )A .()()23224141x x x y x +-'=+ B .()()22224141x x x y x +-'=+C .()()23222141x x x y x+-'=+ D .()()2224141x x xy x+-'=+6.若椭圆22110036x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是( )A .4B .194C .94D .147.,,A B C 是三个集合,那么“B A =”是“A C B C =I I ”成立的( ) A .充分非必要条件. B .必要非充分条件. C .充要条件. D .既非充分也非必要条件.8.已知:点()2,3-与抛物线22(0)y px p =>的焦点的距离是5,则p 的值是( )A .2B .4C .8D .16 9.函数32y x x =-+的单调递减区间是( ) A .-∞(,)36-B .36(,)∞+ C .-∞(,36()36Y -,)∞+ D .36(-,)3610.抛物线x y 82=上的点),(00y x 到抛物线焦点的距离为3,则|y 0|=( ) A .2 B .22 C .2 D .411.以坐标轴为对称轴、渐近线互相垂直、两准线间距离为2的双曲线方程是( ) A.222=-y x B .222=-x yC .422=-y x 或422=-x y D .222=-y x 或222=-x y12.已知函数()y f x =的导函数的图象如图甲所示, 则()y f x =的图象可能是( )AB C D第Ⅱ卷(非选择题共90分)二、填空题(每小题6分,共30分.)13.用符号“∀”与“∃”表示含有量词的命题:(1)实数的平方大于等于0. ______________________.(2)存在一对实数,使2x +3y +3>0成立.______________________. 14.离心率35=e ,一条准线为3=x 的椭圆的标准方程是______________________. 15.曲线32x x y -=在点(1,1)处的切线方程为___ _______.16.若直线l 过抛物线()20y ax a =>的焦点,并且与x 轴垂直,若l 被抛物线截得的线段长为4,则a =___ _______.17. 过双曲线822=-y x 的右焦点2F 有一条弦PQ ,7PQ =,1F 是左焦点,那么1F PQ ∆的周长为___ _______.三、解答题(共60分)18.已知命题P :“若,0≥ac 则二次方程02=++c bx ax 没有实根”. (1)写出命题P 的否命题;(4分)(2)判断命题P 的否命题的真假, 并证明你的结论.(6分)19.已知双曲线的一条渐近线方程是20x y -=,若双曲线经过点M ,求双曲线的标准方程.(12分)20.已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),求a 和b 的值.(14分) 21.求59623-+-=x x x y 的单调区间和极值.(10分)22.一段双行道隧道的横截面边界由椭圆的上半部分和矩形的三边组成,如图所示.一辆卡车 运载一个长方形的集装箱,此箱平放在车上与车同宽,车与箱的高度共计4.2米,箱宽3 米,若要求通过隧道时,车体不得超过中线. 试问这辆卡车是否能通过此隧道,请说明理由(14分)高二数学(文科)第一学期期末考试试卷参考答案一、选择题(每小题5分,共60分)二、填空题(每小题6分,共30分)13.(1)2,0x R x ∀∈≥ (2),,2330x y R x y ∃∈++> 14.2212059x y += 15. 20x y +-= 16. 4 17.2814+三、解答题(共60分.)18.已知命题P :“若,0≥ac 则二次方程02=++c bx ax 没有实根”.(1)写出命题P 的否命题;(4分)(2)判断命题P 的否命题的真假, 并证明你的结论.(6分)18.解:(1)命题P的否命题为:“若,0<ac 则二次方程02=++c bx ax 有实根”. (2)命题P 的否命题是真命题.证明:20040ac ac b ac <⇒->⇒∆=->⇒二次方程02=++c bx ax 有实根.∴该命题是真命题.19.已知双曲线的一条渐近线方程是20x y -=,若双曲线经过点M ,求双曲线的标准方程.(12分)解:由已知可知双曲线的两条渐近线为20x y ±=因此可设所求双曲线为()2240x y λλ-=≠ (6分)将M 代入()2240x y λλ-=≠,解得16λ= (4分)∴双曲线方程为22416x y -=∴标准方程为:221164x y -= (2分)20.已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),求a 和b 的值.(14分) 解:∵直线1y kx =+与曲线3y x ax b =++切于点(1,3)∴点(1,3)在直线1y kx =+与曲线3y x ax b =++上 (2分) ∴312k k =+⇒=31a b =++ (4分)又由()323y x ax bxa ''=++=+ (4分)由导数的几何意义可知:1|321x k y a a ='==+=⇒=- (2分) 将1a =-代入31a b =++,解得3b = (2分)21.求59623-+-=x x x y 的单调区间和极值.(10分)解:()3226953129y x x x xx ''=-+-=-+ (2分)令0y '=,即231290x x -+=,解得31x x ==或 (2分) 当0y '>时,即231290x x -+>,解得13x x <>或,函数59623-+-=x x x y 单调递增; (2分)当0y '<时,即231290x x -+<,解得13x <<,函数59623-+-=x x x y 单调递减; (2分)综上所述,函数59623-+-=x x x y 的单调递增区间是()(),13,-∞+∞或,单调递减区间是()1,3;当1x =时取得极大值1-,当3x =时取得极小值5-。
2017—2018学年度第一学期高二数学期末考试题文科(提高班)选择题(每题5分, 共60分)1.在相距2km的A、B两点处测量目标C, 若∠CAB=75°, ∠CBA=60°, 则A、C两点之间的B. 3 km距离是()A. 2 kmA.2kmC. kmD. 3 km2. 已知椭圆()的左B.4C.3D.2焦点为,则()A.93. 在等差数列中,,则B. 15C. 20D. 25的前5项和=()A.74. 某房地产公司要在一块圆形的土地上,设计一B. 100m2C. 200m2D. 250m2个矩形的停车场.若圆的半径为10m,则这个矩形的面积最大值是()A. 50m2A.50m25. 如图所示, 表示满足不等式的点所在的平面区域为()B .C .D .A .6. 焦点为(0, ±6)且与双曲线有相同渐近线的双曲线方程是()B .A .C .D .7. 函数的导数为()B .A .C .D .8. 若<<0, 则下列结论正确的是()B .A. bA .bC. -2D .9. 已知命题: 命题.则下列判断正确的是()B. q是真命题A. p是假命题A.p是假命题C. 是真命题D. 是真命题10. 某观察站B. 600米C. 700米D. 800米与两灯塔、的距离分别为300米和500米, 测得灯塔在观察站北偏东30 , 灯塔在观察站正西方向, 则两灯塔、间的距离为()A. 500米A.500米11. 方程表示的曲线为()A. 抛物线A.抛物线B. 椭圆 C. 双曲线D.圆12. 已知数列的前项和为, 则的值是()A. -76A.-76B. 76C. 46D. 13二、填空题(每题5分, 共20分)13.若, , 是实数, 则的最大值是_________14.过抛物线的焦点作直线交抛物线于、两点, 如果, 那么=___________.15.若双曲线的顶点为椭圆长轴的端点, 且双曲线的离心率与该椭圆的离心率的积为1, 则双曲线的方程是____________.16.直线是曲线y=l.x(x>0)的一条切线,则实数b=___________2017—2018学年度第一学期高二数学期末考试文科数学(提高班)答题卡二、填空题(共4小题, 每题5分)13. 2 14、 815. 16.三、解答题(共6小题, 17题10分, 其他每小题12分)17.已知数列(Ⅰ)求数列的通项公式;(Ⅱ)求证数列是等比数列;18.已知不等式组的解集是, 且存在, 使得不等式成立.(Ⅰ)求集合;(Ⅱ)求实数的取值范围.19.某公司生产一种电子仪器的固定成本为20000元, 每生产一台仪器需增加投入100元, 已知总收益满足函数:(其中是仪器的月产量).(1)将利润表示为月产量的函数;(2)当月产量为何值时, 公司所获利润最大?最大利润为多少元?(利润=总收益-总成本)20.根据下列条件, 求双曲线的标准方程.(1)经过点, 且一条渐近线为;(2) 与两个焦点连线互相垂直, 与两个顶点连线的夹角为.21.已知函数在区间上有最小值1和最大值4, 设.(1)求的值;(2)若不等式在区间上有解, 求实数k的取值范围.22.已知函数().(1)求曲线在点处的切线方程;(2)是否存在常数, 使得, 恒成立?若存在, 求常数的值或取值范围;若不存在, 请说明理由.文科(提高班)选择题(每题5分, 共60分)1.考点: 1. 2 应用举例试题解析:由题意, ∠ACB=180°-75°-60°=45°, 由正弦定理得=, 所以AC=·sin60°=(km).答案:C2.考点: 2. 1 椭圆试题解析:, 因为, 所以, 故选C.答案:C3.考点: 2. 5 等比数列的前n项和试题解析: .答案:B4.考点: 3. 3 二元一次不等式(组)与简单的线性规划问题试题解析:如图,设矩形长为, 则宽为,所以矩形面积为 , 故选C答案: C5.考点:3..二元一次不等式(组)与简单的线性规划问题试题解析: 不等式等价于或作出可行域可知选B答案: B6.考点: 2. 2 双曲线试题解析:与双曲线有共同渐近线的双曲线方程可设为,又因为双曲线的焦点在y轴上,∴方程可写为.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12.∴双曲线方程为.答案:B7.考点: 3. 2 导数的计算试题解析:, 故选B.答案:B8.考点: 3. 1 不等关系与不等式试题解析:根据题意可知, 对两边取倒数的得, 综上可知, 以此判断:A.正确;因为:, 所以:, B错误;, 两个正数相加不可能小于, 所以C错误;, D错误, 综上正确的应该是A.答案:A9.考点: 1. 3 简单的逻辑联结词试题解析:当时, (当且仅当, 即时取等号), 故为真命题;令, 得, 故为假命题, 为真命题;所以是真命题.答案:C10.考点: 1. 2 应用举例试题解析:画图可知在三角形ACB中, , , 由余弦定理可知, 解得AB=700.答案:C11.考点: 2. 1 椭圆试题解析:方程表示动点到定点的距离与到定直线的距离, 点不在直线上, 符合抛物线的定义;答案:A12.考点: 2. 3 等差数列的前n项和试题解析:由已知可知:, 所以, , , 因此, 答案选A.答案:A二. 填空题(每题5分, 共20分)13.考点: 3. 4 基本不等式试题解析:, , 即,则, 化简得, 即, 即的最大值是2.答案:214.考点: 2. 3 抛物线试题解析:根据抛物线方程知, 直线过焦点, 则弦, 又因为, 所以.答案:815.考点: 2. 2 双曲线试题解析:椭圆长轴的端点为, 所以双曲线顶点为, 椭圆离心率为,所以双曲线离心率为, 因此双曲线方程为答案:16.考点: 3. 2 导数的计算试题解析:设曲线上的一个切点为(m, n), , ∴,∴.答案:三、解答题(共6小题, 17题10分, 其他每小题12分)17.考点: 2. 3 等差数列的前n项和试题解析: (Ⅰ)设数列由题意得:解得:(Ⅱ)依题,为首项为2, 公比为4的等比数列(Ⅲ)由答案: (Ⅰ)2n-1;(Ⅱ)见解析;(Ⅲ){1, 2, 3, 4}18.考点: 3. 2 一元二次不等式及其解法试题解析:(Ⅰ)解得;(Ⅱ)令, 由题意得时, .当即, (舍去)当即, .综上可知, 的取值范围是.答案: (Ⅰ);(Ⅱ)的取值范围是19.考点: 3. 4 生活中的优化问题举例试题解析:(1)(2)当时,∴当时, 有最大值为当时,是减函数,∴当时, 的最大值为答:每月生产台仪器时, 利润最大, 最大利润为元.答案:(1);(2)每月生产台仪器时, 利润最大, 最大利润为元20.考点: 双曲线试题解析:(1)由于双曲线的一条渐近线方程为设双曲线的方程为()代入点得所以双曲线方程为(2)由题意可设双曲线的方程为则两焦点为, 两顶点为由与两个焦点连线垂直得, 所以由与两个顶点连线的夹角为得, 所以, 则所以方程为21.考点: 3. 2 一元二次不等式及其解法试题解析: (1), 因为, 所以在区间上是增函数,故, 解得.(2)由已知可得, 所以, 可化为,化为, 令, 则, 因, 故,记, 因为, 故,所以的取值范围是22.考点: 3. 3 导数在研究函数中的应用试题解析:(1), 所求切线的斜率所求切线方程为即(2)由, 作函数,其中由上表可知, , ;,由, 当时, , 的取值范围为, 当时, , 的取值范围为∵, 恒成立, ∴答案:(1)(2)存在, , 恒成立100.在中, 角所对的边分别为, 且满足, .(.)求的面积;(II)若, 求的值.46.考点: 正弦定理余弦定理试题解析:(Ⅰ)又, , 而, 所以, 所以的面积为:(Ⅱ)由(Ⅰ)知, 而, 所以所以答案: (1)2(2)。
