八年级数学下册 6_2 平行四边形的判定习题 北师大版
- 格式:ppt
- 大小:14.72 MB
- 文档页数:15
第六章平行四边形阶段测试(6.1-6.2)(时间:40分钟满分:100分)一、选择题(每小题4分,共40分)1.下面的性质中,平行四边形不一定具有的是()A.对角互补B.邻角互补C.对角相等D.对边相等2.如图,在▱ABCD中,E是AB延长线上的一点.若∠1=55°,则∠D的度数为()A.125°B.120°C.115°D.110°3.用一根6米长的绳子围成一个平行四边形,其中一边长1.6米,则其邻边长为()A.1.2米B.1.4米C.1.6米D.1.8米4.如图,在四边形ABCD中,对角线AC,BD相交于点O,AD∥BC,添加下列条件不能使四边形ABCD成为平行四边形的是()A.AD=BCB.OA=OCC.∠ABC+∠BCD=180°D.AB=CD第4题图第5题图5.如图,在▱ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°6.如图,在▱ABCD中,过点P作直线EF,GH分别平行于AB,BC,那么图中共有平行四边形()A.4个B.5个C.8个D.9个第6题图第7题图7.如图,在四边形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于()A.80°B.90°C.100°D.110°8.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12 B.15 C.18 D.21第8题图第9题图9.如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=3,AC=2,BD=4,则AE 的长为()A.32 B.32 C.217 D.221710.如图,已知▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠CFE=110°.则下列结论:①四边形ABFE 为平行四边形;②△ADE是等腰三角形;③▱ABCD与▱DCFE全等;④∠DAE=25°.其中正确的有()A.4个B.3个C.2个D.1个二、填空题(每小题4分,共20分)11.在▱ABCD中,已知∠A-∠B=60°,则∠C=.12.如图,已知▱ABCD的对角线AC,BD相交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为14.第12题图第13题图13.如图,点E,F分别在▱ABCD的边BC,AD上,AC,EF交于点O,请你添加一个条件(只添一个即可),使四边形AECF是平行四边形,你所添加的条件是.14.如图,在△ABC中,∠A=∠B,D是AB上任意一点,DE∥BC,DF∥AC,AC=4 cm,则四边形DECF 的周长是.第14题图第15题图15.如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,∠BAC≠90°.将此三角形纸片沿AD剪开,得到两个三角形.若把这两个三角形拼成一个平行四边形,则能拼出种平行四边形.三、解答题(共50分)16.(10分)如图,已知在四边形ABCD中,AE⊥BD于点E,CF⊥BD于点F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.17.(12分)如图,将▱ABCD的对角线AC分别向两个方向延长至点E,F,且AE=CF,连接BE,DF.求证:BE=DF.18.(14分)提出命题:如图,在四边形ABCD中,∠A=∠C,∠ABC=∠ADC,求证:四边形ABCD是平行四边形.小明提供了如下证明过程:证明:连接BD.∵∠1+∠3=180°-∠A,∠2+∠4=180°-∠C,∠A=∠C,∴∠1+∠3=∠2+∠4.∵∠ABC=∠ADC,∴∠1=∠4,∠2=∠3.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).反思交流:(1)请问小明的解法正确吗?若正确,请说明理由;若不正确,请写出正确的证明过程;(2)用语言叙述上述命题.运用探究:下列条件中,能判定四边形ABCD是平行四边形的是()A.∠A∶∠B∶∠C∶∠D=1∶2∶3∶4B.∠A∶∠B∶∠C∶∠D=1∶3∶1∶3C.∠A∶∠B∶∠C∶∠D=2∶3∶3∶2D.∠A∶∠B∶∠C∶∠D=1∶1∶3∶319.(14分)如图,在▱ABCD中,BD⊥BC,∠BDC=60°,∠DAB和∠DBC的平分线相交于点E,F为AE 上一点,EF=EB,G为BD延长线上一点,BG=AB,连接GE.(1)若▱ABCD的面积为93,求AB的长;(2)求证:AF=GE.参考答案:一、选择题(每小题4分,共40分)1.下面的性质中,平行四边形不一定具有的是(A)A.对角互补B.邻角互补C.对角相等D.对边相等2.如图,在▱ABCD中,E是AB延长线上的一点.若∠1=55°,则∠D的度数为(A)A.125°B.120°C.115°D.110°3.用一根6米长的绳子围成一个平行四边形,其中一边长1.6米,则其邻边长为(B)A.1.2米B.1.4米C.1.6米D.1.8米4.如图,在四边形ABCD中,对角线AC,BD相交于点O,AD∥BC,添加下列条件不能使四边形ABCD成为平行四边形的是(D)A.AD=BCB.OA=OCC.