物理 临界状态的假设解决物理试题的专项 培优 易错 难题练习题附答案
- 格式:doc
- 大小:783.00 KB
- 文档页数:17
物理 临界状态的假设解决物理试题的专项 培优 易错 难题练习题含答案解析一、临界状态的假设解决物理试题1.如图所示,带电荷量为+q 、质量为m 的物块从倾角为θ=37°的光滑绝缘斜面顶端由静止开始下滑,磁感应强度为B 的匀强磁场垂直纸面向外,重力加速度为g ,求物块在斜面上滑行的最大速度和在斜面上运动的最大位移.(斜面足够长,取sin 37°=0.6,cos 37° =0.8)【答案】最大速度为:4mg 5qB ;最大位移为:222815m gq B 【解析】 【分析】 【详解】经分析,物块沿斜面运动过程中加速度不变,但随速度增大,物块所受支持力逐渐减小,最后离开斜面.所以,当物块对斜面的压力刚好为零时,物块沿斜面的速度达到最大,同时位移达到最大,即qv m B =mgcos θ 物块沿斜面下滑过程中,由动能定理得21sin 2mgs mv θ=联立解得:22m m 22cos 48,52sin 15m v mg mg m gv s qB qB g q B θθ====2.如图甲,小球用不可伸长的轻绳连接绕定点O 在竖直面内圆周运动,小球经过最高点的速度大小为v ,此时绳子拉力大小为F ,拉力F 与速度的平方的关系如图乙所示,图象中的数据a 和b 以及重力加速度g 都为已知量,以下说法正确的是( )A .数据a 与小球的质量有关B .数据b 与小球的质量无关C .比值只与小球的质量有关,与圆周轨道半径无关D .利用数据a 、b 和g 能够求出小球的质量和圆周轨道半径【答案】D【解析】【分析】【详解】A.当时,此时绳子的拉力为零,物体的重力提供向心力,则有:解得:解得:与物体的质量无关,A错误;B.当时,对物体受力分析,则有:解得:b=mg与小球的质量有关,B错误;C.根据AB可知:与小球的质量有关,与圆周轨道半径有关,C错误;D. 若F=0,由图知:,则有:解得:当时,则有:解得:D正确.3.一根细线一端系一小球(可视为质点),另一端固定在光滑圆锥顶上,如图所示,设小球在水平面内做匀速圆周运动的角速度为ω,细线的张力为F T,则F T随ω2变化的图象是()A .B .C .D .【答案】C 【解析】 【分析】 【详解】由题知小球未离开圆锥表面时细线与竖直方向的夹角为θ,用L 表示细线长度,小球离开圆锥表面前,细线的张力为F T ,圆锥对小球的支持力为F N ,根据牛顿第二定律有F T sin θ-F N cos θ=mω2L sin θ F T cos θ+F N sin θ=mg联立解得F T =mg cos θ+ω2mL sin2θ小球离开圆锥表面后,设细线与竖直方向的夹角为α,根据牛顿第二定律有F T sin α=mω2L sin α解得F T =mLω2故C 正确。
【物理】物理 临界状态的假设解决物理试题的专项 培优 易错 难题练习题及答案一、临界状态的假设解决物理试题1.如图所示,M 、N 为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值。
静止的带电粒子带电荷量为+q ,质量为m (不计重力),从点P 经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直于纸面向外,CD 为磁场边界上的一绝缘板,它与N 板的夹角θ=45°,孔Q 到板的下端C 的距离为L ,当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,求:(1)两板间电压的最大值U m ;(2)CD 板上可能被粒子打中区域的长度s ; (3)粒子在磁场中运动的最长时间t m 。
【答案】(1)两板间电压的最大值m U 为222qB L m;(2)CD 板上可能被粒子打中的区域的长度x 为(22)L ; (3)粒子在磁场中运动的最长时间m t 为mqBπ。
【解析】 【分析】(1)粒子恰好垂直打在CD 板上,根据粒子的运动的轨迹,可以求得粒子运动的半径,由半径公式可以求得电压的大小;(2)当粒子的运动的轨迹恰好与CD 板相切时,这是粒子能达到的最下边的边缘,在由几何关系可以求得被粒子打中的区域的长度.(3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期,根据周期公式即可求解。
【详解】(1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,CH=QC=L ,故半径R 1=L ,又因211v qvB m R =2m 112qU mv =所以22m 2qB L U m=(2)设轨迹与CD 板相切于K 点,半径为R 2,在△AKC 中:22sin 45R R L ︒=- 所以2(21)R L =-即KC 长等于2(21)R L =-所以CD 板上可能被粒子打中的区域即为HK 的长度12(21)(22)x HK R R LL L -===-=﹣﹣ (3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期:2mT qBπ=所以m 12m t T qBπ==【点睛】本题考查带电粒子在匀强磁场中的运动,要掌握住半径公式、周期公式,画出粒子的运动轨迹后,几何关系就比较明显了。
培优 易错 难题临界状态的假设解决物理试题辅导专题训练附答案一、临界状态的假设解决物理试题1.一带电量为+q 、质量为m 的小球从倾角为θ的光滑的斜面上由静止开始下滑.斜面处于磁感应强度为B 的匀强磁场中,磁场方向如图所示,求小球在斜面上滑行的速度范围和滑行的最大距离.【答案】m gcosθ/Bq , m 2gcos 2θ/(2B 2q 2sinθ) 【解析】 【分析】 【详解】带正电小球从光滑斜面下滑过程中受到重力m g 、斜面的支持力N 和洛伦兹力f 的作用于小球下滑速度越来越大,所受的洛伦兹力越来越大,斜面的支持力越来越小,当支持力为零时,小球运动达到临界状态,此时小球的速度最大,在斜面上滑行的距离最大 故cos mg qvB θ= 解得:cos mg v qBθ=,为小球在斜面上运动的最大速度 此时小球移动距离为:22222cos 2(2sin )v m g s a B q θθ==.2.如图甲所示,小车B 紧靠平台的边缘静止在光滑水平面上,物体A (可视为质点)以初速度v 0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v -t 图像如图乙所示,取重力加速度g =10m /s 2,求:(1)物体A 与小车上表面间的动摩擦因数; (2)物体A 与小车B 的质量之比; (3)小车的最小长度。
【答案】(1)0.3;(2)13;(3)2m 【解析】 【分析】 【详解】(1)根据v t -图像可知,A 在小车上做减速运动,加速度的大小21241m /s 3m /s 1v a t ==∆-∆=若物体A 的质量为m 与小车上表面间的动摩擦因数为μ,则1mg ma μ=联立可得0.3μ=(2)设小车B 的质量为M ,加速度大小为2a ,根据牛顿第二定律2mg Ma μ=得13m M = (3)设小车的最小长度为L ,整个过程系统损失的动能,全部转化为内能22011()22mgL mv M m v μ=-+解得L =2m3.用一根细线一端系一小球(可视为质点),另一端固定在一光滑锥顶上,如图所示。