2015-2016学年某某省某某市华中师大一附中高二(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是满足题目要求的1.在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()A.B.C.D.2.若方程x2+y2+x﹣y+m2=0表示圆,则实数m的取值X围是()A.B.C.D.3.某学校准备调查高三年级学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机对24名同学进行调查;第二种由教务处对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,则这两种抽样方式依次为()A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样4.从数字1,2,3,4,5这5个数中,随机抽取2个不同的数,则这两个数的和为奇数的概率是()A.B.C.D.5.直线(t为参数)被圆x2+y2=4截得的弦长等于()A.B.C.D.6.如图,F1,F2是双曲线C1:x2﹣=1与椭圆C2的公共焦点,点A是C1,C2在第一象限的公共点.若|F1F2|=|F1A|,则C2的离心率是()A.B.C.D.7.下列正确的个数是()(1)在频率分布直方图中,中位数左边和右边的直方图的面积相等.(2)如果一组数中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变.(3)一个样本的方差是S2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组数据等总和等于60.(4)数据a1,a2,a3,…,a n的方差为σ2,则数据2a1,2a2,2a3,…,2a n的方差为4σ2.A.4 B.3 C.2 D.18.计算机是将信息转化为二进制数处理的,二进制即“逢二进一”如1101(2)表示二进制数,将它转化为十进制数为1×23+1×22+0×21+1×20=13,那么二进制数转化为十进制数为()A.22017﹣1 B.22016﹣1 C.22015﹣1 D.22014﹣19.直线与曲线x2﹣y|y|=1的交点个数为()A.0 B.1 C.2 D.310.记集合A={(x,y)|x2+y2≤16},集合B={(x,y)|x+y﹣4≤0,(x,y)∈A}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点P(x,y),则点P落在区域Ω2中的概率为()A.B.C.D.11.正四面体的四个面上分别写有数字0,1,2,3,把两个这样的四面体抛在桌面上,露在外面的6个数字为2,0,1,3,0,3的概率为()A.B.C.D.12.双曲线的左、右焦点分别为F1、F2离心率为e.过F2的直线与双曲线的右支交于A、B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则e2的值是()A.1+2B.3+2C.4﹣2D.5﹣2二、填空题:本大题共4小题,每小题5分,共20分x 1 2 3 4y 1 3 5 7则y与x的线性回归方程为必过点.14.抛掷两颗质量均匀的骰子各一次,其中恰有一个点数为2的概率为.15.在极坐标系中,定点A(2,0),点B在直线ρcosθ+ρsinθ=0上运动,当线段AB最短时,点B的极坐标为.16.如图是计算++…+的值的程序框图,其中在判断框中应填入的条件是:i <.三、解答题:本大题共6小题,共70分,其中第17题10分,18至22题每题12分.解答应写出文字说明、证明过程或演算步骤17.已知以点C为圆心的圆经过点A(﹣1,0)和B(3,4),且圆心C在直线x+3y﹣15=0上.(1)求圆C的方程;(2)设点P在圆C上,求Rt△PAB的面积.18.某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,据此解答下列问题:(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高(保留四位小数).19.随着机动车数量的迅速增加,停车难已是很多小区共同面临的问题.某小区甲、乙两车共用一停车位,并且都要在该泊位停靠8小时,假定它们在一昼夜的时间段中随机到达,试求两车中有一车在停泊位时,另一车必须等待的概率.20.某高中采取分层抽样的方法从应届高二学生中按照性别抽出20名学生作为样本,其选报文科理科的情况如下表所示.男女性别科目文科 2 5理科10 3(1)若在该样本中从报考文科的男生和报考理科的女生中随机地选出3人召开座谈会,试求3人中既有男生也有女生的概率;(2)用独立性检验的方法分析有多大的把握认为该中学的高三学生选报文理科与性别有关?(参考公式和数据:χ2=(其中n=a+b+c+d))21.三棱锥A﹣BCD中,△BCD、△ACD均为边长为2的正三角形,侧棱,现对其四个顶点随机贴上写有数字1至8的8个标签中的4个,并记对应的标号为f(η)(η取值为A、B、C、D),E为侧棱AB上一点(1)求事件“f(C)+f(D)为偶数”的概率p1;(2)若|BE|:|EA|=f(B):f(A),求二面角E﹣CD﹣A的平面角θ大于的概率p2.22.在平面直角坐标系xOy中,已知点,,E为动点,且直线EA与直线EB的斜率之积为λ(λ≠0)(1)求动点E的轨迹方程,若动点E的轨迹和点A、B合并构成曲线C,讨论曲线C的形状;(2)当λ=﹣时,记曲线C的右焦点为F2,过点F2的直线l1,l2分别交曲线C于点P,Q和点M,N(点P、M、Q、N按逆时针顺序排列),且l1⊥l2,求四边形PMQN面积的最值.2015-2016学年某某省某某市华中师大一附中高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是满足题目要求的1.在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()A.B.C.D.【考点】确定直线位置的几何要素.【专题】数形结合.【分析】本题是一个选择题,按照选择题的解法来做题,由y=x+a得斜率为1排除B、D,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上;若y=ax 递减,则y=x+a与y轴的交点在y轴的负半轴上,得到结果.【解答】解:由y=x+a得斜率为1排除B、D,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上;故选C.【点评】本题考查确定直线为主的几何要素,考查斜率和截距对于一条直线的影响,是一个基础题,这种题目也可以出现在直线与圆锥曲线之间的图形的确定.2.若方程x2+y2+x﹣y+m2=0表示圆,则实数m的取值X围是()A.B.C.D.【考点】圆的一般方程.【专题】计算题;规律型;方程思想;直线与圆.【分析】由二元二次方程表示圆的条件得到m的不等式,解不等式即可得到结果.【解答】解:方程x2+y2+x﹣y+m2=0表示一个圆,则1+1﹣4m2>0,∴.故选:B.【点评】本题考查二元二次方程表示圆的条件,属基础知识的考查,本题解题的关键是看清楚所表示的二元二次方程的各个系数之间的关系.3.某学校准备调查高三年级学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机对24名同学进行调查;第二种由教务处对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,则这两种抽样方式依次为()A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样【考点】简单随机抽样;系统抽样方法.【分析】根据抽样的不同方式,选择合适的名称,第一种是简单随机抽样,第二种编号,选择学号最后一位为3的同学,这种抽样是系统抽样.【解答】解:学生会的同学随机对24名同学进行调查,是简单随机抽样,对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,是系统抽样,故选D【点评】抽样包括简单随机抽样、分层抽样、系统抽样,根据条件选择合适的抽样方法,抽样过程中每个个体被抽到的可能性相同,这是解决一部分抽样问题的依据,4.从数字1,2,3,4,5这5个数中,随机抽取2个不同的数,则这两个数的和为奇数的概率是()A.B.C.D.【考点】古典概型及其概率计算公式.【专题】计算题;对应思想;综合法;概率与统计.【分析】分别求出所有的基本事件个数和符合条件的基本事件个数,使用古典概型的概率计算公式求出概率.【解答】解:从5个数字中随机抽取2个不同的数字共有=10种不同的抽取方法,而两数字和为偶数则必然一奇一偶,共有×=6种不同的抽取方法,∴两个数的和为奇数的概率P==.故选C.【点评】本题考查了古典概型的概率公式,通常使用列举法来计算,有时也可用排列组合公式来解决.5.直线(t为参数)被圆x2+y2=4截得的弦长等于()A.B.C.D.【考点】直线与圆相交的性质.【专题】计算题;方程思想;综合法;直线与圆.【分析】直线化为普通方程,求出圆心到直线的距离,利用勾股定理求出弦长.【解答】解:直线(t为参数)的普通方程为x﹣2y+3=0,圆心到直线的距离d=,∴直线(t为参数)被圆x2+y2=4截得的弦长等于2=.故选:A.【点评】本题考查直线的参数方程,考查直线与圆的位置关系,考查学生的计算能力,比较基础.6.如图,F1,F2是双曲线C1:x2﹣=1与椭圆C2的公共焦点,点A是C1,C2在第一象限的公共点.若|F1F2|=|F1A|,则C2的离心率是()A.B.C.D.【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】利用双曲线的定义,可求出|F2A|=2,|F1F2|=4,进而有|F1A|+|F2A|=6,由此可求C2的离心率.【解答】解:由题意知,|F1F2|=|F1A|=4,∵|F1A|﹣|F2A|=2,∴|F2A|=2,∴|F1A|+|F2A|=6,∵|F1F2|=4,∴C2的离心率是=.故选B.【点评】本题考查椭圆、双曲线的几何性质,考查学生的计算能力,正确运用椭圆、双曲线的几何性质是关键.7.下列正确的个数是()(1)在频率分布直方图中,中位数左边和右边的直方图的面积相等.(2)如果一组数中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变.(3)一个样本的方差是S2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组数据等总和等于60.(4)数据a1,a2,a3,…,a n的方差为σ2,则数据2a1,2a2,2a3,…,2a n的方差为4σ2.A.4 B.3 C.2 D.1【考点】众数、中位数、平均数;极差、方差与标准差.