∠ABC+∠BCD=180°D.AB=CD第4题图第5题图5.如图,在▱ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于(D)A.100°B.80°C.60°D.40°6.如图,在▱ABCD中,过点P作直线EF,GH分别平行于AB,BC,那么图中共有平行四边形(D)A.4个B.5个C.8个D.9个第6题图第7题图7.如图,在四边形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于(C)A.80°B.90°C.100°D.110°8.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为(C)A.12 B.15 C.18 D.21第8题图第9题图9.如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=3,AC=2,BD=4,则AE 的长为(D)A.32 B.32 C.217 D.221710.如图,已知▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠CFE=110°.则下列结论:①四边形ABFE 为平行四边形;②△ADE是等腰三角形;③▱ABCD与▱DCFE全等;④∠DAE=25°.其中正确的有(B)A.4个B.3个C.2个D.1个二、填空题(每小题4分,共20分)11.在▱ABCD中,已知∠A-∠B=60°,则∠C=120°.12.如图,已知▱ABCD的对角线AC,BD相交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为14.第12题图第13题图13.如图,点E,F分别在▱ABCD的边BC,AD上,AC,EF交于点O,请你添加一个条件(只添一个即可),使四边形AECF是平行四边形,你所添加的条件是AF=CE(答案不唯一).14.如图,在△ABC中,∠A=∠B,D是AB上任意一点,DE∥BC,DF∥AC,AC=4 cm,则四边形DECF 的周长是8_cm.第14题图第15题图15.如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,∠BAC≠90°.将此三角形纸片沿AD剪开,得到两个三角形.若把这两个三角形拼成一个平行四边形,则能拼出3种平行四边形.三、解答题(共50分)16.(10分)如图,已知在四边形ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,AE =CF ,BF =DE ,求证:四边形ABCD 是平行四边形.证明:∵AE ⊥BD 于点E ,CF ⊥BD 于点F. ∴∠AED =∠CFB =90°. 在△AED 和△CFB 中,⎩⎨⎧DE =BF ,∠AED =∠CFB ,AE =CF ,∴△AED ≌△CFB (SAS ). ∴AD =BC ,∠ADE =∠CBF. ∴AD ∥BC.∴四边形ABCD 是平行四边形.17.(12分)如图,将▱ABCD 的对角线AC 分别向两个方向延长至点E ,F ,且AE =CF ,连接BE ,DF.求证:BE =DF.证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC. ∴∠BCE =∠DAF. ∵AE =CF ,∴CA +AE =AC +CF ,即CE =AF.在△BCE 和△DAF 中,⎩⎨⎧BC =DA ,∠BCE =∠DAF ,CE =AF ,∴△BCE ≌△DAF (SAS ). ∴BE =DF.18.(14分)提出命题:如图,在四边形ABCD 中,∠A =∠C ,∠ABC =∠ADC ,求证:四边形ABCD 是平行四边形. 小明提供了如下证明过程:证明:连接BD.∵∠1+∠3=180°-∠A,∠2+∠4=180°-∠C,∠A=∠C,∴∠1+∠3=∠2+∠4.∵∠ABC=∠ADC,∴∠1=∠4,∠2=∠3.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).反思交流:(1)请问小明的解法正确吗?若正确,请说明理由;若不正确,请写出正确的证明过程;(2)用语言叙述上述命题.运用探究:下列条件中,能判定四边形ABCD是平行四边形的是(B)A.∠A∶∠B∶∠C∶∠D=1∶2∶3∶4B.∠A∶∠B∶∠C∶∠D=1∶3∶1∶3C.∠A∶∠B∶∠C∶∠D=2∶3∶3∶2D.∠A∶∠B∶∠C∶∠D=1∶1∶3∶3解:(1)正确.理由如下:∵∠1+∠3=180°-∠A,∠2+∠4=180°-∠C,∠A=∠C,∴∠1+∠3=∠2+∠4.①∵∠ABC=∠ADC,即∠1+∠2=∠3+∠4,②由①②相加、相减,得∠1=∠4,∠2=∠3.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).(2)两组对角分别相等的四边形是平行四边形.19.(14分)如图,在▱ABCD中,BD⊥BC,∠BDC=60°,∠DAB和∠DBC的平分线相交于点E,F为AE 上一点,EF=EB,G为BD延长线上一点,BG=AB,连接GE.(1)若▱ABCD的面积为93,求AB的长;(2)求证:AF=GE.解:(1)∵四边形ABCD 为平行四边形, ∴AD ∥BC ,AB ∥CD. ∵∠BDC =60°, ∴∠ABD =60°.