【物理】物理临界状态的假设解决物理试题的专项培优易错试卷练习题(含答案)一、临界状态的假设解决物理试题1.如图所示,在光滑的圆锥顶用长为L 的细线悬挂一质量为m 的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.()1此时绳的张力是多少?()2若要小球离开锥面,则小球的角速度至少为多少?【答案】(1)()22cos sin T mg m l θωθ=+(2)cos gl ωθ= 【解析】(1)小球此时受到竖直向下的重力mg ,绳子的拉力T ,锥面对小球的支持力N ,三个力作用,合力充当向心力,即合力2sin F m l ωθ= 在水平方向上有,sin cos T N ma F ma θθ-==,, 在竖直方向上:cos sin T N mg θθ+= 联立四个式子可得()22cos sin T mg m l θωθ=+(2)重力和拉力完全充当向心力时,小球对锥面的压力为零, 故有向心力tan F mg θ=,2sin F m l ωθ=,联立可得cos gl ωθ=,即小球的角速度至少为cos gl ωθ=;2.一足够长的矩形区域abcd 内充满磁感应强度为B,方向垂直纸而向里的匀强磁场,矩形区域的左边界ad 宽为L,现从ad 中点O 垂直于磁场射入一带电粒亍,速度大小为v 方向与ad 边夹角为30°,如图所示.已知粒子的电荷量为q,质量为m(重力不计). 求:(1)若拉子带负电,且恰能从d 点射出磁场,求v 的大小;(2)若粒子带正电,使粒子能从ab 边射出磁场,求拉子从ab 边穿出的最短时间.【答案】(1)2BqLm ;(2)56m qBπ 【解析】 【分析】(1)根据牛顿第二定律,由洛伦兹力提供向心力,结合几何关系可确定半径的范围,即可求解;(2)根据题意确定运动轨迹,再由圆心角与周期公式,即可确定最短运动的时间; 【详解】(1)由图可知:R = 2L据洛伦兹力提供向心力,得:20v qvB m R= 则02qBR qBLv m m== (2)若粒子带正电,粒子的运动轨迹如图,当粒子的速度大于与R 1相对应的速度v 1时,粒子从cd 边射出,由几何关系可知R 1=L ;由洛伦兹力等于向心力可知:2111v qv B m R =从图中看出,当轨迹的半径对应R 1时从ab 边上射出时用时间最短,此时对应的圆心角为000=18030=150θ- 由公式可得:22R mT v qBππ== ; 由1=360t Tθ解得156π=mt qB【点睛】考查牛顿第二定律的应用,掌握几何关系在题中的运用,理解在磁场中运动时间与圆心角的关系.注意本题关键是画出正确的运动轨迹.3.水平传送带上A 、B 两端点间距L =4m ,半径R =1m 的光滑半圆形轨道固于竖直平面内,下端与传送带B 相切。
高考物理培优 易错 难题(含解析)之临界状态的假设解决物理试题附答案解析一、临界状态的假设解决物理试题1.如图所示,在光滑的圆锥顶用长为L 的细线悬挂一质量为m 的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.()1此时绳的张力是多少?()2若要小球离开锥面,则小球的角速度至少为多少?【答案】(1)()22cos sin T mg m l θωθ=+(2)cos gl ωθ= 【解析】(1)小球此时受到竖直向下的重力mg ,绳子的拉力T ,锥面对小球的支持力N ,三个力作用,合力充当向心力,即合力2sin F m l ωθ= 在水平方向上有,sin cos T N ma F ma θθ-==,, 在竖直方向上:cos sin T N mg θθ+= 联立四个式子可得()22cos sin T mg m l θωθ=+(2)重力和拉力完全充当向心力时,小球对锥面的压力为零, 故有向心力tan F mg θ=,2sin F m l ωθ=,联立可得cos gl ωθ=,即小球的角速度至少为cos gl ωθ=;2.壁厚不计的圆筒形薄壁玻璃容器的侧视图如图所示。
圆形底面的直径为2R ,圆筒的高度为R 。
(1)若容器内盛满甲液体,在容器中心放置一个点光源,在侧壁以外所有位置均能看到该点光源,求甲液体的折射率;(2)若容器内装满乙液体,在容器下底面以外有若干个光源,却不能通过侧壁在筒外看到所有的光源,求乙液体的折射率。
【答案】(1)5n≥甲;(2)2n>乙【解析】【详解】(1)盛满甲液体,如图甲所示,P点刚好全反射时为最小折射率,有1sinnC=由几何关系知222sin2RCRR=⎛⎫+ ⎪⎝⎭解得5n=则甲液体的折射率应为5n≥甲(2)盛满乙液体,如图乙所示,与底边平行的光线刚好射入液体时对应液体的最小折射率,A点1sinnC='乙由几何关系得90Cα'=︒-B点恰好全反射有Cα'=解各式得2n=乙则乙液体的折射率应为2n>乙3.如图所示,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。
物理临界状态的假设解决物理试题的专项培优易错试卷练习题(含答案)附详细答案一、临界状态的假设解决物理试题1.如图所示,M 、N 为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值。
静止的带电粒子带电荷量为+q ,质量为m (不计重力),从点P 经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直于纸面向外,CD 为磁场边界上的一绝缘板,它与N 板的夹角θ=45°,孔Q 到板的下端C 的距离为L ,当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,求:(1)两板间电压的最大值U m ;(2)CD 板上可能被粒子打中区域的长度s ; (3)粒子在磁场中运动的最长时间t m 。
【答案】(1)两板间电压的最大值m U 为222qB L m;(2)CD 板上可能被粒子打中的区域的长度x 为(22)L ; (3)粒子在磁场中运动的最长时间m t 为mqBπ。
【解析】 【分析】(1)粒子恰好垂直打在CD 板上,根据粒子的运动的轨迹,可以求得粒子运动的半径,由半径公式可以求得电压的大小;(2)当粒子的运动的轨迹恰好与CD 板相切时,这是粒子能达到的最下边的边缘,在由几何关系可以求得被粒子打中的区域的长度.(3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期,根据周期公式即可求解。
【详解】(1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,CH=QC=L ,故半径R 1=L ,又因211v qvB m R =2m 112qU mv =所以22m 2qB L U m=(2)设轨迹与CD 板相切于K 点,半径为R 2,在△AKC 中:22sin 45R R L ︒=- 所以2(21)R L =-即KC 长等于2(21)R L =-所以CD 板上可能被粒子打中的区域即为HK 的长度12(21)(22)x HK R R LL L -===-=﹣﹣ (3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期:2mT qBπ=所以m 12m t T qBπ==【点睛】本题考查带电粒子在匀强磁场中的运动,要掌握住半径公式、周期公式,画出粒子的运动轨迹后,几何关系就比较明显了。