【专题】计算题.【分析】根据频率分步直方图中中位数的求法知(1)正确,根据平均数和方差的特点知(2)正确.根据方差的公式知(3)正确,根据方差的性质知(4)正确.【解答】解:在频率分布直方图中,中位数左边和右边的直方图的面积相等,故(1)正确,如果一组数中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变,故(2)正确,一个样本的方差是S2=[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2],则这组数据等总和等于20×3=60,故(3)正确,数据a1,a2,a3,…,a n的方差为σ2,则数据2a1,2a2,2a3,…,2a n的方差为4σ2.故(4)正确.综上可知4个命题都正确,故选A.【点评】本题考查众数,中位数,平均数和方差,本题解题的关键是理解这几个特征数的特点与求法,本题是一个基础题.8.计算机是将信息转化为二进制数处理的,二进制即“逢二进一”如1101(2)表示二进制数,将它转化为十进制数为1×23+1×22+0×21+1×20=13,那么二进制数转化为十进制数为()A.22017﹣1 B.22016﹣1 C.22015﹣1 D.22014﹣1【考点】进位制.【专题】转化思想;转化法;等差数列与等比数列;算法和程序框图.【分析】根据二进制与十进制的换算关系,把二进制数转化为十进制数,再用等比数列求和得出结果.【解答】解:根据题意,二进制数转化为十进制数为1×22015+1×22014+…+1×22+1×21+1×20=22015+22014+…+22+2+1==22016﹣1.故选:B.【点评】本题主要考查了二进制、等比数列的前n项和公式的应用问题,二进制转换为十进制方法:按权重相加法,即将二进制每位上的数乘以权(即该数位上的1表示2的多少次方),然后相加之和即是十进制数.9.直线与曲线x2﹣y|y|=1的交点个数为()A.0 B.1 C.2 D.3【考点】直线与圆锥曲线的关系.【专题】计算题;规律型;数形结合;转化思想;圆锥曲线的定义、性质与方程.【分析】作出曲线x2﹣y|y|=1的图形,画出y=x+的图形,即可得出结论.【解答】解:当y≥0时,曲线方程为x2﹣y2=1,图形为双曲线在x轴的上侧部分;当y<0时,曲线方程为y2+x2=1,图形为圆在x轴的下方部分;如图所示,∵y=x+与y2+x2=1相交,渐近线方程为y=±x∴直线y=x+与曲线x2﹣y2=1的交点个数为0.故选:B.【点评】本题考查直线与圆锥曲线的关系,题目中所给的曲线是部分双曲线的椭圆组成的图形,只要注意分类讨论就可以得出结论,本题是一个基础题.10.记集合A={(x,y)|x2+y2≤16},集合B={(x,y)|x+y﹣4≤0,(x,y)∈A}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点P(x,y),则点P落在区域Ω2中的概率为()A.B.C.D.【考点】几何概型.【专题】概率与统计.【分析】由题意,根据几何概型的公式,只要求出平面区域Ω1,Ω2的面积,利用面积比求值.【解答】解:由题意,两个区域对应的图形如图,其中,,由几何概型的公式可得点P落在区域Ω2中的概率为;故选B.【点评】本题考查了几何概型的概率求法,解答本题的关键是分别求出平面区域Ω1,Ω2的面积,利用几何概型公式求值.11.正四面体的四个面上分别写有数字0,1,2,3,把两个这样的四面体抛在桌面上,露在外面的6个数字为2,0,1,3,0,3的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【专题】转化思想;综合法;概率与统计.【分析】露在外面的6个数字为2,0,1,3,0,3,则向下的数字分别为1和2,求出所有的基本事件个数和向下数字为1和2的基本事件个数,代入概率公式即可.【解答】解:抛两个正四面体,共有4×4=16个基本事件,向下数字为1与2的基本事件共有2个,分别是(1,2)和(2,1),∴向下数字为1与2的概率P==.故选C.【点评】本题考查了古典概型的概率计算,将所求问题转化为向下数字为1和2是解题关键.12.双曲线的左、右焦点分别为F1、F2离心率为e.过F2的直线与双曲线的右支交于A、B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则e2的值是()A.1+2B.3+2C.4﹣2D.5﹣2【考点】双曲线的简单性质.【专题】计算题;压轴题.【分析】设|AF1|=|AB|=m,计算出|AF2|=(1﹣)m,再利用勾股定理,即可建立a,c的关系,从而求出e2的值.【解答】解:设|AF1|=|AB|=m,则|BF1|=m,|AF2|=m﹣2a,|BF2|=m﹣2a,∵|AB|=|AF2|+|BF2|=m,∴m﹣2a+m﹣2a=m,∴4a=m,∴|AF2|=(1﹣)m,∵△AF1F2为Rt三角形,∴|F1F2|2=|AF1|2+|AF2|2∴4c2=(﹣)m2,∵4a=m∴4c2=(﹣)×8a2,∴e2=5﹣2故选D.【点评】本题考查双曲线的标准方程与性质,考查双曲线的定义,解题的关键是确定|AF2|,从而利用勾股定理求解.二、填空题:本大题共4小题,每小题5分,共20分13.已知x与y之间的一组数据:x 1 2 3 4y 1 3 5 7则y与x的线性回归方程为必过点(2.5,2).【考点】线性回归方程.【专题】计算题;规律型;概率与统计.【分析】求出样本中心即可得到结果.【解答】解:由题意可知:==2.5.=2.y与x的线性回归方程为必过点(2.5,2).故答案为:(2.5,2).【点评】本题考查回归直线方程的应用,样本中心的求法,考查计算能力.14.抛掷两颗质量均匀的骰子各一次,其中恰有一个点数为2的概率为.【考点】古典概型及其概率计算公式.【专题】计算题;对应思想;综合法;概率与统计.【分析】求出所有的基本事件个数和符合要求的事件个数,代入古典概型的概率公式即可.【解答】解:抛掷两颗质量均匀的骰子各一次共有6×6=36个基本事件,其中恰有一个点数为2的事件共有10个,分别是(2,1),(2,3),(2,4),(2,5),(2,6),(1,2),(3,2),(4,2),(5,2),(6,2),∴恰有一个点数为2的概率P==.故答案为.【点评】本题考查了古典概型的概率计算,属于基础题.15.在极坐标系中,定点A(2,0),点B在直线ρcosθ+ρsinθ=0上运动,当线段AB最短时,点B的极坐标为(1,).【考点】简单曲线的极坐标方程.【专题】计算题;转化思想;综合法;坐标系和参数方程.【分析】求出动点B在直线x+y=0上运动,当线段AB最短时,直线AB垂直于直线x+y=0,由此能求出点B的极坐标.【解答】解:∵x=ρcosθ,y=ρsinθ,代入直线ρcosθ+ρsinθ=0,可得x+y=0…①,∵在极坐标系中,定点A(2,0),∴在直角坐标系中,定点A(2,0),∵动点B在直线x+y=0上运动,∴当线段AB最短时,直线AB垂直于直线x+y=0,∴k AB=,设直线AB为:y=(x﹣2),即x﹣﹣2=0,…②,联立方程①②求得交点B(),∴ρ==1,tan==﹣,∴θ=.∴点B的极坐标为(1,).故答案为:(1,).【点评】本题考查点的极坐标的求法,是基础题,解题时要认真审题,注意极坐标和直角坐标互化公式的合理运用.16.如图是计算++…+的值的程序框图,其中在判断框中应填入的条件是:i<10.【考点】程序框图.【专题】算法和程序框图.【分析】模拟程序框图的运行过程,得出该题是当型循环结构,应先判断是否满足条件,再执行循环体,共执行了9次循环运算,从而得出结论.【解答】解:模拟程序框图的运行过程,知赋值i=1,m=0,n=0.判断满足条件,执行i=1+1=2,m=0+1=1,n=0+;判断满足条件,执行i=2+1=3,m=1+1=2,n=+;判断满足条件,执行i=3+1=4,m=2+1=3,n=++;判断满足条件,执行i=4+1=5,m=3+1=4,n=+++;…判断满足条件,执行i=9+1=10,m=8+1=9,n=+++…+;判断不满足条件,输出n=+++…+,算法结束.由此看出i=10时不满足10<10.所以判断框中的条件应是i<10.故答案为:i<10.【点评】本题考查了程序框图的应用问题,解题时应根据题意,模拟程序框图的运行过程,以便得出正确的结果,是基础题三、解答题:本大题共6小题,共70分,其中第17题10分,18至22题每题12分.解答应写出文字说明、证明过程或演算步骤17.已知以点C为圆心的圆经过点A(﹣1,0)和B(3,4),且圆心C在直线x+3y﹣15=0上.(1)求圆C的方程;(2)设点P在圆C上,求Rt△PAB的面积.【考点】圆的标准方程.【专题】计算题;方程思想;数形结合法;直线与圆.【分析】(1)圆心C为AB的垂直平分线和直线x+3y﹣15的交点,解之可得C(﹣3,6),由距离公式可得半径,进而可得所求圆C的方程;(2)求出|AB|,由题意可得角A或角B为直角,可知Rt△PAB的斜边长为圆的直径,由勾股定理求得另一直角边长,则Rt△PAB的面积可求.【解答】解:(1)依题意所求圆的圆心C为AB的垂直平分线和直线x+3y﹣15=0的交点,∵AB的中点为(1,2),斜率为=1,∴AB的垂直平分线的方程为y﹣2=﹣(x﹣1),即y=﹣x+3,联立,解得,即圆心C(﹣3,6).∴半径r=.∴所求圆C的方程为(x+3)2+(y﹣6)2=40;(2)如图,|AB|=,PA或PB为圆的直径,等于,∴Rt△PAB的另一条直角边为,∴Rt△PAB的面积为×4×8=32.【点评】本题考查圆的标准方程的求法,考查了直线与圆的性质,训练了数形结合的解题思想方法,属中档题.18.某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,据此解答下列问题:(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高(保留四位小数).【考点】茎叶图;频率分布直方图.【专题】数形结合;数学模型法;概率与统计.【分析】(1)利用茎叶图和频率分布直方图确定分数在[50,60)的面积,然后求出对应的频率和人数.(2)利用茎叶图计算出分数在[80,90)之间的人数,以及对应的频率,然后计算出对应矩形的高【解答】解:(1)由茎叶图可知分数在[50,60)的人数为3人,分数在[50,60)的矩形的面积为0.0125×10=0.125,即分数在[50,60)的频率为0.125;设全班人数为n人,则=0.125,解得n=24(人);(2)则分数在[80,90)之间的人数为24﹣(3+7+10+2)=2人.则对应的频率为=,所以=≈0.0083,即频率分布直方图中[80,90)间的矩形的高为0.0083.【点评】本题考查了茎叶图和频率分布直方图的识别和应用问题,是基础题目.19.随着机动车数量的迅速增加,停车难已是很多小区共同面临的问题.某小区甲、乙两车共用一停车位,并且都要在该泊位停靠8小时,假定它们在一昼夜的时间段中随机到达,试求两车中有一车在停泊位时,另一车必须等待的概率.【考点】几何概型.【专题】数形结合;数学模型法;概率与统计.【分析】先确定概率类型是几何概型中的面积类型,再设甲到x点,乙到y点,建立甲先到,乙先到满足的条件,再画出并求解0<x<24,0<y<24可行域面积,再求出满足条件的可行域面积,由此求出概率.【解答】解:设甲、乙两车达泊位的时刻分别为x,y.则作出如图所示的区域:区域D的面积S1=242,区域d的面积S2=242﹣162.∴P===.即两车中有一车在停泊位时另一车必须等待的概率为.【点评】本题主要考查了建模与解模能力,解答时应利用线性规划作出事件对应的平面区域,再利用几何概型概率公式求出对应事件的概率.20.某高中采取分层抽样的方法从应届高二学生中按照性别抽出20名学生作为样本,其选报文科理科的情况如下表所示.男女性别科目文科 2 5理科10 3(1)若在该样本中从报考文科的男生和报考理科的女生中随机地选出3人召开座谈会,试求3人中既有男生也有女生的概率;(2)用独立性检验的方法分析有多大的把握认为该中学的高三学生选报文理科与性别有关?(参考公式和数据:χ2=(其中n=a+b+c+d))【考点】独立性检验.【专题】计算题;概率与统计.