∵BD ⊥BC ,∴∠ADB =∠DBC =90°. ∴∠DAB =30°.∴在Rt △ADB 中,BD =12AB ,AD =AB 2-BD 2=32AB.∵S ▱ABCD =AD·BD =34AB 2=93,∴AB =6. (2)证明:连接BF.∵AE ,BE 分别平分∠BAD ,∠DBC ,∴∠BAE =12∠BAD =15°,∠DBE =12∠DBC =45°.∵∠ABE +∠BAE +∠AEB =180°,∠ABE =∠ABD +∠DBE =105°, ∴∠AEB =60°.∵EF =BE ,∴△BFE 为等边三角形. ∴BE =BF ,∠FBE =60°.∴∠ABD =∠FBE =60°.∴∠ABF =∠GBE.在△ABF 和△GBE 中,⎩⎨⎧AB =GB ,∠ABF =∠GBE ,BF =BE ,∴△ABF ≌△GBE (SAS ). ∴AF =GE.。
北师大版八年级数学下册第六章 平行四边形练习(含答案)一、单选题1.下列性质中,平行四边形一定具有的性质是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直2.如图,将折叠,使点分别落在点处(点都在所在的ABCD D C 、F E 、F E 、AB 直线上),折痕为,若,则等于( )MN 50AMF ∠=︒A ∠A .B .C .D .50︒55︒60︒65︒3.已知四边形的对角线相交于点,则下列条件中不能判定ABCD ,AC BD ,O OB OD =四边为平行四边形的是( )ABCD A .B .C .D .OA OC =//AB CD //AD BCAB CD =4.点A 、B 、C 、D 在一个平面内,若从①AB ∥CD ;②AB=CD ;③BC ∥AD ;④BC=AD . 这四个条件中选两个,但不能推导出四边形ABCD 是平行四边形的选项是()A .①②B .①④C .②④D .①③5.如图,已知在△ABC 中,∠BAC >90°,点D 为BC 的中点,点E 在AC 上,将△CDE 沿DE 折叠,使得点C 恰好落在BA 的延长线上的点F 处,连结AD ,则下列结论不一定正确的是( )A.AE=EF B.AB=2DEC.△ADF和△ADE的面积相等D.△ADE和△FDE的面积相等6.多边形每个外角为45°,则多边形的边数是( )A.8 B.7 C.6 D.57.如图,在三角形模板ABC中,∠A=60°,D、E分别为AB、AC上的点,则∠1+∠2的度数为()A.180°B.200°C.220°D.240°8.下列图形中,周长不是32 m的图形是( )A.B.C.D.A9.如图,小明从点出发,沿直线前进10米后向左转10°再沿直线前进10米后向左转A20°再沿直线前进10米后向左转30°……照这样下去,他第一次回到出发地点时,一共走了()A .80米B .160米C .300米D .640米10.如图,已知四边形中,,,平分,ABCD //AD BC ABC ACD D ∠=∠=∠AE CAD ∠下列说法:①;②;③;④,//AB CD AE CD ⊥AEF BCF S S =△△AFB BAD ABE ∠=∠-∠其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题11.如图,已知等边△ABC 的边长为10,P 是△ABC 内一点,PD 平行AC ,PE 平行AD ,PF 平行BC ,点D ,E ,F 分别在AB ,BC ,AC 上,则PD+PE+PF=_______________.12.如图,在平行四边形ABCD 中,AB =AE .若AE 平分∠DAB ,∠EAC =25°,则∠B =_____,∠AED 的度数为_____.13.D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是 .14.如图,以正六边形的边为直角边作等腰直角三角形,使点在ABCEDF AB ABG G 其内部,且,连接,则的大小是__________度.90BAG ∠=︒FG EFG Ð三、解答题15.如图,ABCD 是平行四边形,P 是CD 上一点,且AP 和BP 分别平分∠DAB 和∠CBA .(1)求∠APB 的度数;(2)如果AD =5cm ,AP =8cm ,求△APB 的周长.16.如图,在四边形ABCD 中,AD ∥BC ,AC 与BD 交于点E ,点E 是BD 的中点,延长CD 到点F ,使DF =CD ,连接AF ,(1)求证:AE =CE ;(2)求证:四边形ABDF 是平行四边形;(3)若AB =2,AF =4,∠F =30°,则四边形ABCF 的面积为 .17.如图,等边的边长是4,,分别为,的中点,延长至点,ABC ∆D E AB AC BC F 使,连接和.12CF BC =CD EF (1)求证:;DE CF =(2)求的长;EF (3)求四边形的面积.DEFC 18.提出问题:(1)如图,我们将图(1)所示的凹四边形称为“镖形”.在“镖形”图中,∠AOC与∠A、∠C、∠P的数量关系为_______.(2)如图(2),已知AP平分∠BAD,CP平分∠BCD,∠B =28°,∠D=48°.求∠P的度数.由(1)结论得:∠AOC =∠PAO +∠PCO+∠P所以2∠AOC=2∠PAO +2∠PCO+2∠P即2∠AOC =∠BAO +∠DCO+2∠P因为∠AOC =∠BAO +∠B,∠AOC =∠DCO +∠D所以2∠AOC=∠BAO +∠DCO+∠B +∠D所以∠P=_______.