【物理】物理临界状态的假设解决物理试题的专项培优易错试卷练习题及详细答案一、临界状态的假设解决物理试题1.如图所示,在光滑的圆锥顶用长为L 的细线悬挂一质量为m 的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.()1此时绳的张力是多少?()2若要小球离开锥面,则小球的角速度至少为多少?【答案】(1)()22cos sin T mg m l θωθ=+(2)cos gl ωθ=【解析】(1)小球此时受到竖直向下的重力mg ,绳子的拉力T ,锥面对小球的支持力N ,三个力作用,合力充当向心力,即合力2sin F m l ωθ= 在水平方向上有,sin cos T N ma F ma θθ-==,, 在竖直方向上:cos sin T N mg θθ+= 联立四个式子可得()22cos sin T mg m l θωθ=+(2)重力和拉力完全充当向心力时,小球对锥面的压力为零, 故有向心力tan F mg θ=,2sin F m l ωθ=,联立可得cos gl ωθ=,即小球的角速度至少为cos gl ωθ=;2.如图所示,用长为L =0.8m 的轻质细绳将一质量为1kg 的小球悬挂在距离水平面高为H =2.05m 的O 点,将细绳拉直至水平状态无初速度释放小球,小球摆动至细绳处于竖直位置时细绳恰好断裂,小球落在距离O 点水平距离为2m 的水平面上的B 点,不计空气阻力,取g =10m/s 2求:(1)绳子断裂后小球落到地面所用的时间; (2)小球落地的速度的大小; (3)绳子能承受的最大拉力。
【答案】(1)0.5s(2)6.4m/s(3)30N 【解析】 【分析】 【详解】(1)细绳断裂后,小球做平抛运动,竖直方向自由落体运动,则竖直方向有212AB h gt =,解得2(2.050.8)s 0.5s 10t ⨯-==(2)水平方向匀速运动,则有02m/s 4m/s 0.5x v t === 竖直方向的速度为5m/s y v gt ==则2222045m/s=41m/s 6.4m/s y v v v =+=+≈(3)在A 点根据向心力公式得2v T mg m L-=代入数据解得24(1101)N=30N 0.8T =⨯+⨯3.平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外。
培优 易错 难题临界状态的假设解决物理试题辅导专题训练含详细答案一、临界状态的假设解决物理试题1.如图所示,在光滑的圆锥顶用长为L 的细线悬挂一质量为m 的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.()1此时绳的张力是多少?()2若要小球离开锥面,则小球的角速度至少为多少?【答案】(1)()22cos sin T mg m l θωθ=+(2)cos gl ωθ=【解析】(1)小球此时受到竖直向下的重力mg ,绳子的拉力T ,锥面对小球的支持力N ,三个力作用,合力充当向心力,即合力2sin F m l ωθ= 在水平方向上有,sin cos T N ma F ma θθ-==,, 在竖直方向上:cos sin T N mg θθ+= 联立四个式子可得()22cos sin T mg m l θωθ=+(2)重力和拉力完全充当向心力时,小球对锥面的压力为零, 故有向心力tan F mg θ=,2sin F m l ωθ=,联立可得cos gl ωθ=,即小球的角速度至少为cos gl ωθ=;2.如图所示,用长为L =0.8m 的轻质细绳将一质量为1kg 的小球悬挂在距离水平面高为H =2.05m 的O 点,将细绳拉直至水平状态无初速度释放小球,小球摆动至细绳处于竖直位置时细绳恰好断裂,小球落在距离O 点水平距离为2m 的水平面上的B 点,不计空气阻力,取g =10m/s 2求:(1)绳子断裂后小球落到地面所用的时间; (2)小球落地的速度的大小; (3)绳子能承受的最大拉力。
【答案】(1)0.5s(2)6.4m/s(3)30N 【解析】 【分析】 【详解】(1)细绳断裂后,小球做平抛运动,竖直方向自由落体运动,则竖直方向有212AB h gt =,解得2(2.050.8)s 0.5s 10t ⨯-==(2)水平方向匀速运动,则有02m/s 4m/s 0.5x v t === 竖直方向的速度为5m/s y v gt ==则2222045m/s=41m/s 6.4m/s y v v v =+=+≈(3)在A 点根据向心力公式得2v T mg m L-=代入数据解得24(1101)N=30N 0.8T =⨯+⨯3.平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外。
高考物理培优 易错 难题(含解析)之临界状态的假设解决物理试题附答案一、临界状态的假设解决物理试题1.一带电量为+q 、质量为m 的小球从倾角为θ的光滑的斜面上由静止开始下滑.斜面处于磁感应强度为B 的匀强磁场中,磁场方向如图所示,求小球在斜面上滑行的速度范围和滑行的最大距离.【答案】m gcosθ/Bq , m 2gcos 2θ/(2B 2q 2sinθ) 【解析】 【分析】 【详解】带正电小球从光滑斜面下滑过程中受到重力m g 、斜面的支持力N 和洛伦兹力f 的作用于小球下滑速度越来越大,所受的洛伦兹力越来越大,斜面的支持力越来越小,当支持力为零时,小球运动达到临界状态,此时小球的速度最大,在斜面上滑行的距离最大 故cos mg qvB θ= 解得:cos mg v qBθ=,为小球在斜面上运动的最大速度 此时小球移动距离为:22222cos 2(2sin )v m g s a B q θθ==.2.水平传送带上A 、B 两端点间距L =4m ,半径R =1m 的光滑半圆形轨道固于竖直平面内,下端与传送带B 相切。
传送带以v 0=4m/s 的速度沿图示方向匀速运动,m =lkg 的小滑块由静止放到传送带的A 端,经一段时间运动到B 端,滑块与传送带间的动摩擦因数μ=0.5,g =10m/s 2。
(1)求滑块到达B 端的速度;(2)求滑块由A 运动到B 的过程中,滑块与传送带间摩擦产生的热量;(3)仅改变传送带的速度,其他条件不变,计算说明滑块能否通过圆轨道最高点C 。
【答案】(1)v B =4m/s ; (2)Q =8J ; (3)不能通过最高点 【解析】【分析】本题考查了动能定理和圆周运动。
【详解】⑴滑块在传送带上先向右做加速运动,设当速度v = v 0时已运动的距离为x 根据动能定理201-02mgx mv μ=得x=1.6m <L所以滑块到达B 端时的速度为4m/s 。
⑵设滑块与传送带发生相对运动的时间为t ,则0v gt μ=滑块与传送带之间产生的热量0()Q mg v t x μ=-解得Q = 8J⑶设滑块通过最高点C 的最小速度为C v 经过C 点,根据向心力公式2C mv mg R= 从B 到C 过程,根据动能定理2211222C B mg R mv mv -⋅=- 解得经过B 的速度B v =m/s从A 到B 过程,若滑块一直加速,根据动能定理2102m mgL mv μ=-解得m v =m/s由于速度v m <v B ,所以仅改变传送带的速度,滑块不能通过圆轨道最高点。
物理 临界状态的假设解决物理试题的专项 培优易错试卷练习题附答案一、临界状态的假设解决物理试题1.如图甲所示,小车B 紧靠平台的边缘静止在光滑水平面上,物体A (可视为质点)以初速度v 0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v -t 图像如图乙所示,取重力加速度g =10m /s 2,求:(1)物体A 与小车上表面间的动摩擦因数; (2)物体A 与小车B 的质量之比; (3)小车的最小长度。