【分析】(1)由题意知本题是一个古典概型,求出事件发生所包含的事件和符合条件的事件数,得到概率.(2)根据所给的表格中的数据,代入求观测值的公式,求出观测值同临界值进行比较,得到有95%以上的把握认为学生选报文理科与性别有关.【解答】解:(1)从报考文科的2名男生,报考理科的3名女生中任取3人,有=10种,其中全是女生的情况只有1种,∴求3人中既有男生也有女生的概率为1﹣=;(2)χ2== 4.43>3.841,可知有95%以上的把握认为学生选报文理科与性别有关.【点评】本题是一个概率与统计的综合题目,是一个考查的比较全面的解答题,这种题目可以出现在大型考试中,解决本题是要注意列举做到不重不漏.21.三棱锥A﹣BCD中,△BCD、△ACD均为边长为2的正三角形,侧棱,现对其四个顶点随机贴上写有数字1至8的8个标签中的4个,并记对应的标号为f(η)(η取值为A、B、C、D),E为侧棱AB上一点(1)求事件“f(C)+f(D)为偶数”的概率p1;(2)若|BE|:|EA|=f(B):f(A),求二面角E﹣CD﹣A的平面角θ大于的概率p2.【考点】几何概型.【专题】分类讨论;数形结合法;概率与统计.【分析】(1)用M1表示“f(C)和f(D)均为奇数”,M2表示“f(C)和f(D)均为偶数”,计算P(M1)与P(M2)的值,再求“f(C)+f(D)为偶数”的概率P1=P(M1)+P(M2);(2)画出图形,结合图形,找出二面角E﹣CD﹣A的平面角θ,计算θ=时的值,θ>时的值,讨论f(B)=1、2或大于等于3时,f(A)的可能取值,从而求出P2的值.【解答】解:(1)用M1表示“f(C)+f(D)为奇数”,M2表示“f(C)+f(D)为偶数”,由题意知,P(M1)==,P(M2)==;记“f(C)+f(D)为偶数”为事件Q,则Q=M1+M2,所以P1=P(M1)+P(M2)=;…4分(2)如图,取CD中点F,连结BF、AF、EF,因为△BCD、△ACD均为边长为2的正三角形,所以AF⊥CD,BF⊥CD,因此CD⊥平面ABF,所以∠AFE为二面角E﹣CD﹣A的平面角θ;…6分又AF=BF==AB,所以∠AFB=;若θ=,则∠EFB=﹣=,此时====+1,所以θ>即>+1;…8分当f(B)=1时,f(A)≥3,所以f(A)可取3,4,5,6,7,8共6个值;当f(B)=2时,f(A)≥6,所以f(A)可取6,7,8共3个值;当f(B)≥3时,f(A)≥9,所以f(A)不存在;所以P2==.…12分【点评】本题考查了概率的计算与应用问题,考查了数形结合法与分类讨论思想的应用问题,是全国高中数学竞赛题目,属于难题.22.在平面直角坐标系xOy中,已知点,,E为动点,且直线EA与直线EB的斜率之积为λ(λ≠0)(1)求动点E的轨迹方程,若动点E的轨迹和点A、B合并构成曲线C,讨论曲线C的形状;(2)当λ=﹣时,记曲线C的右焦点为F2,过点F2的直线l1,l2分别交曲线C于点P,Q和点M,N(点P、M、Q、N按逆时针顺序排列),且l1⊥l2,求四边形PMQN面积的最值.【考点】轨迹方程.【专题】综合题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】(1)设动点E的坐标为(x,y),由点点,,E为动点,且直线EA与直线EB的斜率之积为λ(λ≠0),知•=λ(λ≠0),由此能求出动点E的轨迹C的方程.(2)分斜率存在与存在分别讨论,利用直线与椭圆联立,根据韦达定理及弦长公式,确定面积的表达式,即可求得结论.【解答】解:(1)设动点E的坐标为(x,y),∵点,,E为动点,且直线EA与直线EB的斜率之积为λ(λ≠0),∴•=λ(λ≠0),整理,得x2﹣=2,x≠±,∴动点E的轨迹C的方程为﹣=1.λ=﹣1,曲线C表示圆;λ<﹣1,焦点在y轴上的椭圆;﹣1<λ<0,焦点在x轴上的椭圆;λ>0,焦点在x轴上的双曲线;(2)当λ=﹣时,记曲线C:+y2=1的右焦点为F2(1,0)(ⅰ)若l1与l2中一条斜率不存在,另一条斜率为0,则S==2…(ⅱ)若l1与l2得斜率均存在,设l1:y=k(x﹣1)与椭圆方程联立,消去y可得(1+2k2)x2﹣4k2x+2k2﹣2=0,设P(x1,y1),Q(x2,y2),则x1+x2=,x1x2=∴|PQ|=|x1﹣x2|=同理可得|MN|=…S=|PQ||MN|==由≥2,得…由(ⅰ)(ⅱ)知,S min=,S max=2 (12)【点评】本题考查动点的轨迹方程的求法,考查直线与椭圆的位置关系,考查韦达定理的运用,正确表示四边形PMQN的面积是关键.。
高二(上)期末数学试卷一、单项选择(每小题5分,共计60分)1.(5分)在△ABC中,已知A=60°,a=4,b=4,则∠B的度数是()A.135°B.45°C.75°D.45°或135°2.(5分)若△ABC的三个内角A,B,C满足sinA:sinB:sinC=5:12:13,则△ABC一定是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定3.(5分)已知等比数列{a n}满足a2=4,a6=64,则a4=()A.﹣16 B.16 C.±16 D.324.(5分)已知等差数列{a n}中,a5+a9=2,则S13=()A.11 B.12 C.13 D.145.(5分)若a<b<0,则下列不等式中成立的是()A.|a|>﹣b B.C.D.6.(5分)等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.2607.(5分)设变量x,y满足,则2x+3y的最大值为()A.20 B.35 C.45 D.558.(5分)设集合A={x|x﹣2>0},B={x|x2﹣2x>0},则“x∈A”是“x∈B”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件9.(5分)命题“∀x∈R,x3﹣x2+1≤0”的否定是()A.不存在x∈R,x3﹣x2+1≤0 B.∃x0∈R,x03﹣x02+1≥0C.∃x0∈R,x03﹣x02+1>0 D.∀x∈R,x3﹣x2+1>010.(5分)椭圆上的一点M到左焦点F1的距离为2,N是MF1的中点,则ON为()A.2 B.C.8 D.411.(5分)如果椭圆+=1的弦被点(4,2)平分,则这条弦所在的直线方程是()A.x﹣2y=0 B.x+2y﹣4=0 C.2x+3y﹣12=0 D.x+2y﹣8=012.(5分)已知点F1、F2分别是椭圆+=1(k>﹣1)的左、右焦点,弦AB过点F1,若△ABF2的周长为8,则椭圆的离心率为()A.B.C.D.二、填空题(每小题5分,共计20分)13.(5分)设x>0,y>0且x+2y=1,求+的最小值.14.(5分)过椭圆的左焦点F1作直线l交椭圆于A,B两点,F2是椭圆右焦点,则△ABF2的周长为.15.(5分)给出以下四个判断,其中正确的判断是(1)若“p或q”为真命题,则p,q均为真命题(2)命题“若x≥4且y≥2,则x+y≥6”的逆否命题为“若x+y<6,则x<4且y <2”(3)若x≠300°,则cosx≠(4)命题“∃x0∈R,e≤0”是假命题.16.(5分)在△ABC中,已知b=,c=3,B=30°,则a=.三、解答题(共6小题,满分70分)17.(10分)椭圆+=1(a>b>0)的两焦点为F1(0,﹣c),F2(0,c)(c >0),离心率e=,焦点到椭圆上点的最短距离为2﹣,求椭圆的方程.18.(12分)已知△abc的周长为10,且sinB+sinC=4sinA.(Ⅰ)求边长a的值;(Ⅱ)若bc=16,求角A的余弦值.19.(12分)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.20.(12分)设命题p:实数x满足(x﹣a)(x﹣3a)<0,其中a>0,命题q:实数x满足(x﹣3)(x﹣2)≤0.(1)若a=1,且p∧q为真,求实数x的取值范围.(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.21.(12分)已知等比数列{a n}中,s n为前n项和且a1+a3=5,s4=15,(1)求数列{a n}的通项公式.(2)设b n=3log2a n,求b n的前n项和T n的值.22.(12分)已知椭圆过左焦点的直线l的倾角为45°与椭圆相交于A,B两点(1)求AB的中点坐标;(2)求△ABF2的面积.2017-2018学年吉林省延边州汪清高二(上)期末数学试卷参考答案与试题解析一、单项选择(每小题5分,共计60分)1.(5分)在△ABC中,已知A=60°,a=4,b=4,则∠B的度数是()A.135°B.45°C.75°D.45°或135°【解答】解:∵A=60°,a=4,b=4,∴由正弦定理得:sinB===,∵a>b,可得A>B,∴B=45°.故选:B.2.(5分)若△ABC的三个内角A,B,C满足sinA:sinB:sinC=5:12:13,则△ABC一定是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定【解答】解:∵角A、B、C满足sinA:sinB:sinC=5:12:13,∴根据正弦定理,整理得a:b:c=5:12:13,设a=5x,b=12x,c=13x,满足(5x)2+(12x)2=(13x)2因此,△ABC是直角三角形.故选:C.3.(5分)已知等比数列{a n}满足a2=4,a6=64,则a4=()A.﹣16 B.16 C.±16 D.32【解答】解法一:∵等比数列{a n}满足a2=4,a6=64,∴,解得或,∴a4==16.故选:B.解法二:∵等比数列{a n}满足a2=4,a6=64,∴a42=a2a6=4×64=256,∵偶数项的符号相同,∴a4=16.故选:B.4.(5分)已知等差数列{a n}中,a5+a9=2,则S13=()A.11 B.12 C.13 D.14【解答】解:∵在等差数列{a n}中,S n=∴S13====13故选C5.(5分)若a<b<0,则下列不等式中成立的是()A.|a|>﹣b B.C.D.【解答】解:∵a<0,∴|a|=﹣a,∵a<b<0,∴﹣a>﹣b>0,∴|a|>﹣b,故结论A成立;取a=﹣2,b=﹣1,则∵,∴B不正确;,∴,∴C不正确;,,∴,∴D不正确.故选A.6.(5分)等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260【解答】解:解法1:设等差数列{a n}的首项为a1,公差为d,由题意得方程组,a1解得d=,a1=,∴s3m=3ma1+d=3m+=210.故选C.解法2:∵设{a n}为等差数列,∴s m,s2m﹣s m,s3m﹣s2m成等差数列,即30,70,s3m﹣100成等差数列,∴30+s3m﹣100=70×2,解得s3m=210.故选C.a17.(5分)设变量x,y满足,则2x+3y的最大值为()A.20 B.35 C.45 D.55【解答】解:满足约束条件的平面区域如下图所示:令z=2x+3y可得y=,则为直线2x+3y﹣z=0在y轴上的截距,截距越大,z越大作直线l:2x+3y=0把直线向上平移可得过点D时2x+3y最大,由可得x=5,y=15,此时z=55故选D8.(5分)设集合A={x|x﹣2>0},B={x|x2﹣2x>0},则“x∈A”是“x∈B”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵A={x|x﹣2>0}={x|x>2},B={x|x2﹣2x>0}={x|x>2或x<0},∴“x∈A”是“x∈B”的充分不必要条件.故选A.9.(5分)命题“∀x∈R,x3﹣x2+1≤0”的否定是()A.不存在x∈R,x3﹣x2+1≤0 B.∃x0∈R,x03﹣x02+1≥0C.∃x0∈R,x03﹣x02+1>0 D.∀x∈R,x3﹣x2+1>0【解答】解:命题“∀x∈R,x3﹣x2+1≤0”的否定是:∃x0∈R,x﹣x+1>0,故选:C.10.(5分)椭圆上的一点M到左焦点F1的距离为2,N是MF1的中点,则ON为()A.2 B.C.8 D.4【解答】解:椭圆,可得a=5,∴|MF1|+|MF2|=2a=10,又|MF1|=2,∴|MF2|=8,∵N是MF1的中点,O为F1F2的中点,∴|ON|=|MF2|=4.故选:D.11.