解决问题:(3)如图(3),直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是_______;(4)如图(4),直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是_______.答案1.B 2.D 3.D 4.B5.C6.A7.D8.B9.A10.D11.1012.60°85°13.11.14.4515.(1)∵四边形是平行四边形,ABCD ∴∥ ,∥, ,AD CB AB CD AD BC,AB DC ==∴ ,DAB CBA 180∠∠+= 又∵和分别平分和,AP BP DAB ∠CBA ∠∴ ,()1PAB PBA DAB CBA 902∠∠∠∠+=+= ∴ ;()APB 180PAB PBA 90∠∠∠=-+= (2) ∵平分,∥ ,AP DAB ∠AB CD ∴ ,DAB PAB DPA ∠∠∠==∴ ,同理: ,AD DP 5cm ==PC BC AD 5cm ===∴ ,AB DC DP PC 10cm ==+=在中, , ∴ ,Rt APB AB 10cm,AP 8cm ==()BP 6cm ==∴△的周长.ABP ()681024cm ++=16.解:(1)证明:∵点E 是BD 的中点,∴BE =DE ,∵AD ∥BC ,∴∠ADE =∠CBE ,在△ADE 和△CBE 中ADE CBE DE BEAED CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△CBE (ASA ),∴AE =CE ;(2)证明:∵AE =CE ,BE =DE ,∴四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∵DF =CD ,∴DF =AB ,即DF =AB ,DF ∥AB ,∴四边形ABDF 是平行四边形;(3)解:过C 作CH ⊥BD 于H ,过D 作DQ ⊥AF 于Q ,∵四边形ABCD 和四边形ABDF 是平行四边形,AB =2,AF =4,∠F =30°,∴DF =AB =2,CD =AB =2,BD =AF =4,BD ∥AF ,∴∠BDC =∠F =30°,∴DQ =DF ==1,CH =DC ==1,12122⨯12122⨯∴四边形ABCF 的面积S =S 平行四边形BDFA +S △BDC =AF×DQ+=4×1+=6,1BD CH 2⨯⨯1412⨯⨯故答案为:6.17.(1)在中,ABC ∆、分别为、的中点,D E AB AC 为的中位线,DE ∴ABC ∆,12DE BC ∴=,12CF BC = .DE CF ∴=(2),,AC BC =AD BD =,CD AB ∴⊥,,4BC = 2BD =CD ∴==,,//DE CF DE CF =四边形是平行四边形,∴DEFC.EF CD ∴==(3)过点作于,D DH BC ⊥H ,,90DHC ∠=︒ 30DCB ∠=︒12DH DC ∴==,2DE CF ==.2DEFC S CF DH ∴=⋅==四边形18.(1)如图,延长CO ,交AP 与B ,∵∠AOC=∠A+∠ABO ,∠ABO=∠C+∠P ,∴∠AOC=∠A+∠P+∠C ,故答案为∠AOC=∠A+∠P+∠C ,(2)∵2∠AOC =∠BAO +∠DCO+2∠P ,2∠AOC=∠BAO +∠DCO+∠B+∠D ,∴2∠P=∠B+∠D ,∴∠P=(28°+48°)=38°,12故答案为38°(3)∵直线AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,∴∠PAB=∠PAD ,∠PCB=∠PCE ,∴2∠PAB+∠B=180°-2∠PCB+∠D ,∴180°-2(∠PAB+∠PCB )+∠D=∠B∵∠P=∠PAB+∠B+∠PCB ,∴∠PAB+∠PCB=∠P-∠B ,∴180°-2(∠P-∠B )+∠D=∠B ,即∠P=90°+(∠B+∠D ).12(4)∵直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,∴∠FAP=∠PAO ,∠PCE=∠PCB ,在四边形APCB 中,(180°-∠FAP )+∠P+∠PCB+∠B=360°①,在四边形APCD 中,∠PAD+∠P+(180°-∠PCE )+∠D=360°②,①+②得:2∠P+∠B+∠D=360°,12∴∠P=180°-(∠B+∠D)。
一、选择题1.已知平行四边形ABCD 中,∠A +∠C =110°,则∠B 的度数为( )A .125°B .135°C .145°D .155°2.在平面直角坐标系中,已知四边形AMNB 各顶点坐标分别是:(0,2)(2,2),(3,),(3,)A B M a N b -,,且1,MN a b =<,那么四边形AMNB 周长的最小值为( )A .625+B .613+C .34251++D .34131++ 3.正多边形的每个外角为60度,则多边形为( )边形.A .4B .6C .8D .10 4.下面关于平行四边形的说法中,不正确的是( )A .对角线互相平分的四边形是平行四边形B .有一组对边平行,一组对角相等的四边形是平行四边形C .有一组对边相等,一组对角相等的四边形是平行四边形D .有两组对角相等的四边形是平行四边形5.