【答案】(1)0.3;(2)13;(3)2m 【解析】 【分析】 【详解】(1)根据v t -图像可知,A 在小车上做减速运动,加速度的大小21241m /s 3m /s 1v a t ==∆-∆=若物体A 的质量为m 与小车上表面间的动摩擦因数为μ,则1mg ma μ=联立可得0.3μ=(2)设小车B 的质量为M ,加速度大小为2a ,根据牛顿第二定律2mg Ma μ=得13m M = (3)设小车的最小长度为L ,整个过程系统损失的动能,全部转化为内能22011()22mgL mv M m v μ=-+解得L =2m2.一足够长的矩形区域abcd 内充满磁感应强度为B,方向垂直纸而向里的匀强磁场,矩形区域的左边界ad 宽为L,现从ad 中点O 垂直于磁场射入一带电粒亍,速度大小为v 方向与ad 边夹角为30°,如图所示.已知粒子的电荷量为q,质量为m(重力不计). 求:(1)若拉子带负电,且恰能从d 点射出磁场,求v 的大小;(2)若粒子带正电,使粒子能从ab 边射出磁场,求拉子从ab 边穿出的最短时间.【答案】(1)2BqLm ;(2)56m qB【解析】 【分析】(1)根据牛顿第二定律,由洛伦兹力提供向心力,结合几何关系可确定半径的范围,即可求解;(2)根据题意确定运动轨迹,再由圆心角与周期公式,即可确定最短运动的时间; 【详解】(1)由图可知:R = 2L据洛伦兹力提供向心力,得:20v qvB m R= 则02qBR qBLv m m== (2)若粒子带正电,粒子的运动轨迹如图,当粒子的速度大于与R 1相对应的速度v 1时,粒子从cd 边射出,由几何关系可知R 1=L ;由洛伦兹力等于向心力可知:2111v qv B m R =从图中看出,当轨迹的半径对应R 1时从ab 边上射出时用时间最短,此时对应的圆心角为=18030=150θ- 由公式可得:22R mT v qBππ== ; 由1=360t Tθ解得156π=mt qB【点睛】考查牛顿第二定律的应用,掌握几何关系在题中的运用,理解在磁场中运动时间与圆心角的关系.注意本题关键是画出正确的运动轨迹.3.用一根细线一端系一小球(可视为质点),另一端固定在一光滑锥顶上,如图所示。
【物理】物理临界状态的假设解决物理试题的专项培优 易错 难题练习题(含答案)及答案一、临界状态的假设解决物理试题1.如图所示,M 、N 为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值。
静止的带电粒子带电荷量为+q ,质量为m (不计重力),从点P 经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直于纸面向外,CD 为磁场边界上的一绝缘板,它与N 板的夹角θ=45°,孔Q 到板的下端C 的距离为L ,当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,求:(1)两板间电压的最大值U m ;(2)CD 板上可能被粒子打中区域的长度s ; (3)粒子在磁场中运动的最长时间t m 。
【答案】(1)两板间电压的最大值m U 为222qB L m;(2)CD 板上可能被粒子打中的区域的长度x 为(22)L ; (3)粒子在磁场中运动的最长时间m t 为mqBπ。
【解析】 【分析】(1)粒子恰好垂直打在CD 板上,根据粒子的运动的轨迹,可以求得粒子运动的半径,由半径公式可以求得电压的大小;(2)当粒子的运动的轨迹恰好与CD 板相切时,这是粒子能达到的最下边的边缘,在由几何关系可以求得被粒子打中的区域的长度.(3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期,根据周期公式即可求解。
【详解】(1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,CH=QC=L ,故半径R 1=L ,又因211v qvB m R =2m 112qU mv =所以22m 2qB L U m=(2)设轨迹与CD 板相切于K 点,半径为R 2,在△AKC 中:22sin 45R R L ︒=- 所以2(21)R L =-即KC 长等于2(21)R L =-所以CD 板上可能被粒子打中的区域即为HK 的长度12(21)(22)x HK R R LL L -===-=﹣﹣ (3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期:2mT qBπ=所以m 12m t T qBπ==【点睛】本题考查带电粒子在匀强磁场中的运动,要掌握住半径公式、周期公式,画出粒子的运动轨迹后,几何关系就比较明显了。
【物理】物理临界状态的假设解决物理试题的专项培优 易错 难题练习题含答案一、临界状态的假设解决物理试题1.如图所示,带电荷量为+q 、质量为m 的物块从倾角为θ=37°的光滑绝缘斜面顶端由静止开始下滑,磁感应强度为B 的匀强磁场垂直纸面向外,重力加速度为g ,求物块在斜面上滑行的最大速度和在斜面上运动的最大位移.(斜面足够长,取sin 37°=0.6,cos 37° =0.8)【答案】最大速度为:4mg 5qB ;最大位移为:222815m gq B 【解析】 【分析】 【详解】经分析,物块沿斜面运动过程中加速度不变,但随速度增大,物块所受支持力逐渐减小,最后离开斜面.所以,当物块对斜面的压力刚好为零时,物块沿斜面的速度达到最大,同时位移达到最大,即qv m B =mgcos θ 物块沿斜面下滑过程中,由动能定理得21sin 2mgs mv θ=联立解得:22m m 22cos 48,52sin 15m v mg mg m gv s qB qB g q Bθθ====2.如图所示,用长为L =0.8m 的轻质细绳将一质量为1kg 的小球悬挂在距离水平面高为H =2.05m 的O 点,将细绳拉直至水平状态无初速度释放小球,小球摆动至细绳处于竖直位置时细绳恰好断裂,小球落在距离O 点水平距离为2m 的水平面上的B 点,不计空气阻力,取g =10m/s 2求:(1)绳子断裂后小球落到地面所用的时间; (2)小球落地的速度的大小; (3)绳子能承受的最大拉力。
【答案】(1)0.5s(2)6.4m/s(3)30N 【解析】 【分析】 【详解】(1)细绳断裂后,小球做平抛运动,竖直方向自由落体运动,则竖直方向有212AB h gt =,解得2(2.050.8)s 0.5s 10t ⨯-==(2)水平方向匀速运动,则有02m/s 4m/s 0.5x v t === 竖直方向的速度为5m/s y v gt ==则2222045m/s=41m/s 6.4m/s y v v v =+=+≈(3)在A 点根据向心力公式得2v T mg m L-=代入数据解得24(1101)N=30N 0.8T =⨯+⨯3.火车转弯时,如果铁路弯道内外轨一样高,外轨对轮绝(如图a 所示)挤压的弹力F 提供了火车转弯的向心力(如图b 所示),但是靠这种办法得到向心力,铁轨和车轮极易受损.在修筑铁路时,弯道处的外轨会略高于内轨(如图c 所示),当火车以规定的行驶速度转弯时,内、外轨均不会受到轮缘的挤压,设此时的速度小为,以下说法中正确的是A .该弯道的半径B .当火车质量改变时,规定的行驶速度也将改变C .当火车速率大于时,外轨将受到轮缘的挤压D.