(5分)如果椭圆+=1的弦被点(4,2)平分,则这条弦所在的直线方程是()A.x﹣2y=0 B.x+2y﹣4=0 C.2x+3y﹣12=0 D.x+2y﹣8=0【解答】解:设这条弦的两端点为A(x1,y1),B(x2,y2),斜率为k,则,两式相减再变形得又弦中点为(4,2),故k=,故这条弦所在的直线方程y﹣2=(x﹣4),整理得x+2y﹣8=0;故选D.12.(5分)已知点F1、F2分别是椭圆+=1(k>﹣1)的左、右焦点,弦AB过点F1,若△ABF2的周长为8,则椭圆的离心率为()A.B.C.D.【解答】解:由椭圆定义有4a=8∴a=2,所以k+2=a2=4∴k=2.从而b2=k+1=3,c2=a2﹣b2=1,所以,故选A二、填空题(每小题5分,共计20分)13.(5分)设x>0,y>0且x+2y=1,求+的最小值3+2.【解答】解:根据题意,x+2y=1,则=(x+2y)•()=3+≥3+2=3+2,故答案为3+2.14.(5分)过椭圆的左焦点F1作直线l交椭圆于A,B两点,F2是椭圆右焦点,则△ABF2的周长为8.【解答】解:由椭圆,可得a=2;椭圆的定义可得:|AF1|+|AF2|=|BF1|+|BF2|=2a=4.∴△ABF2的周长=|AB|+|AF2|+|BF2|=|AF1|+|BF1|+|AF2|+|BF2|=8.故答案为:8.15.(5分)给出以下四个判断,其中正确的判断是(4)(1)若“p或q”为真命题,则p,q均为真命题(2)命题“若x≥4且y≥2,则x+y≥6”的逆否命题为“若x+y<6,则x<4且y <2”(3)若x≠300°,则cosx≠(4)命题“∃x0∈R,e≤0”是假命题.【解答】解:(1)若“p或q”为真命题,则两个没有至少一个是真命题,所以判断p,q均为真命题是不正确的;(2)命题“若x≥4且y≥2,则x+y≥6”的逆否命题为“若x+y<6,则x<4或y <2”,所以原判断不正确;(3)若x≠300°,则cosx≠,反例x=60°,cosx=,所以(3)不正确;(4)命题“∃x0∈R,e≤0”是假命题.由指数函数的值域可知,命题是假命题,所以(4)正确;故答案为:(4).16.(5分)在△ABC中,已知b=,c=3,B=30°,则a=或2.【解答】解:∵b=,c=3,B=30°,∴由余弦定理b2=a2+c2﹣2accosB可得:3=a2+9﹣2×a×3×cos30°,整理可得:a2﹣3a+6=0,∴a=或2.故答案为:或2.三、解答题(共6小题,满分70分)17.(10分)椭圆+=1(a>b>0)的两焦点为F1(0,﹣c),F2(0,c)(c >0),离心率e=,焦点到椭圆上点的最短距离为2﹣,求椭圆的方程.【解答】解:∵e=,焦点到椭圆上点的最短距离为2﹣,∴=,a﹣c=2﹣,解得a=2,c=,∴b2=a2﹣c2=1,由此可得椭圆的方程为.18.(12分)已知△abc的周长为10,且sinB+sinC=4sinA.(Ⅰ)求边长a的值;(Ⅱ)若bc=16,求角A的余弦值.【解答】(本题满分为12分)解:(Ⅰ)根据正弦定理,sinB+sinC=4sinA,可化为b+c=4a,…(3分)联立方程组,解得a=2.…(5分)所以,边长a=2.…(6分)(Ⅱ)由bc=16,又由(Ⅰ)得b+c=8,得b=c=4,…(8分)∴=.…(10分)因此,所求角A的余弦值是.…(12分)19.(12分)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.【解答】解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n=,②①﹣②得S n=1+2(++…+)﹣,则===.20.(12分)设命题p:实数x满足(x﹣a)(x﹣3a)<0,其中a>0,命题q:实数x满足(x﹣3)(x﹣2)≤0.(1)若a=1,且p∧q为真,求实数x的取值范围.(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.【解答】解:(1)由(x﹣1)(x﹣3)<0,得P={x|1<x<3},(x﹣3)(x﹣2)≤0,可得Q={x|2≤x≤3},由p∧q为真,即为p,q均为真命题,可得x的取值范围是2≤x<3;(2)若¬p是¬q的充分不必要条件,可得q是p的充分不必要条件,由题意可得P={x|a<x<3a},Q={x|2≤x≤3},由Q⊊P,可得a<2且3<3a,解得1<a<2.21.(12分)已知等比数列{a n}中,s n为前n项和且a1+a3=5,s4=15,(1)求数列{a n}的通项公式.(2)设b n=3log2a n,求b n的前n项和T n的值.【解答】解:(1)设等比数列{a n}的公比为q,∵a1+a3=5,s4=15,q≠1.∴a1(1+q2)=5,=15,联立解得a1=1,q=2.∴a n=2n﹣1.(2)b n=3log2a n=3(n﹣1).∴数列{b n}的前n项和T n==﹣n.22.(12分)已知椭圆过左焦点的直线l的倾角为45°与椭圆相交于A,B两点(1)求AB的中点坐标;(2)求△ABF2的面积.【解答】解:(1)由椭圆方程:知,a=,b=,c==1∴F1(﹣1,0),F2(1,0)直线l的斜率k=tan45°,∴l的方程为y=x+1,,整理得:5x2+6x﹣3=0设A(x1,y1),B(x2,y2),AB中点M(x0,y0)则x1+x2=﹣,x1x2=﹣,∴x0==﹣,则y0=x0+1=,∴中点坐标为M(﹣,);(2)F2到直线l距离d===,|AB|==∴S=|AB|×d=××=,△ABC∴△ABF2的面积.。
2019学年高二数学上学期期末考试试题 文第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求,每小题选出答案后,请把答案填写在答题卡相应位置上...............。
1.命题“x ∀∈R ,2220x x -+≥”的否定是( )A .x ∀∈R ,2220x x -+< B .0x ∃∈R ,200220x x -+≥ C .x ∀∈R ,2220x x -+> D .0x ∃∈R ,200220x x -+<2.命题“若21x <,则11x -<<”的逆否命题是( )A .若21x ≥,则1x ≥或1x ≤-B .若11x -<<,则21x < C .若1x >或1x <-,则21x > D .若1x ≥或1x ≤-,则21x ≥3.一物体做竖直上抛运动,它距地面的高度()h m 与时间()t s 间的函数关系式为2() 4.910h t t t =-+,则1t =的瞬时速度(m /s )为( )A .-0.98B .0.2C .-0.2D .-0.494.椭圆22132y x +=的焦距为( )A .1B .2C ..5.函数()xf x xe =在点A (0,f (0))处的切线斜率为( ) A .0 B .-1 C .1 D .e6.若p ,q 为简单命题,则“p 且q 为假”是“p 或q 为假”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812343y x x =-+-,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件8.若双曲线22221x y a b-=的一条渐近线方程为y x =,它的一个顶点到较近焦点的距离为1,则双曲线的方程为( )A .22179x y -=B .221169x y -=C .22197x y -=D .221916x y -= 9.已知圆A 1:22(2)12x y ++=和点A 2(2,0),则过点A 2且与圆A 1相切的动圆圆心P 的轨迹方程为( )A .2213x y -=B .2213x y +=C .222x y -= D .221128x y += 10.函数1()ln f x x x=+的图像大致为( )11.若函数22()(1)ln f x k x x =+-在区间(1,+∞)上是减函数,则实数k 的取值范围是( )A .[-1,1]B .[]C .(,1][1,)-∞-+∞D .(,[2,)-∞+∞12.已知双曲线22221x y a b-=(0a >,0b >)与函数y =的图像交于点P ,若函数y =P 处的切线过双曲线的左焦点F (-2,0),则双曲线的离心率是( )A .12 B C .12 D .32第II 卷(非选择题,共90分)二、填空题 :本大题共4小题,每小题5分,共20分,请把答案填在答题卡的横线上.............。
屯留一中2016-2017学年第一学期期末考试高二数学(文科)试题(时间:120分钟 满分:150分)一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的)1.“x >3”是“29x >”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件2.已知椭圆的方程为221169x y +=,则此椭圆的长轴长为( ) A .3B .4C .6D .83.双曲线221169y x -=的渐近线方程为( )A .169y x =±B .916y x =±C .34y x =± D.43y x =±4.双曲线2213x y -=的右焦点到直线0x -=的距离是( ) A.32 B.2 C. 1 D.3 5.直线(2)1y a x =-+与圆229x y +=的位置关系是( ) A. 相离 B.相交 C. 相切 D .不确定6.长方体的各顶点均在同一个球面上,且一个顶点上的三条棱长分别为1,3,则这个球的表面积为( ) A .4πB .16πC .48πD .64π7.下列叙述中正确的是( )A .“m=2”是“1:2(1)40l x m y +++=与2:320l mx y +-=平行”的充分条件B .“方程221Ax By +=表示椭圆”的充要条件是“A ≠B ”C .命题“∀x ∈R ,20x ≥”的否定是“∃0x ∈R ,200x ≥”D .命题“a 、b 都是偶数,则a+b 是偶数”的逆否命题为“a+b 不是偶数,则a 、b 都是奇数”8.一个几何体的三视图如图所示,已知这个几何体的体积为103,则h=( ) A .B .C .D .9.已知m ,n ,l 为三条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( ) A .α∥β,m ⊂α,n ⊂β⇒m ∥n B .l ⊥β,α⊥β⇒l ∥α C .m ⊥α,m ⊥n ⇒n ∥α D .α∥β,l ⊥α⇒l ⊥β10.已知圆的方程为22680x y x y +--=,设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .106B .206C .306D .40611.过点M (2,-1)作斜率为的直线与椭圆22221(0)x y a b a b+=>>相交于A ,B 两个不同点,若M 是AB 的中点,则该椭圆的离心率e=( ) A . B .C .D .12.若函数()f x 在R 上可导,且满足()()f x xf x '<,则( )A.2(1)(2)f f <B.2(1)(2)f f >C.2(1)(2)f f =D.(1)(2)f f = 二、填空题(本大题共4小题,每题5分,共20分)13. 椭圆221169x y +=上一点P 到它的一个焦点的距离等于3,那么点P 到另一个焦点的距离等于 .14.直线(2)10mx m y ++-=与直线(1)0m x my -+=互相垂直,则m= .15. 已知P 是椭圆221124x y +=上不同于左顶点A 、右顶点B 的任意一点,记直线PA ,PB 的斜率分别为12,k k ,则12k k 的值为 .16.已知函数()(0)(1)x e f x a a x =≠-,且(0)1f =,若函数()f x 在1(,)2m m +上单调递增,则m 的最大值为 .三、解答题(本大题共6小题,共70分。