若一个正多边形的每个内角度数都为135°,则这个正多边形的边数是( ) A .6 B .8 C .10 D .126.如图,在下列条件中,能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB=CDB .∠AOB=∠COD ,∠AOD=∠COBC .OA=OC ,OB=ODD .AB=AD ,CB=CD 7.如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =4,则AB 的长为( )A .4B .3C .52D .28.如图,设M 是ABCD 边AB 上任意一点,设AMD ∆的面积为1S ,BMC ∆的面积为2S ,CDM ∆的面积为S ,则( )A .12S S S =+B .12S S S >+C .12S S S <+D .不能确定 9.如图,平行四边形ABCD 中,AE 平分∠BAD 交边BC 于点E ,已知AD =7,CE =3,则AB 的长是( )A .7B .3C .3.5D .4 10.如果一个多边形的每一个外角都等于45°,则这个多边形的边数为( )A .3B .4C .5D .8 11.如图.ABCD 的周长为60,,cm AC BD 相交于点,O EO BD ⊥交AD 于点E ,则ABE ∆的周长为( )A .30cmB .60cmC .40cmD .20cm 12.如图,在□ABCD 中,AB =4,BC =6,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是( )A .7B .10C .11D .12 二、填空题13.如图是一块正多边形的碎瓷片,经测得30ACB ∠=︒,则这个正多边形的边数是_________.14.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线15.如图,在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①120EDF ∠=︒;②DM 平分EDF ∠;③DE DF AD +=;④2AB AC AE +>;其中正确的有________(请将正确结论的序号填写在横线上).16.如图,在平行四边形ABCD 中,点M 为边AD 上一点,AM =2MD ,点E ,点F 分别是BM ,CM 中点,若EF =6,则AM 的长为_____.17.一个n 边形的每一个内角等于108°,那么n=_____.18.某数学学习小组发现:通过连多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角钱共有3条,那么该多边形的内角和是______度.19.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为__________.20.若正多边形的内角和等于720︒,那么它的每一个外角是 __________︒三、解答题21.如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,延长BC 到点E ,使CE BC =,连接DE .(1)求证:四边形ACED 是平行四边形;(2)已知5AB =,6AC =,若12CD BE =,求BDE 的周长. 22.已知在四边形ABCD 中,90A C ∠=∠=︒.(1)如图1,若BE 平分ABC ∠,DF 平分ADC ∠的邻补角,请写出BE 与DF 的位置关系并证明;(2)如图2,若BF 、DE 分别平分ABC ∠、ADC ∠的邻补角,判断DE 与BF 位置关系并证明;(3)如图3,若BE 、DE 分别五等分ABC ∠、ADC ∠的邻补角(即11,55CDE CDN CBE CBM ∠=∠∠=∠),求E ∠度数.23.如图,五边形ABCDE 的内角都相等,EF 平分∠AED .求证:EF ⊥BC .24.在平面直角坐标系中,ABC ∆的三个项点的位置如图所示,现将ABC ∆沿'AA 的方向平移,使得点A 移至图中的点'A 的位置.(1)在直角坐标系中,画出平移后所得'''A B C ∆ (其中','B C 分别是,B C 的对应点). (2)求ABC ∆的面积.(3)以A B C D 、、、为顶点构造平行四边形,则D 点坐标为__________.25.如图1,在平面直角坐标系中,直线AB 与 x 轴、y 轴相交于A(6,0)、B(0,2)两点,动点C 在线段OA 上(不 与 )O 、A 重合 ),将线段CB 绕着点C 顺时针旋转 90° 得到CD ,当点D 恰好落在直线AB 时,过 点D 作DE ⊥x 轴于点E .(1)求证:BOC CED ∆≅∆;(2)求经过A 、B 两点的一次函数表达式,如图2,将BCD ∆沿x 轴正方向平移得B C D '''∆,当直线B′C′经过点D 时,求点D 的坐标、B C D '''∆的面积;(3)若点P 在y 轴上,点Q 在直线AB 上,是否存在以C 、D 、P 、Q 为顶点的四边形是平行四边形?若存在,通过画图说明理由,并指出点Q 的个数.26.如图,已知:AB ∥CD ,BE ⊥AD ,垂足为点E ,CF ⊥AD ,垂足为点F ,并且AE=DF . 求证:四边形BECF 是平行四边形.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.