当火车速率小于时,外轨将受到轮缘的挤压【答案】C【解析】【详解】火车拐弯时不侧向挤压车轮轮缘,靠重力和支持力的合力提供向心力,设转弯处斜面的倾角为θ,根据牛顿第二定律得:mgtanθ=mv2/R,解得:R= v2/ g tanθ,故A错误;根据牛顿第二定律得:mgtanθ=mv2/R, 解得:v=gRtan ,与质量无关,故B错误;若速度大于规定速度,重力和支持力的合力不够提供,此时外轨对火车有侧压力,轮缘挤压外轨.故C 正确;若速度小于规定速度,重力和支持力的合力提供偏大,此时内轨对火车有侧压力,轮缘挤压内轨.故D错误.故选C.点睛:火车拐弯时以规定速度行驶,此时火车的重力和支持力的合力提供圆周运动所需的向心力.若速度大于规定速度,重力和支持力的合力不够提供,此时外轨对火车有侧压力;若速度小于规定速度,重力和支持力的合力提供偏大,此时内轨对火车有侧压力.4.质量为m的光滑圆柱体A放在质量也为m的光滑“ V”型槽B上,如图,α=60°,另有质量为M的物体C通过跨过定滑轮的不可伸长的细绳与B相连,现将C自由释放,则下列说法正确的是( )A.当M= m时,A和B保持相对静止,共同加速度为0.5gB.当M=2m时,A和B保持相对静止,共同加速度为0.5gC.当M=6m时,A和B保持相对静止,共同加速度为0.75gD.当M=5m时,A和B之间的恰好发生相对滑动【答案】B【解析】【分析】【详解】D.当A和B之间的恰好发生相对滑动时,对A受力分析如图根据牛顿运动定律有:cot 60mg ma ︒= 解得cot 603a g g =︒=B 与C 为绳子连接体,具有共同的运动情况,此时对于B 和C 有:()Mg M m a =+所以3M a g g M m ==+,即3MM m=+ 解得3 2.3713M m m =≈-选项D 错误;C.当 2.37M m >,A 和B 将发生相对滑动,选项C 错误;A. 当 2.37M m <,A 和B 保持相对静止。
【物理】物理临界状态的假设解决物理试题的专项培优易错试卷练习题附答案解析一、临界状态的假设解决物理试题1.如图所示,在光滑的圆锥顶用长为L 的细线悬挂一质量为m 的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.()1此时绳的张力是多少?()2若要小球离开锥面,则小球的角速度至少为多少?【答案】(1)()22cos sin T mg m l θωθ=+(2)cos gl ωθ= 【解析】(1)小球此时受到竖直向下的重力mg ,绳子的拉力T ,锥面对小球的支持力N ,三个力作用,合力充当向心力,即合力2sin F m l ωθ= 在水平方向上有,sin cos T N ma F ma θθ-==,, 在竖直方向上:cos sin T N mg θθ+= 联立四个式子可得()22cos sin T mg m l θωθ=+(2)重力和拉力完全充当向心力时,小球对锥面的压力为零, 故有向心力tan F mg θ=,2sin F m l ωθ=,联立可得cos gl ωθ=,即小球的角速度至少为cos gl ωθ=;2.一辆货车运载着圆柱形光滑的空油桶。
在车厢底,一层油桶平整排列,相互紧贴并被牢牢固定。
上一层只有一只桶C ,自由地摆放在A 、B 之间,和汽车一起保持静止,如图所示,当C 与车共同向左加速时A .A 对C 的支持力变大B .B 对C 的支持力不变C.当向左的加速度达到32g时,C将脱离AD.当向左的加速度达到33g时,C将脱离A【答案】D【解析】【详解】对C进行受力分析,如图所示,设B对C的支持力与竖直方向的夹角为θ,根据几何关系可得:122RsinRθ==,所以θ=30°;同理可得,A对C的支持力与竖直方向的夹角也为30°;AB.原来C处于静止状态,根据平衡条件可得:N B sin30°=N A sin30°;令C的加速度为a,根据正交分解以及牛顿第二定律有:N′B sin30°-N′A sin30°=ma可见A对C的支持力减小、B对C的支持力增大,故AB错误;CD.当A对C的支持力为零时,根据牛顿第二定律可得:mg tan30°=ma解得:3a g=则C错误,D正确;故选D。
【物理】物理 临界状态的假设解决物理试题的专项 培优 易错 难题练习题附答案一、临界状态的假设解决物理试题1.如图甲所示,小车B 紧靠平台的边缘静止在光滑水平面上,物体A (可视为质点)以初速度v 0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v -t 图像如图乙所示,取重力加速度g =10m /s 2,求:(1)物体A 与小车上表面间的动摩擦因数; (2)物体A 与小车B 的质量之比; (3)小车的最小长度。
【答案】(1)0.3;(2)13;(3)2m 【解析】 【分析】 【详解】(1)根据v t -图像可知,A 在小车上做减速运动,加速度的大小21241m /s 3m /s 1v a t ==∆-∆=若物体A 的质量为m 与小车上表面间的动摩擦因数为μ,则1mg ma μ=联立可得0.3μ=(2)设小车B 的质量为M ,加速度大小为2a ,根据牛顿第二定律2mg Ma μ=得13m M = (3)设小车的最小长度为L ,整个过程系统损失的动能,全部转化为内能22011()22mgL mv M m v μ=-+解得L =2m2.一足够长的矩形区域abcd 内充满磁感应强度为B,方向垂直纸而向里的匀强磁场,矩形区域的左边界ad 宽为L,现从ad 中点O 垂直于磁场射入一带电粒亍,速度大小为v 方向与ad 边夹角为30°,如图所示.已知粒子的电荷量为q,质量为m(重力不计). 求:(1)若拉子带负电,且恰能从d 点射出磁场,求v 的大小;(2)若粒子带正电,使粒子能从ab 边射出磁场,求拉子从ab 边穿出的最短时间.【答案】(1)2BqLm ;(2)56m qBπ【解析】 【分析】(1)根据牛顿第二定律,由洛伦兹力提供向心力,结合几何关系可确定半径的范围,即可求解;(2)根据题意确定运动轨迹,再由圆心角与周期公式,即可确定最短运动的时间; 【详解】(1)由图可知:R = 2L据洛伦兹力提供向心力,得:20v qvB m R= 则02qBR qBLv m m== (2)若粒子带正电,粒子的运动轨迹如图,当粒子的速度大于与R 1相对应的速度v 1时,粒子从cd 边射出,由几何关系可知R 1=L ;由洛伦兹力等于向心力可知:21 11v qvB mR=从图中看出,当轨迹的半径对应R1时从ab边上射出时用时间最短,此时对应的圆心角为000=18030=150θ-由公式可得:22R mTv qBππ==;由1=360tTθ解得156π=mtqB【点睛】考查牛顿第二定律的应用,掌握几何关系在题中的运用,理解在磁场中运动时间与圆心角的关系.注意本题关键是画出正确的运动轨迹.3.质量为m的光滑圆柱体A放在质量也为m的光滑“ V”型槽B上,如图,α=60°,另有质量为M的物体C通过跨过定滑轮的不可伸长的细绳与B相连,现将C自由释放,则下列说法正确的是( )A.当M= m时,A和B保持相对静止,共同加速度为0.5gB.当M=2m时,A和B保持相对静止,共同加速度为0.5gC.当M=6m时,A和B保持相对静止,共同加速度为0.75gD.当M=5m时,A和B之间的恰好发生相对滑动【答案】B【解析】【分析】【详解】D.当A和B之间的恰好发生相对滑动时,对A受力分析如图根据牛顿运动定律有:cot60mg ma︒=解得cot 603a g g =︒=B 与C 为绳子连接体,具有共同的运动情况,此时对于B 和C 有:()Mg M m a =+所以3M a g g M m ==+,即3MM m=+ 解得3 2.3713M m m =≈-选项D 错误;C.当 2.37M m >,A 和B 将发生相对滑动,选项C 错误;A. 当 2.37M m <,A 和B 保持相对静止。