2021年高二上学期期末考试(文)数学试题含答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知实数,,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件2.下面关于复数的四个命题:,,的共轭复数为,在复平面内对应点位于第四象限.其中真命题为()A.、B.、C.、D.、3.甲、乙、丙三位同学被问到是否去过,,三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市;丙说:我们三人去过同一城市.有超级可判断乙去过的城市为()A. B. C. D.不确定4.一个水平放置的平面图形,用斜二测画法画出了它的直观图,此直观图恰好是一个边长为的正方形,如图所示,则原平面图形的面积为()A. B. C. D.5.已知与之间的一组数据如下表:则关于的线性回归直线必过()A.点 B.点 C.点 D.点6.椭圆以轴和轴为对称轴,经过点,长轴长是短轴长的倍,则椭圆的方程为()A. B.C.或D.或7.若点在椭圆上,、分别是椭圆的两焦点,且,则的面积是()A. B. C. D.8.执行如图所示的程序框图,若输出的结果是,则判断框内的取值范围是()A. B. C. D.9.已知两条不重合的直线和两个不重合的平面、,有下列命题:①若,,则;②若,,,则;③若是两条异面直线,,,,则;④若,,,,则.其中正确命题的个数是()A. B. C. D.10.某几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.11.已知各顶点都在一个球面上的正四棱柱高为,体积为,则这个球的表面积是()A. B. C. D.12.定义一种运算“”:对于自然数满足以下运算性质:(1),(2),则等于()A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.“设的两边,互相垂直,则”拓展到空间,类比平面几何的勾股定理,在立体几何中,可得类似的结论是“设三棱锥中三边、、两两互相垂直,则___________”.14.①命题“存在”的否定是“不存在”②若是纯虚数,则③若,则或④以直角三角形的一边为旋转轴,旋转一周所得的旋转体是圆锥以上正确命题的序号是________.15.在棱长为的正方体中,在正方体内随机取一点,则点到点的距离大于的概率为________.16.椭圆的左右焦点为,,椭圆上恰有个不同点,使为等腰三角形,则椭圆的离心率的取值范围是_______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本题满分10分)为何实数时,复数是:(1)虚数;(2)若,求.19.(本题满分12分)对某校高二年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)求出表中,及图中的值;(2)若该校高二学生有人,试估计该校高二学生参加社区服务的次数在区间内的人数;(3)在所取样本中,从参加社区服务的次数不少于次的学生中任选人,求至多一人参加社区服务次数在区间内的概率.20.(本题满分12分)对喜欢数学课程是否与性别有关系进行问卷调查,将调查所得数据绘制成二堆条形图,如图所示.(1)根据图中相关数据完成以下列联表,并计算有多大把握认为性别与是否喜欢数学课程有关系?(2)从该班喜欢数学的女生中随机选取人,参加学校数学兴趣课程班,已知该班女生喜欢数学课程,求女生被选中的概率.参考数据与公式:由列联表中数据计算,临界值表:21.(本题满分12分)如图,四棱锥的底面是正方形,底面,,,点、、分别为棱、、的中点. (1)求证:平面;(2)求证:平面平面;(3)求三棱锥的体积.22.(本题满分12分)已知椭圆的点到左、右两焦点,的距离之和为,离心率为.(1)求椭圆的方程;(2)过右焦点的直线交椭圆于、两点:①若轴上一点满足,求直线斜率的值;②是否存在这样的直线,使得的最大值为(其中为坐标原点)?若存在,求直线方程;若不存在,说明理由.xx学年上学期期末考试高二年级文科数学试卷参考答案一、选择题BDADD CBBCA CA二、填空题13. 14.②③15. 16.三、解答题17.(1). ........5分(2). ............10分18.解:(1)当时,,,又为真,所以真且真,由,得.所以实数的取值范围为. ............6分(2)因为是的充分不必要条件,所以是的充分不必要条件,又,,,所以,解得,所以实数的取值范围为. ............12分19.解:(1)由分组内的频数是,频率是知,,所以.因为频数之和为,所以..因为是对应分组的频率与组距的商,所以. ......4分(2)因为该校高二学生有人,分组内的频率是,所以估计该校高二学生参加社区服务的次数在此区间内的人数为人. .......8分(3)这个样本参加社区服务的次数不少于次的学生共有人,而两人都在内只能是一种,所以所求概率为.(约为) ........12分20.解:(1)据条形图所给数据得列联表,∵072.2667.23820201525)1051015(4022>≈=⨯⨯⨯⨯-⨯=K , .............4分 故有的把握认为性别与是否喜欢数学有关系. .........6分(2)设该班另外名喜欢数学的女生分别为、、、,从该班喜欢数学的女生中随机选取人有、、、、、、、、、共种选法,符合条件“女生被选中”的情形有种,故女生被选中的概率. .............12分21.解:(1)取的中点,连接、,∴为的中位线,∴,∵四边形为矩形,为的中点,∴,∴,∴四边形是平行四边形,∴,又平面,平面,∴平面. ........4分(2)∵底面,∴,,又,,∴平面,又平面,∴,直角三角形中,,∴为等腰直角三角形,∴,∵是的中点,∴,又,∴平面,∵,∴平面,又平面,∴平面平面. .................8分(3)三棱锥即为三棱锥,是三棱锥的高,中,,,∴三棱锥的体积322212131213131=⋅⋅⋅⋅=⋅⋅⋅⋅=⋅==∆PA BC BE PA S V V BCE BCE -P BEP -C 三棱锥三棱锥. ......12分22.解:(1),∴. .........1分∵,∴.∴. ............2分椭圆的标准方程为. ...............3分(2)已知,设直线的方程为,,联立直线与椭圆方程,化简得:,∴,, .........4分∴的中点坐标为, ...............5分(2)时,不满足条件;当时,∵,∴,整理得,解得或. ................7分(3)时,不满足条件;直线方程为,代入椭圆方程,此时, 时,22222222221)21(4)1(221224)214(221++⋅=+-⨯-+=-=∆k k k k k k k k y y S ABO , ∵,,∴,∴,综上,,∴满足题意的直线存在,方程为. .............12分f .]mv_38889 97E9 韩{A29682 73F2 珲23877 5D45 嵅N。
九江一中2017——2018学年上学期期末考试高二数学(文科)试卷考试时间:120分钟 总分:150分注意事项:1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,答题时间120分钟。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2 第Ⅰ卷(选择题)答案必须使用2B 铅笔填涂:第Ⅱ卷(非选择题)必须将答案写在答题卡上,写在本试卷上无效。
3 考试结束,将答题卡交回,试卷由个人妥善保管。
第Ⅰ卷(选择题60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题P :2,10x R x x ∀∈++<的否定是( ) A.2,10x R x x ∀∈++≥ B.2,10x R x x ∃∈++≥C.2,10x R x x ∀∈++>D.2,10x R x x ∃∈++>2.已知等差数列{}n a 满足:355,3a a ==,则8a =( ) A.2 B.1 C.0 D. 1-3.抛物线214y x =的准线方程是( ) A.1y =B.116y =C.1y =-D.116y =-4.在ABC ∆中,若60oA =,a =,2b =,则B =( )A. 45o 或135oB.30oC.135oD.45o5.已知函数()sin xe f x x x x=+⋅,则'()f x =( )A. 2(1)'()sin cos x e x f x x x x -=++ B. 2(1)'()sin cos x e x f x x x x x -=++ C. 2(1)'()sin cos x e x f x x x x x-=+- D. 2(1)'()sin cos x e x f x x x x-=+- 6.不等式32x x->的解集是( ) A. {}13x x x <->或B. {}103x x x -<<>或C. {}13x x x <-<<或0D. {}003x x x <<<<-1或7.若实数,x y 满足21021050x y x y x y -+≤⎧⎪--≥⎨⎪+-≤⎩,则3x y +的最大值是( )A.9B.10C.11D.128.方程22121x y m m +=-为椭圆方程的一个充分不必要条件是( ) A. 12m >B. 12m >且1m ≠C.1m >D. 0m >9. 已知,a b R +∈,且124a b +=,则2a b +的最小值是( ) A.2 B.94C.52D. 310. 已知数列{}n a 的通项22018n a n n λ=+-,R λ∈,若{}n a 为单调递增数列,则λ的取值范围是( ) A.(3,)-+∞B.[3,)-+∞C.(2,)-+∞D.[2,)-+∞11. 已知双曲线2222:1x y C a b-=(0,0)a b >>,过左焦点作圆222x y a +=的切线(切点在第二象限),若该切点为左焦点和切线与渐近线by x a=交点的中点,则双曲线的离心率是( )A.C.2D.12. 已知P 为函数2()2f x x x =-图像上任意一点,(4,1)Q -,则||PQ 最小值是( )A.3B.4D.2二、填空题:本大题共4小题,每小题5分,共20分.13.函数()ln 1f x x x =+-在点(1,0)处的切线方程是14.已知等比数列{}n a ,若46,a a 是方程2560x x -+=的两个实数根,则3557a a a a += 15.函数14()11f x x x=++-,(1,1)x ∈-的最小值是16. 已知ABC ∆中,2,1,AC BC ==且AB 边上中线CD =AB =第Ⅱ卷(非选择题90分)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分10分)已知锐角ABC ∆的内角,,A B C 所对的边分别为,,a b c , 若sin )b c B C +=+,且2a =,(Ⅰ)求A ;(Ⅱ)求ABC ∆面积的最大值.18.(本小题满分12分)已知命题:P (1,2)x ∃∈使不等式2(1)0x a x a -++≤成立;命题:Q 函数22()l o g ()f x x a x =-在[2,)+∞上单调递增.求使P 且Q 为真命题的实数a 的取值范围19. (本小题满分12分)已知数列{}n a 满足*0()n a n N ≠∈,且11a =,*21112()41n n n N a a n +-=∈-, (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2n n n b a =⋅,求数列{}n b 的前n 项和.20.(本小题满分12分)如图,在四棱锥P ABCD -中PA ⊥底面ABCD ,四边形ABCD 为正方形,E 为CD 中点,F 为PA 上一点,(Ⅰ)当//EF 平面PBC 时,求PFFA的值;(Ⅱ)若2PA AB ==,在(Ⅰ)问条件下求F 到平面PBD 的距离.21. (本小题满分12分)已知椭圆2222:1x y C a b+=(0)a b >>,12,F F 为椭圆的左右焦点,过右焦点垂直于x 轴的直线交椭圆于,A B 两点,若13F AB S ∆=,且椭圆离心率12e =, (Ⅰ)求椭圆C 的方程;(Ⅱ)已知1122(,),(,)P x y Q x y 1212(,)x x y y ≠≠为椭圆上两个不同点,R 为PQ 中点,P 关于原点和x 轴的对称点分别是,M N ,直线QM 在x 轴的截距为m ,直线QN 在y 轴的截距为n ,试证明:OR m n k ⋅⋅为定值. 22. (本小题满分12分)已知函数()x f x ax e =-(a R ∈), (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)若不等式()f x x ≤对任意x R ∈恒成立,求a 的取值范围.参考答案一 BCCDB BCCBA CC二 13. 220x y --= 14. 13 15. 9216.17.(1)3A π=(2)max S =(1)由2s i n s i n s i nab cR A B C ===,知2s i n ,2b R B c R C ==,所以2(s i n b c R B +=+s i n s i n )B C =+,所以2R =,则sin 22a A R ==,且ABC ∆为锐角三角形,所以3A π=(2)由2222cos b c bc A a +-=,所以224b c bc +-=即2242b c bc bc +=+≥,所以4bc ≤,则1sin 2S bc A ==≤,即max S =18. 12a <<19. (1) 21n a n =-( 2) 1(23)26n n T n +=-⋅+20.(1)1PF FA =(2) 21.(1) 22143x y +=(2) 3OR m n k ⋅⋅=- 22.(1)当0a ≤时,()f x 在R 单调递减当0a >时,(,ln )a -∞为()f x 单调递增区间,(ln ,)a +∞为()f x 单调递减区间(2) 11a e ≤≤+。