【详解】解:∵四边形ABCD 是平行四边形,∴∠A+∠B=180°,∠A=∠C ,∵∠A+∠C=110°,∴∠A=∠C=55°,∴∠B=125°.故选:A .【点睛】此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键. 2.A解析:A【分析】如图,把()02A -,向上平移一个单位得:()101A -,,作1A 关于直线3x =的对称点()261A -,, 连接2A B ,交直线3x =于N , 连接1A N ,则此时四边形AMNB 的周长最短,再利用勾股定理可得:AB ==25A B ==,利用AMNB C 四边形2AB MN A B =++从而可得答案.【详解】解:如图,把()02A -,向上平移一个单位得:()101A -,,作1A 关于直线3x =的对称点()261A -,, 连接2A B ,交直线3x =于N , 连接1A N ,122A N BN A N BN A B ∴+=+=,由111//MN AA MN AA ==,, ∴ 四边形1AMNA 是平行四边形,12,A N AM A N ∴==所以此时:四边形AMNB 的周长最短,()()()2022261A B A --,,,,,,AB ∴==25A B ==,2AMNB C AM AB BN MN A N BN AB MN =+++=+++四边形2AB MN A B =++15 6.=+=故选:.A【点睛】本题考查的是图形与坐标,勾股定理的应用,轴对称的性质,平行四边形的判定与性质,掌握以上知识是解题的关键.3.B解析:B【分析】利用多边形的外角和360除以外角60得到多边形的边数.【详解】=6,多边形的边数为36060故选:B.【点睛】此题考查多边形的外角和定理,正多边形的性质,利用外角和除以外角的度数求正多边形的边数是最简单的题型.4.C解析:C【分析】根据平行四边形的判定分别对各个选项进行判断即可.【详解】A、∵对角线互相平分的四边形是平行四边形,∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形,∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形,∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形,∴选项D不符合题意;故选:C.【点睛】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键.5.B解析:B【分析】根据题意可先求出这个正多边形的每个外角度数,再根据多边形的外角和是360°即可求出答案.【详解】解:因为一个正多边形的每个内角度数都为135°,所以这个正多边形的每个外角度数都为45°,所以这个正多边形的边数是360°÷45°=8.故选:B.【点睛】本题考查了正多边形的有关概念和多边形的外角和,属于基本题目,熟练掌握多边形的基本知识是解题的关键.6.C解析:C【分析】由平行四边形的判定可求解.【详解】A、由AD∥BC,AB=CD不能判定四边形ABCD为平行四边形;B、由∠AOB=∠COD,∠AOD=∠COB不能判定四边形ABCD为平行四边形;C、由OA=OC,OB=OD能判定四边形ABCD为平行四边形;D、AB=AD,CB=CD不能判定四边形ABCD为平行四边形;故选:C.【点睛】本题考查了平行四边形的判定定理,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.7.A解析:A【分析】根据平行四边形性质得出AB=DC,AD//BC,推出∠DEC=∠BCE,求出∠DEC=∠DCE,推出DE=DC=AB,得出AD=2DE即可.【详解】解:∵四边形ABCD是平行四边形,∴AB=DC,AD//BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE ,∴∠DEC=∠DCE ,∴DE=DC=AB ,∵AD=2AB=2CD ,CD=DE ,∴AD=2DE ,∴AE=DE=4,∴DC=AB=DE=4,故选A .【点睛】本题考查了平行四边形性质,平行线性质,角平分线的定义,等腰三角形的判定的应用,关键是求出DE=AE=DC .8.A解析:A【分析】如图(见解析),过点M 作//MN BC ,交CD 于点N ,先根据平行四边形的判定可得四边形AMND 和四边形BMNC 都是平行四边形,再根据平行四边形的性质即可得.【详解】如图,过点M 作//MN BC ,交CD 于点N ,四边形ABCD 是平行四边形,//,//AB CD AD BC ∴,////AD BC MN ∴,∴四边形AMND 和四边形BMNC 都是平行四边形,12,DMN CMN S S SS ∴==, 12DMN CMN S S SS S ∴=+=+, 故选:A .【点睛】本题考查了平行四边形的判定与性质,通过作辅助线,构造平行四边形是解题关键. 9.D解析:D【分析】先根据角平分线及平行四边形的性质得出∠BAE=∠AEB ,再由等角对等边得出BE=AB ,从而由EC 的长求出BE 即可解答.【详解】解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=7,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∵EC=3,∴BE=BC-EC=7-3=4,∴AB=4,故选D.