【物理】物理 临界状态的假设解决物理试题的专项 培优 易错 难题练习题含详细答案一、临界状态的假设解决物理试题1.如图甲所示,小车B 紧靠平台的边缘静止在光滑水平面上,物体A (可视为质点)以初速度v 0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v -t 图像如图乙所示,取重力加速度g =10m /s 2,求:(1)物体A 与小车上表面间的动摩擦因数; (2)物体A 与小车B 的质量之比; (3)小车的最小长度。
【答案】(1)0.3;(2)13;(3)2m 【解析】 【分析】 【详解】(1)根据v t -图像可知,A 在小车上做减速运动,加速度的大小21241m /s 3m /s 1v a t ==∆-∆=若物体A 的质量为m 与小车上表面间的动摩擦因数为μ,则1mg ma μ=联立可得0.3μ=(2)设小车B 的质量为M ,加速度大小为2a ,根据牛顿第二定律2mg Ma μ=得13m M = (3)设小车的最小长度为L ,整个过程系统损失的动能,全部转化为内能22011()22mgL mv M m v μ=-+解得L =2m2.如图所示,用长为L =0.8m 的轻质细绳将一质量为1kg 的小球悬挂在距离水平面高为H =2.05m 的O 点,将细绳拉直至水平状态无初速度释放小球,小球摆动至细绳处于竖直位置时细绳恰好断裂,小球落在距离O 点水平距离为2m 的水平面上的B 点,不计空气阻力,取g =10m/s 2求:(1)绳子断裂后小球落到地面所用的时间; (2)小球落地的速度的大小; (3)绳子能承受的最大拉力。
【答案】(1)0.5s(2)6.4m/s(3)30N 【解析】 【分析】 【详解】(1)细绳断裂后,小球做平抛运动,竖直方向自由落体运动,则竖直方向有212AB h gt =,解得2(2.050.8)s 0.5s 10t ⨯-==(2)水平方向匀速运动,则有02m/s 4m/s 0.5x v t === 竖直方向的速度为5m/s y v gt ==则2222045m/s=41m/s 6.4m/s y v v v =+=+≈(3)在A 点根据向心力公式得2v T mg m L-=代入数据解得24(1101)N=30N 0.8T =⨯+⨯3.质量为m 的光滑圆柱体A 放在质量也为m 的光滑“ V ”型槽B 上,如图,α=60°,另有质量为M 的物体C 通过跨过定滑轮的不可伸长的细绳与B 相连,现将C 自由释放,则下列说法正确的是( )A .当M= m 时,A 和B 保持相对静止,共同加速度为0.5g B .当M=2m 时,A 和B 保持相对静止,共同加速度为0.5gC .当M=6m 时,A 和B 保持相对静止,共同加速度为0.75gD .当M=5m 时,A 和B 之间的恰好发生相对滑动 【答案】B 【解析】 【分析】 【详解】D.当A 和B 之间的恰好发生相对滑动时,对A 受力分析如图根据牛顿运动定律有:cot 60mg ma ︒= 解得cot 603a g g =︒=B 与C 为绳子连接体,具有共同的运动情况,此时对于B 和C 有:()Mg M m a =+所以3M a g g M m ==+,即3MM m=+ 解得3 2.3713M m =≈-选项D 错误;C.当 2.37M m >,A 和B 将发生相对滑动,选项C 错误;A. 当 2.37M m <,A 和B 保持相对静止。
物理临界状态的假设解决物理试题的专项培优易错试卷练习题(含答案)一、临界状态的假设解决物理试题1.质量为m 2=2Kg 的长木板A 放在水平面上,与水平面之间的动摩擦系数为0.4;物块B (可看作质点)的质量为m 1=1Kg ,放在木板A 的左端,物块B 与木板A 之间的摩擦系数为0.2.现用一水平向右的拉力F 作用在木板A 的右端,让木板A 和物块B 一起向右做匀加速运动.当木板A 和物块B 的速度达到2 m/s 时,撤去拉力,物块B 恰好滑到木板A 的右端而停止滑动,最大静摩擦力等于动摩擦力,g=10m/s 2,求:(1)要使木板A 和物块B 不发生相对滑动,求拉力F 的最大值; (2)撤去拉力后木板A 的滑动时间; (3)木板A 的长度。
【答案】(1)18N (2)0.4s (3)0.6m 【解析】 【详解】(1)当木板A 和物块B 刚要发生相对滑动时,拉力达到最大 以B 为研究对象,由牛顿第二定律得1111m g m a μ=可得2112m/s a g μ==.再以整体为研究对象,由牛顿第二定律得212121 ))F m m g m m a μ-+=+(( 故得最大拉力18F N =;(2)撤去F 后A 、B 均做匀减速运动,B 的加速度大小仍为1a ,A 的加速度大小为2a ,则 2121122)m m g m g m a μμ+-=(解得225m/s a =故A 滑动的时间220.45v t s s a === (3)撤去F 后A 滑动的距离22122m=0.4m 225v x a ==⨯B 滑动的距离22212m=1m 222v x a ==⨯故木板A 的长度210.6m L x x =-=.【点睛】解题的关键是正确对滑块和木板进行受力分析,清楚滑块和木板的运动情况,根据牛顿第二定律及运动学基本公式求解。
2.一足够长的矩形区域abcd 内充满磁感应强度为B,方向垂直纸而向里的匀强磁场,矩形区域的左边界ad 宽为L,现从ad 中点O 垂直于磁场射入一带电粒亍,速度大小为v 方向与ad 边夹角为30°,如图所示.已知粒子的电荷量为q,质量为m(重力不计). 求:(1)若拉子带负电,且恰能从d 点射出磁场,求v 的大小;(2)若粒子带正电,使粒子能从ab 边射出磁场,求拉子从ab 边穿出的最短时间.【答案】(1)2BqLm ;(2)56m qBπ 【解析】 【分析】(1)根据牛顿第二定律,由洛伦兹力提供向心力,结合几何关系可确定半径的范围,即可求解;(2)根据题意确定运动轨迹,再由圆心角与周期公式,即可确定最短运动的时间; 【详解】(1)由图可知:R = 2L据洛伦兹力提供向心力,得:20v qvB m R= 则02qBR qBLv m m== (2)若粒子带正电,粒子的运动轨迹如图,当粒子的速度大于与R1相对应的速度v1时,粒子从cd边射出,由几何关系可知R1=L;由洛伦兹力等于向心力可知:21 11v qvB mR=从图中看出,当轨迹的半径对应R1时从ab边上射出时用时间最短,此时对应的圆心角为000=18030=150θ-由公式可得:22R mTv qBππ==;由1=360tTθ解得156π=mtqB【点睛】考查牛顿第二定律的应用,掌握几何关系在题中的运用,理解在磁场中运动时间与圆心角的关系.注意本题关键是画出正确的运动轨迹.3.如图所示,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。
【物理】物理临界状态的假设解决物理试题的专项培优 易错 难题练习题附答案解析一、临界状态的假设解决物理试题1.如图所示,M 、N 为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值。