2021年高二上学期期末考试数学(文)试题 Word版含解析高二数学xx.1(文科)试卷满分:150分考试时间:120分钟一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.答案:B答案:D解析:双曲线的渐近线方程是故选D答案:C解析:A中直线可以异面;B中直线可以在平面上;D中直线不一定垂直平面。
C满足线面垂直的性质解析:考查否命题的概念,注意条件与结论均要进行否定。
6.圆与圆的位置关系是()A.相离B.外切C.内切D.相交答案:D解析:.圆半径为圆心为原点;圆半径为1,圆心为圆心距为2,因为故两圆相交7.“四边形为菱形”是“四边形中”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:A8.已知直线和直线平行,则实数的值为()A.B.C.和D.答案:A解析:因为两直线平行,故有。
当时,两直线方程均为,不满足题意,故选A9.如图所示,汽车前灯反光镜与轴截面的交线是抛物线的一部分,灯口所在的圆面与反光镜的轴垂直,灯泡位于抛物线的焦点处.已知灯口的直径是24cm,灯深10cm,那么灯泡与反光镜的顶点(即截得抛物线的顶点)距离为()24cm10cmA.10cm B.7.2cm C.3.6cm D.2.4cm解析:由题,以反光镜顶点,灯口中心,灯口上顶点所在平面为截面,如图所示易知抛物线方程为焦点坐标为故那么灯泡与反光镜的顶点的距离为3.6cm10.如图,在边长为的正方体中,为棱的中点,为面上的点.一质点从点射向点,遇正方体的面反射(反射服从光的反射原理),反射到点.则线段与线段的长度和为()A .B .C .D .答案:C解析:以为镜面,做出点P的镜像,如图所示,则所求长度之和相当于二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 11.抛物线的准线方程为.答案:解析:考查准线的概念,抛物线 的准线为 12.命题“”的否定是.答案:解析:考查命题的否定的概念13.右图是一个四棱锥的三视图,则该四棱锥的体积为.答案:解析:由三视图可知此四棱锥高为2,底面积为4,故体积为 14.圆心在直线上,且与轴相切于点的圆的方程为.答案:解析:因为圆与轴相切于点,故过点做轴垂线,交直线于可知圆心为,半径为2,故所求方程为正(主)视图 侧(左)视图俯视图A 1BPD A CB 1C 1D 1 M15.已知为双曲线的一个焦点,则点到双曲线的一条渐近线的距离为. 答案:2解析:双曲线的焦点为 渐近线为 故所求距离为216.“降水量”是指从天空降落到地面上的液态或固态(经融化后)降水,未经蒸发、渗透、流失而在水平面上积聚的深度.降水量以为单位.为了测量一次降雨的降水量,一个同学使用了如图所示的简易装置:倒置的圆锥.雨后,用倒置的圆锥接到的雨水的数据如图所示,则这一场雨的降水量为1.答案:1解析:由图可知,降雨收集的截面为圆锥底面S ,则降水量,又因为现有雨水量是 故降水量为1mm三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分13分)如图,四边形为矩形,平面,,为上的点. (Ⅰ)求证:平面; (Ⅱ)求证:.答案:证明略AEBCDF解析:(Ⅰ)证明:因为四边形为矩形,所以.………………2分 又因为平面,平面,………………4分 所以平面.………………5分 (Ⅱ)证明:因为平面,,所以平面,则.………………7分 又因为,所以.………………9分 所以平面.………………11分 又平面,………………12分 所以.………………13分18.(本小题满分13分)已知△三个顶点的坐标分别为,,. (Ⅰ)求△中边上的高线所在直线的方程; (Ⅱ)求△外接圆的方程.答案:(Ⅰ)(Ⅱ) 解析:(Ⅰ)因为,,所以直线的斜率为,………………2分又边上的高所在的直线经过点,且与垂直, 所以所求直线斜率为,………………4分 所求方程为, 即.………………5分AEBCD F(Ⅱ)设△外接圆的方程为,………………6分 因为点,,在圆上,则 ………………9分解得,,.………………12分所以△外接圆的方程为.………………13分19.(本小题满分14分)如图,已知直三棱柱中,,为中点. (Ⅰ)求证:平面; (Ⅱ)求证:平面平面.答案:证明略解析:(Ⅰ)证明:连结,与交于点,连结.………………1分因为三棱柱是直三棱柱,所以四边形是矩形, 点是中点.………………3分又为中点,所以.…………5分 因为平面, 平面,所以平面.………………7分 (Ⅱ)证明:因为,为中点,所以.………………9分ABCEA 1B 1C 1FABCEA 1B 1C 1又因为三棱柱是直三棱柱,所以底面,从而.………………11分所以平面.………………12分因为平面,………………13分所以平面平面.………………14分20.(本小题满分13分)如图,是椭圆的两个顶点,过点的直线与椭圆交于另一点. (Ⅰ)当的斜率为时,求线段的长;(Ⅱ)设是的中点,且以为直径的圆恰过点.求直线的斜率.答案:(Ⅰ)(Ⅱ)解析:(Ⅰ)由已知,直线的方程为.………………1分由得,………………2分解得或(舍),………………3分所以点的坐标为,………………4分所以.………………5分(Ⅱ)依题意,设直线的方程为,.由得,………………7分解得或(舍),………………8分所以点的横坐标为,设点的坐标为,则,………………9分,………………10分因为以为直径的圆恰过点,所以,即.………………11分整理得,………………12分所以.………………13分21.(本小题满分13分)如图,四棱锥中,底面为矩形,平面平面,且,,为中点.(Ⅰ)求三棱锥的体积; (Ⅱ)求证:平面;(Ⅲ)设是线段上一点,且满足,试在线段上确定一点,使得平面,并求出的长.答案(Ⅰ):(Ⅱ)略(Ⅲ) 解析:(Ⅰ)解:由已知,可知,△是等腰直角三角形,.………………1分 因为平面平面,底面为矩形,, 所以平面.………………2分三棱锥的体积1119()3322PCD V S BC PC PD BC ∆=⨯=⨯⨯⨯=.………………4分(Ⅱ)证明:由(Ⅰ)知,平面,所以.因为,即,所以平面.………………5分 因为平面,所以.………………6分 因为,为中点, 所以,………………7分 因为,所以平面.………………8分(Ⅲ)解:在面上,过作交于.在面上,过作交于,连结.………………9分 因为,平面,平面, 所以平面.因为,平面,平面, 所以平面.PABCDE M· FNPABC DEM·所以平面平面.………………10分 从而,平面.………………11分 由所作可知,△为等腰直角三角形,, 所以,.………………12分 △,△均为等腰直角三角形,所以,.所以为线段上靠近点的三等分点,且.………………13分22.(本小题满分14分)已知是抛物线上的不同两点,弦(不平行于轴)的垂直平分线与轴交于点. (Ⅰ)若直线经过抛物线的焦点,求两点的纵坐标之积;(Ⅱ)若点的坐标为,弦的长度是否存在最大值?若存在,求出其最大值;若不存在,请说明理由答案:(Ⅰ)-4(Ⅱ)的最大值为 解析:(Ⅰ)抛物线的焦点为,………………1分依题意,设直线方程为,其中.………………2分 将代入直线方程,得, 整理得,………………4分所以,即两点的纵坐标之积为.………………5分 (Ⅱ)设,,.由得.………………6分由222241616416160k b kb k b kb ∆=+--=->,得.………………7分 所以,.………………8分 设中点坐标为, 则,,………………9分所以弦的垂直平分线方程为, 令,得.………………10分 由已知,即.………………11分AB ==……………12分当,即时,的最大值为.………………13分当时,;当时,.均符合题意.所以弦的长度存在最大值,其最大值为.………………14分北京市西城区xx学年度第一学期期末试卷高二数学(文科)参考答案及评分标准xx.1一、选择题:本大题共10小题,每小题4分,共40分.1.B2.B3.D4.C5.D6.D7.A8.A9.C10.C二、填空题:本大题共6小题,每小题5分,共30分.11.12.13.14.15.16.三、解答题:本大题共6小题,共80分.17.(本小题满分13分)(Ⅰ)证明:因为四边形为矩形,所以.………………2分又因为平面,平面,………………4分所以平面.………………5分(Ⅱ)证明:因为平面,,所以平面,则.………………7分又因为,所以.………………9分所以平面.………………11分又平面,………………12分所以.………………13分18.(本小题满分13分)AEBC DF解:(Ⅰ)因为,,所以直线的斜率为,………………2分又边上的高所在的直线经过点,且与垂直,所以所求直线斜率为,………………4分所求方程为,即.………………5分(Ⅱ)设△外接圆的方程为,………………6分因为点,,在圆上,则………………9分解得,,.………………12分所以△外接圆的方程为.………………13分19.(本小题满分14分)(Ⅰ)证明:连结,与交于点,连结.………………1分因为三棱柱是直三棱柱,所以四边形是矩形,点是中点.………………3分又为中点,所以.…………5分因为平面,平面,所以平面.………………7分(Ⅱ)证明:因为,为中点,所以.………………9分又因为三棱柱是直三棱柱,所以底面,从而.………………11分所以平面.………………12分因为平面,………………13分所以平面平面.………………14分20.(本小题满分13分)解:(Ⅰ)由已知,直线的方程为.………………1分由得,………………2分解得或(舍),………………3分所以点的坐标为,………………4分所以.………………5分(Ⅱ)依题意,设直线的方程为,.由得,………………7分解得或(舍),………………8分ABCEA1B1C1F所以点的横坐标为,设点的坐标为,则,………………9分,………………10分因为以为直径的圆恰过点,所以, 即.………………11分整理得,………………12分 所以.………………13分21.(本小题满分13分) (Ⅰ)解:由已知,可知,△是等腰直角三角形,.………………1分 因为平面平面,底面为矩形,, 所以平面.………………2分 三棱锥的体积1119()3322PCD V S BC PC PD BC ∆=⨯=⨯⨯⨯=.………………4分(Ⅱ)证明:由(Ⅰ)知,平面,所以.因为,即,所以平面.………………5分 因为平面,所以.………………6分 因为,为中点, 所以,………………7分 因为,所以平面.………………8分(Ⅲ)解:在面上,过作交于.在面上,过作交于,连结.………………9分 因为,平面,平面, 所以平面.因为,平面,平面, 所以平面.所以平面平面.………………10分 从而,平面.………………11分 由所作可知,△为等腰直角三角形,, 所以,.………………12分 △,△均为等腰直角三角形,所以,.所以为线段上靠近点的三等分点,且.………………13分PABCDE M· FN22.(本小题满分14分)解:(Ⅰ)抛物线的焦点为,………………1分依题意,设直线方程为,其中.………………2分 将代入直线方程,得, 整理得,………………4分所以,即两点的纵坐标之积为.………………5分 (Ⅱ)设,,.由得.………………6分由222241616416160k b kb k b kb ∆=+--=->,得.………………7分 所以,.………………8分 设中点坐标为, 则,,………………9分所以弦的垂直平分线方程为, 令,得.………………10分 由已知,即.………………11分AB ==……………12分当,即时,的最大值为.………………13分当时,;当时,.均符合题意.所以弦的长度存在最大值,其最大值为.………………14分38292 9594 閔124704 6080 悀JD21578 544A 告22918 5986妆b29169 71F1 燱L21132 528C 劌{40609 9EA1 麡p40247 9D37 鴷。