【点睛】本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB是解决问题的关键.10.D解析:D【分析】根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.【详解】解:多边形的边数是:3608 45,故选D.11.A解析:A【分析】根据平行四边形的性质,两组对边分别平行且相等,对角线相互平分,结合OE⊥BD可说明EO是线段BD的中垂线,中垂线上任意一点到线段两端点的距离相等,则BE=DE,再利用平行四边形ABCD的周长为60cm可得AB+AD=30cm,进而可得△ABE的周长.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD,又∵OE⊥BD,∴OE是线段BD的中垂线,∴BE=DE,∴AE+ED=AE+BE,∵▱ABCD的周长为60cm,∴AB+AD=30cm,∴△ABE的周长=AB+AE+BE=AB+AD=30cm,故选:A.【点睛】此题主要考查了平行四边形的性质,中垂线的判定及性质,关键是掌握平行四边形的对边相等,平行四边形的对角线互相平分.12.B解析:B【分析】由平行四边形的性质得出DC=AB=4,AD=BC=6,由线段垂直平分线的性质得出AE=CE ,得出△CDE 的周长=AD+DC ,即可得出结果.【详解】∵四边形ABCD 是平行四边形,∴DC=AB=4,AD=BC=6,∵AC 的垂直平分线交AD 于点E ,∴AE=CE ,∴△CDE 的周长=DE+CE+DC=DE+AE+DC=AD+DC=6+4=10;故选:B .【点睛】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.二、填空题13.12【分析】根据瓷片为正多边形及可知正多边形的外角为进而可求得正多边形的边数【详解】如图延长BC 可知∠1为正多边形的外角∵瓷片为正多边形∴AD=DB=BC ∠ADB=∠DBC ∴四边形ACBD 为等腰梯形解析:12【分析】根据瓷片为正多边形及=30ACB ∠︒,可知正多边形的外角为30︒,进而可求得正多边形的边数.【详解】如图,延长BC ,可知∠1为正多边形的外角,∵瓷片为正多边形,∴AD=DB=BC ,∠ADB=∠DBC ,∴四边形ACBD 为等腰梯形,∴BD ∥AC ,∴∠1==30ACB ∠︒,∴正多边形的边数为:360=1230︒︒, 故答案为:12.【点睛】本题考查正多边形的外角和,掌握相关知识点是解题的关键. 14.11【分析】先根据题意求出多边形的边数再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答【详解】设多边形的边数为n 则有(n-2)•180+360=2520解得:n=1414-3=11即从这个多解析:11【分析】先根据题意求出多边形的边数,再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答.【详解】设多边形的边数为n ,则有(n -2)•180+360=2520,解得:n =14,14-3=11,即从这个多边形的一个顶点出发共有11条对角线,故答案为11.【点睛】本题考查了多边形的内角和与外角和、多边形的对角线,得到多边形的边数是解本题的关键.15.①③【分析】由四边形内角和定理可求出;若DM 平分∠EDF 则∠EDM=60°从而得到∠ABC 为等边三角形条件不足不能确定故②错误;由题意可知∠EAD=∠FAD=30°故此可知ED=ADDF=AD 从而可解析:①③【分析】由四边形内角和定理可求出120EDF ∠=︒;若DM 平分∠EDF ,则∠EDM=60°,从而得到∠ABC 为等边三角形,条件不足,不能确定,故②错误;由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD ,DF=12AD ,从而可证明③正确;连接BD 、DC ,然后证明△EBD ≌△CFD ,从而得到BE=FC ,从而可得AB+AC=2AE ,故可判断④.【详解】解:如图所示:连接BD 、DC .(1)∵DE AB ⊥,DF AC ⊥,∴∠AED=∠AFD=90°,∵∠EAF=60°,∠EAF+∠AED+∠AFD+∠EDF=360°∴∠EDF=360°-∠EAF-∠AED-∠AFD=360°-60°-90°-90°=120°,故①正确;②由题意可知:∠EDA=∠ADF=60°.假设MD 平分∠EDF ,则∠ADM=30°.则∠EDM=60°,又∵∠E=∠BMD=90°,∴∠EBM=120°.∴∠ABC=60°.∵∠ABC 是否等于60°不知道,∴不能判定MD 平分∠EDF ,故②错误;③∵∠EAC=60°,AD 平分∠BAC ,∴∠EAD=∠FAD=30°.∵DE ⊥AB ,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12AD . 同理:DF=12AD . ∴DE+DF=AD .故③正确.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④错误.因此正确的结论是:①③,故答案为:①③.