静止的带电粒子带电荷量为+q ,质量为m (不计重力),从点P 经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直于纸面向外,CD 为磁场边界上的一绝缘板,它与N 板的夹角θ=45°,孔Q 到板的下端C 的距离为L ,当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,求:(1)两板间电压的最大值U m ;(2)CD 板上可能被粒子打中区域的长度s ; (3)粒子在磁场中运动的最长时间t m 。
【答案】(1)两板间电压的最大值m U 为222qB L m;(2)CD 板上可能被粒子打中的区域的长度x 为(22)L ; (3)粒子在磁场中运动的最长时间m t 为mqBπ。
【解析】 【分析】(1)粒子恰好垂直打在CD 板上,根据粒子的运动的轨迹,可以求得粒子运动的半径,由半径公式可以求得电压的大小;(2)当粒子的运动的轨迹恰好与CD 板相切时,这是粒子能达到的最下边的边缘,在由几何关系可以求得被粒子打中的区域的长度.(3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期,根据周期公式即可求解。
【详解】(1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,CH=QC=L ,故半径R 1=L ,又因211v qvB m R =2m 112qU mv =所以22m 2qB L U m=(2)设轨迹与CD 板相切于K 点,半径为R 2,在△AKC 中:22sin 45R R L ︒=- 所以2(21)R L =-即KC 长等于2(21)R L =-所以CD 板上可能被粒子打中的区域即为HK 的长度12(21)(22)x HK R R LL L -===-=﹣﹣ (3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期:2mT qBπ=所以m 12m t T qBπ==【点睛】本题考查带电粒子在匀强磁场中的运动,要掌握住半径公式、周期公式,画出粒子的运动轨迹后,几何关系就比较明显了。
【物理】物理临界状态的假设解决物理试题的专项培优易错试卷练习题(含答案)附详细答案一、临界状态的假设解决物理试题1.小明同学站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m =0.3kg 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球在某次运动到最低点时,绳恰好达到所能承受的最大拉力F 而断掉,球飞行水平距离s 后恰好无碰撞地落在临近的一倾角为α=53°的光滑斜面上并沿斜面下滑,已知斜面顶端与平台的高度差h =0.8 m .绳长r =0.3m(g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6)求:(1)绳断时小球的速度大小v 1和小球在圆周最低点与平台边缘的水平距离s 是多少. (2)绳能承受的最大拉力F 的大小.【答案】(1)3m/s ,1.2m (2)12N 【解析】 【详解】(1)由题意可知:小球落到斜面上并沿斜面下滑,说明此时小球速度方向与斜面平行,否则小球会弹起,所以有v y =v 0 tan53°又v y 2=2gh ,代入数据得:v y =4m/s ,v 0=3m/s故绳断时球的小球做平抛运动的水平速度为3m/s ; 由v y =gt 1得:10.4s y v t g==则s =v 0 t 1=3×0.4m=1.2m(2)由牛顿第二定律:21mv F mg r-= 解得:F =12N2.平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外。
一带电粒子的质量为m ,电荷量为q (q >0)。
粒子沿纸面以大小为v 的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。
已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。
不计粒子重力。
则粒子离开磁场的出射点到两平面交线O 的距离为A .2mvqBB .3mvC .2mvqBD .4mvqB【答案】D 【解析】 【详解】 、粒子进入磁场做顺时针方向的匀速圆周运动,轨迹如图所示,根据洛伦兹力提供向心力,有2v qvB m R=解得mv R qB =根据轨迹图知22mvPQ R qB==, ∠OPQ =60°则粒子离开磁场的出射点到两平面交线O 的距离为42mvOP PQ qB==, 则D 正确,ABC 错误。
物理 临界状态的假设解决物理试题的专项 培优 易错 难题练习题附答案一、临界状态的假设解决物理试题1.如图所示为一玻璃砖的横截面,其中OAB 是半径为R 的扇形,45AOB ︒∠=,OBD ∆为等腰直角三角形.一束光线从距O 点2R的P 点垂直于OD 边射人,光线恰好在BD 边上发生全反射,最后从AB 边上某点第一次射出玻璃砖.已知光在真空中的传播速度为c ,求:(1)玻璃砖对该光线的折射率;(2)光从P 点射人到第一次射出玻璃砖过程中,光在玻璃砖中传播的时间. 【答案】(1)2n =2)(622)t R +=【解析】 【分析】 【详解】(1)作出光路如图所示,由几何关系得2sin OP OEP OE ∠==又光线恰好发生全反射,所以OEP C ∠=1sin C n ==22解得玻璃砖对该光线的折射率2n =(2)由几何关系知,BD 边与OA 边平行,光线在OA 边上也恰好发生全反射12PE EG GF QH R ====因此1sin 2QH QOH OQ ∠== 30QOH ︒∠= 3cos302OH R R ︒==因此光在玻璃中传播的路程32s PE EF FQ EF OH +=++=+=另有n =c v则光在玻璃中传播的时间(622)s ns t R v c +=== 答:(1)玻璃砖对该光线的折射率2n =2)光在玻璃砖中传播的时间622)2t R c=.2.如图所示,在光滑的圆锥顶用长为L 的细线悬挂一质量为m 的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.()1此时绳的张力是多少?()2若要小球离开锥面,则小球的角速度至少为多少?【答案】(1)()22cos sin T mg m l θωθ=+(2)cos gl ωθ= 【解析】(1)小球此时受到竖直向下的重力mg ,绳子的拉力T ,锥面对小球的支持力N ,三个力作用,合力充当向心力,即合力2sin F m l ωθ= 在水平方向上有,sin cos T N ma F ma θθ-==,, 在竖直方向上:cos sin T N mg θθ+= 联立四个式子可得()22cos sin T mg m l θωθ=+(2)重力和拉力完全充当向心力时,小球对锥面的压力为零, 故有向心力tan F mg θ=,2sin F m l ωθ=,联立可得cos gl ωθ=,即小球的角速度至少为cos gl ωθ=;3.一根细线一端系一小球(可视为质点),另一端固定在光滑圆锥顶上,如图所示,设小球在水平面内做匀速圆周运动的角速度为ω,细线的张力为F T ,则F T 随ω2变化的图象是( )A .B .C.D.【答案】C【解析】【分析】【详解】由题知小球未离开圆锥表面时细线与竖直方向的夹角为θ,用L表示细线长度,小球离开圆锥表面前,细线的张力为F T,圆锥对小球的支持力为F N,根据牛顿第二定律有F T sinθ-F N cosθ=mω2L sinθF T cosθ+F N sinθ=mg联立解得F T=mg cosθ+ω2mL sin2θ小球离开圆锥表面后,设细线与竖直方向的夹角为α,根据牛顿第二定律有F T sinα=mω2L sinα解得F T=mLω2故C正确。