2019高二年级期末考试数学试卷(文科)考试时量:120分钟;总分:150分 命题人:一,选择题(本大题共12小题,每小题5分,共60分,每小题仅有一个答案是正确的) 1.若复数z =21-i& ,其中i 为虚数单位,则Z 的共轭复数z =( ) A. 1+i B. 1﹣i C. ﹣1+i D. ﹣1﹣i2,已知集合A={0,1},B={}A y A x y x z z ∈∈+=,,,则集合B 的子集个数为()A .8B .3C .4D .7 3.数列1n n ⎨++⎩的前2017项的和为( )A.20181 B.20181 C.20171 D. 201714.在区间[]0,π上随机地取一个数x ,则事件“1sin 2x ≤”发生的概率为( ) A. 23 B. 12 C. 13 D. 165.已知2sin cos 0αα-=,则2sin 2sin cos ααα-的值为( ) A. 35- B. 125-C. 35D. 1256.已知0.5log 5m =, 35.1n -=, 0.35.1p =,则实数,,m n p 的大小关系为( ) A. m p n << B. m n p << C. n m p << D. n p m <<7.如右程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行 该程序框图, 若输入,a b 分别为14,18, 则输出的a = ( )A. 0B. 2C. 4D. 148.已知首项为正数的等差数列{}n a 的前n 项和为n S ,若1008a 和1009a 是方程2201720180x x --=的两根,则使0n S >成立的正整数n 的最大值是( )A. 1008B. 1009C. 2016D. 20179.如图,在平行四边形ABCD 中, AC 与BD 相交于点O , E 为线段AO 的中点.若BE BA BDλμ=+u u u v u u u v u u u v(R λμ∈,),则λμ+=( ) A. 1 B.34C. 23D. 1210.某多面体的三视图如图所示,每一小格单位长度为l ,则该多面体的外接球的表面积是( )A. π27B. 227πC. π9D.427π11已知21,F F 分别是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过2F 与双曲线的一条渐近线平行的直线交另一条渐近线于点M ,若21MF F ∠为锐角,则双曲线离心率的取值范围是( )A .)2(∞+,B .)2(∞+,C .(1,2)D .)21(,12.设()f x 满足()()-=f x f x -,且在[]1,1-上是增函数,且()11f -=-,若函数()221f x t at ≤-+对所有[]1,1x ∈-,当[]1,1a ∈-时都成立,则t 的取值范围是( )A. 1122t -≤≤ B. 2t ≥或2t ≤-或0t = C. 12t ≥或12t ≤-或0t = D. 22t -≤≤二、填空题(本大题共4个小题,每小题5分,共20分)13,已知实数x,y 满足线性约束条件,若m y x ≥-2恒成立,则实数m 的取值范围是_______.14.已知点P (1,1)在直线a x +4 b y - 1 = 0(ab >0)上,则11ab+的最小值为 . 15.学校艺术节对同一类的,,,A B C D 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“A 作品获得一等奖”; 乙说:“C 作品获得一等奖” 丙说:“,B D 两项作品未获得一等奖” 丁说:“是A 或D 作品获得一等奖” 若这四位同学中只有两位说的话是对的,则获得一等奖的作品是 __________.16.已知直线)0(1≠+=k kx y 交抛物线y x 42=于E 和F 两点,以EF 为直径的圆被x 轴截得的弦长为72,则k =__________ .三、解答题(本大题共6题,共70分。
XX 学校2013-2014年第一学期期末考试
高二数学(文) 座位号
一卷(共60分)
一.选择题(每小题5分,共60分)
1. 顶点在原点,且过点(4,4)-的抛物线的标准方程是( )
A.24y x =-
B.2
4x y =
C.24y x =-或24x y =
D. 24y x =或2
4x y =-
2.直线023=-+
y x 与圆422=+y x 相交于B A ,两点,则弦AB 的长度等于( )
A
. B
. C
D .1
3. 等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于( ) A .66 B .99 C .144 D .297
4.已知2
:231, :(3)0P x Q x x <<(
-)-则Q P 是的( ) A. 必要不充分条件; B. 充分不必要条件 ; C.充要条件 ;
D.既不充分也不必要条件
5.已知=-
=-ααααcos sin ,4
5
cos sin 则( )
A .47
B .169
-
C .32
9
-
D .32
9
6. 函数)4
sin()(π
-=x x f 的图像的一条对称轴是( )
A .4
π
=
x B .2
π
=
x C .4
π
-
=x D .2
π
-
=x
7. 有下列四个命题:
①“若0x y += , 则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;
③“若1q ≤ ,则2
20x x q ++=有实根”的逆否命题; ④“不等边三角形的三个内角相等”逆命题; 其中真命题为( )
A .①②
B .②③
C .①③
D .③④
8.如果方程
12
1||2
2=---m y m x 表示双曲线,那么实数m 的取值范围是( ) ( A )2>m ( B ) 1<m 或2>m ( C ) 11<<-m 或2>m ( D ) 21<<-m
9. 已知椭圆
116
252
2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距 离为( ) A .2
B .3
C .5
D . 7
10.设p :1x >, q :21x >,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件
D .既不充分也不必要条件
11..已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( ) A.
2
1
B.1
C.2
D.4
12、已知双曲线22221x y a b -=的一条渐近线方程为x y 3
4
=,则双曲线的离心率为( )
A .5
3
B. 53 或5
4
C . 5
4
D. 32
二卷(共90分)
二.填空题(每小题5分,共20分)
13. 已知命题p 记做:1sin ,≤∈∀x R x ,则p ⌝记做: .
14. 椭圆
22189x y k +=+的离心率为1
2
,则k 的值为_____ _____。
15.已知焦点在x 轴上的双曲线的渐近线方程为y= ±x 4
3
,则此双曲线的离心率为 .
16.过抛物线2
4y x =的焦点,作倾斜角为
4
π
的直线交抛物线于P 、Q 两点,O 为坐标原点,
则POQ ∆的面积为_________。
座位号
三.解答题(17-18题10分,19---21题12分,22题14分,共70分)
17.(10分)已知椭圆的顶点与双曲线
112422=-x y 的焦点重合,它们的离心率之和为135
,若椭圆的焦点在x 轴上,求椭圆的方程.
18.(10分) 在△ABC 中,已知a =33,c =2,B =150°,求边b 的长及面积S △.
19.(本小题满分12分)
已知等差数列{a n }中,a 1=1,a 3=-3. (I )求数列{a n }的通项公式; (II )若数列{a n }的前k 项和=-35,求k 的值.
20(12分)在平面直角坐标系xoy 中,点M 到两定点F 1)0,1(-和F 2)0,1(的距离之和为4,设点M 的轨迹是曲线C .求曲线C 的方程;
21. (12分)命题p :关于x 的不等式2240x ax +--<对于一切x R ∈恒成立,命题q :
2[0,1],+1x a x ∀∈≤,若p q ∨为真,p q ∧为假,求实数a 的取值范围.
22(14分). 已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(3,0)F ,右顶点为(2,0)D ,设点11,
2A ⎛⎫
⎪⎝⎭
. (1)求该椭圆的标准方程;
(2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程;
高二上学期(文科)期末数学试卷答案
一.选择题 CBBA CCCC DACA
二,填空题
13. ∃X 0, sinx>1 14.k=4
或-5/4 15.
4
5
16.2
18. b 2=a 2+c 2-2ac cos B =(33)2+22-2·33·2·(-2
3
)=49. ∴ b =7, S △=
21ac sin B =21×33×2×21=2
3
3.
19.解:(I )设等差数列{}n a 的公差为d ,则1(1).n a a n d =+- 由121,312 3.a a d ==-+=-可得 解得d=-2。
从而,1(1)(2)32.n a n n =+-⨯-=- (II )由(I )可知32n a n =-, 所以2[1(32)]
2.2
n n n S n n +-=
=-
进而由2
135235,S k k =--=-可得
即2
2350k k --=,解得7 5.k k ==-或
又*
,7k N k ∈=故为所求。
20解:解:(1)设),(y x M ,由椭圆定义可知,
点M 的轨迹C 是以)0,1(-和)0,1(为焦点,长半轴长为2的椭圆.
它的短半轴长3=b ,故曲线C 的方程为:22
143
x y +=
21(12分)解:设2
()-2-4g x x ax =+,由于关于x 的不等式2-+2-4<0x ax 对于一切R x ∈恒成立,所以函数)(x g 的图象开口向下且与x 轴没有交点,故01642<-=∆a ,∴22<<-a . 若q 为真命题,2+1a x ≤恒成立,即1≤a .
由于p 或q 为真,p 且q 为假,可知p 、q 一真一假.
①若p 真q 假,则⎩⎨
⎧><<-1
2
2a a ∴21<<a ;
②若p 假q 真,则21a a ≤-⎧⎨≤⎩
2
≥a 或 ∴2-≤a ;
综上,实数a 的取值范围是{21|<<a a 或2-≤a }
22(12分)解:(1)由已知得椭圆的半长轴a=2,半焦距c=3,则半短轴b=1.
又椭圆的焦点在x 轴上, ∴椭圆的标准方程为14
22
=+y x
(2)设线段PA 的中点为M(x,y) ,点P 的坐标是(x 0,y 0),
由
x=2
1
0+x
得
x 0=2x -1 y=
2
21
0+
y y 0=2y -
2
1 由,点P 在椭圆上,得
1)2
1
2(4)12(22=-+-y x , ∴线段PA 中点M 的轨迹方程是1)4
1(4)21
(22=-+-y x。