故选C。
4.一辆货车运载着圆柱形光滑的空油桶。
在车厢底,一层油桶平整排列,相互紧贴并被牢牢固定。
上一层只有一只桶C,自由地摆放在A、B之间,和汽车一起保持静止,如图所示,当C与车共同向左加速时A.A对C的支持力变大B.B对C的支持力不变C 3g时,C将脱离AD 3g时,C将脱离A【答案】D 【解析】【详解】对C进行受力分析,如图所示,设B对C的支持力与竖直方向的夹角为θ,根据几何关系可得:122RsinRθ==,所以θ=30°;同理可得,A对C的支持力与竖直方向的夹角也为30°;AB.原来C处于静止状态,根据平衡条件可得:N B sin30°=N A sin30°;令C的加速度为a,根据正交分解以及牛顿第二定律有:N′B sin30°-N′A sin30°=ma可见A对C的支持力减小、B对C的支持力增大,故AB错误;CD.当A对C的支持力为零时,根据牛顿第二定律可得:mg tan30°=ma解得:3a=则C错误,D正确;故选D。
5.有一长为L的细绳,其下端系一质量为m的小球,上端固定于O点,当细绳竖直时小球静止。
现给小球一初速度v,使小球在竖直平面内做圆周运动,并且恰好能通过最高点,重力加速度大小为则下列说法正确的是()A.小球过最高点时速度为零B.小球开始运动时细绳对小球的拉力大小为20 v mLC.小球过最高点时细绳对小球的拉力大小为mg D gL【答案】D【解析】【详解】ACD.小球恰好能过最高点时细绳的拉力为零,则2vmg mL=得小球过最高点时速度大小v gL =故AC 错误,D 正确;B .小球开始运动时仍处于最低点,则20v F mg m L-=拉力大小20v F mg m L=+故B 错误。
故选D 。
6.如图所示,半径为R 的34圆形区域内有垂直于圆平面向里的匀强磁场。
磁感应强度大小为B ,O 为圆心,∠AOC =90︒,D 为AC 的中点,DO 为一块很薄的粒子吸收板。
一束质量为m 、电荷量为e 的电子以相同速度2eBRv m=在AD 间平行于DO 方向垂直射入磁场,不考虑电子的重力及相互作用,电子打在吸收板上即被板吸收。
则电子在磁场中运动的时间可能为( )A .π2mBeB .2π3mBeC .3π2mBeD .8π5mBe【答案】AC 【解析】 【详解】所有电子在磁场中做圆周运动的轨迹半径r 相同,由2v Bev m r=得r =2R 电子在磁场中做圆周运动的周期2π2πr mT v Be== 画出电子在磁场中运动的轨迹如图所示可知从AO 边射出磁场的电子在磁场中运动二圆周,其运动时间为11π42m t T Be==从CO 边射出磁场的电子在磁场中运动等于或大于12圆周,其运动时间为 21π2m t T Be= 其中沿DO 方向从O 点射人磁场的电子在磁场中运动34圆周,其运动时间最长,最长时间 334=t 3π2m T Be= 综上所述,故选AC 。
7.如图所示,在y 轴右侧平面内存在方向向里的匀强磁场,磁感应强度大小B =0.5T ,坐标原点O 有一放射源,可以向y 轴右侧平面沿各个方向放射比荷为72.510mq-=⨯ Kg/C 的正离子,这些离子速率分别在从0到最大值v m =2×106 m/s 的范围内,不计离子之间的相互作用(1)求离子打到y 轴上的范围;(2)若在某时刻沿x +方向放射各种速率的离子,求经过-75103s π⨯时这些离子所在位置构成的曲线方程;(3)若从某时刻开始向y 轴右侧各个方向放射各种速率的离子,求经过75103π-⨯s 时已进入磁场的离子可能出现的区域面积;【答案】(1)范围为0到2m (2)33(0)32y x x =≤≤ (3)273()124S m π=-【解析】 【详解】(1)离子进入磁场中做圆周运动的最大半径为R由牛顿第二定律得: 2mv qvB R= 解得:1mvR m Bq== 由几何关系知,离子打到y 轴上的范围为0到2m(2)离子在磁场中运动的周期为T , 则62210R mT s v qB πππ-===⨯ t 时刻时,这些离子轨迹所对应的圆心角为θ 则23t t T ππ== 这些离子构成的曲线如图1所示,并令某一离子在此时刻的坐标为(x ,y )3y x =3(0x ≤≤ (3)将第(2)问中图2中的OA 段从沿y 轴方向顺时针方向旋转,在x 轴上找一点C ,以R 为半径作圆弧,相交于B ,则两圆弧及y 轴所围成的面积即为在0t =向y 轴右侧各个方向不断放射各种速度的离子在71503t s π-=⨯时已进入磁场的离子所在区域. 由几何关系可求得此面积为:2222511373126212S R R R R R R πππ=+-= 则:273(124S m π=-【点睛】本题考查运用数学知识分析和解决物理问题的能力,采用参数方程的方法求解轨迹方程,根据几何知识确定出离子可能出现的区域,难度较大.8.如图所示,用一根长为l =1m 的细线,一端系一质量为m =1kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T .(g 取10m/s 2,结果可用根式表示)求:(1)若要小球离开锥面,则小球的角速度ω0至少为多大? (2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大? 【答案】(1)12.5?/rad s (2)25/rad s . 【解析】试题分析:(1)小球刚好离开锥面时,小球只受到重力和拉力,小球做匀速圆周运动,由牛顿第二定律得:20tan sin mg m l θωθ=解得:012.5rad/s cos gl ωθ== (2)同理,当细线与竖直方向成600角时由牛顿第二定律及向心力公式得:'2tan sin mg m l θωθ=解得:20rad/s cos gl ωα='=考点:牛顿第二定律;匀速圆周运动【名师点睛】此题是牛顿第二定律在圆周运动中的应用问题;解题时要分析临界态的受力情况,根据牛顿第二定律,利用正交分解法列出方程求解.9.如图所示,斜面上表面光滑绝缘,倾角为θ,斜面上方有一垂直纸面向里的匀强磁场.磁感应强度为B ,现有一个质量为m 、带电荷量为+q 的小球在斜面上被无初速度释放,假设斜面足够长.则小球从释放开始,下滑多远后离开斜面.【答案】2222cos2sin m gq Bθθ【解析】【分析】【详解】小球沿斜面下滑,在离开斜面前,受到的洛伦兹力F垂直斜面向上,其受力分析图沿斜面方向:mg sinθ=ma;垂直斜面方向:F+F N-mg cosθ=0.其中洛伦兹力为F=Bqv.设下滑距离x后小球离开斜面,此时斜面对小球的支持力F N=0,由运动学公式有v2=2ax,联立以上各式解得2222cos2sinm gxq Bθθ=10.将倾角为θ的光滑绝缘斜面放置在一个足够大的匀强磁场中,磁场方向垂直纸面向里,磁感应强度为B,一个质量为m、带电量为q的小物体在斜面上由静止开始下滑(设斜面足够长)如图所示,滑到某一位置开始离开,求:(1)物体带电荷性质(2)物体离开斜面时的速度及物体在斜面上滑行的长度是多少?【答案】(1) 小物体带负电 (2)2222cos2sinm gLq Bθθ=【解析】【分析】【详解】(1)当小物体沿斜面加速下滑时,随着速度的增加,洛伦兹力逐渐增大,为了使小物体离开斜面,洛伦兹力的方向使必须垂直于斜面向上,可见,小物体带负电。