【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质以及四边形的内角和等知识,掌握本题的辅助线的作法是解题的关键.16.8【分析】利用三角形中位线的性质得到再根据平行四边形的性质求解即可;【详解】∵点E 点F 分别是BMCM 中点∴EF 是△BCM 的中位线∴∵四边形ABCD 是平行四边形∴又∵∴故答案是8【点睛】本题主要考查了解析:8【分析】利用三角形中位线的性质得到22612BC EF ==⨯=,再根据平行四边形的性质求解即可;【详解】∵点E ,点F 分别是BM ,CM 中点,∴EF 是△BCM 的中位线,∴22612BC EF ==⨯=,∵四边形ABCD 是平行四边形,∴12AD BC ==,又∵2AM MD =, ∴2212833AM AD ==⨯=. 故答案是8.【点睛】 本题主要考查了三角形中位线的性质,平行四边形的性质,准确判定计算是解题的关键. 17.5【分析】首先求得外角的度数然后利用360度除以外角的度数即可求得【详解】解:外角的度数是:180°﹣108°=72°则n==5故答案为5【点睛】本题考查根据多边形的内角和计算公式求多边形的边数解答解析:5【分析】首先求得外角的度数,然后利用360度除以外角的度数即可求得.【详解】解:外角的度数是:180°﹣108°=72°,则n=36072︒︒=5, 故答案为5.【点睛】 本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.18.720【分析】由多边形的一个顶点出发的对角线共有(n-3)条可求出边数然后求内角和【详解】∵多边形的一个顶点出发的对角线共有(n-3)条∴n-3=3∴n=6∴内角和=(6-2)×180°=720°故解析:720【分析】由多边形的一个顶点出发的对角线共有(n-3)条可求出边数,然后求内角和.【详解】∵多边形的一个顶点出发的对角线共有(n-3)条,∴n-3=3,∴n=6,∴内角和=(6-2)×180°=720°,故答案是:720.【点睛】本题运用了多边形的内角和定理,关键是要知道多边形的一个顶点出发的对角线共有(n-3)条.19.60°【分析】先根据平行四边形的性质得出∠A+∠B=180°∠A=∠C再由∠B=2∠A可求出∠A的度数进而可求出∠C的度数【详解】解:如下图∵四边形ABCD是平行四边形∴∠A+∠B=180°∠A=∠解析:60°【分析】先根据平行四边形的性质得出∠A+∠B=180°,∠A=∠C,再由∠B=2∠A可求出∠A的度数,进而可求出∠C的度数.【详解】解:如下图,∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∠A=∠C,∵∠B=2∠A,∴∠A+2∠A=180°,∴∠A=∠C=60°.故答案为:60°.【点睛】本题考查的是平行四边形的性质.熟知平行四边形的对角相等,邻角互补是解答此题的关键.20.60【分析】首先设此多边形为n边形根据题意得:180(n-2)=720即可求得n=6再由多边形的外角和等于360°即可求得答案【详解】解:设此多边形为n边形根据题意得:180(n-2)=720解得:解析:60【分析】首先设此多边形为n边形,根据题意得:180(n-2)=720,即可求得n=6,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=720,解得:n=6,∴这个正多边形的每一个外角等于:360°÷6=60°.故答案为:60°.【点睛】本题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.三、解答题21.(1)见解析;(2)24【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,结合CE=BC,得到AD=CE,可证明四边形ACED是平行四边形;(2)根据四边形ACED是平行四边形得到DE=AC=6,再证明∠BDE=90°,得到BE=2CD=2AB=10,利用勾股定理求出BD,可得△BDE的周长.【详解】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵CE=BC,∴AD=CE=BC,∵AD∥BC,∴AD∥CE,∴四边形ACED是平行四边形;(2)∵四边形ACED是平行四边形,∴DE=AC=6,∵CD=BC=CE=1BE,2∴∠CBD=∠CDB,∠CDE=∠CED,∴∠BDE=∠CDB+∠CDE=1180⨯︒=90°,2∴BE=2CD=2AB=10,∴BD =22BE DE -=8,∴△BDE 的周长=BD +BE +DE =8+10+6=24.【点睛】本题考查了平行四边形的性质与判定、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理论证与计算是解决问题的关键.22.(1)BE DF ⊥,证明见解析;(2)//DE BF ,证明见解析;(3)54°【分析】(1)结论:BE ⊥DF ,如图1中,延长BE 交FD 的延长线于H ,证明∠DEG+∠EDG=90°即可;(2)结论:DE//BF ,如图2中,连接BD ,只要证明∠EDB+∠FBD=180°即可;(3)延长DC 交BE 于H .由(1)得:180CDN CBM ∠+∠=︒,利用五等分线的定义可求36CDE CBE ∠+∠=︒,由三角形的外角性质得BCD CBE CDE E ∠=∠+∠+∠,代入数值计算即可.【详解】(1)BE DF ⊥.证明:延长BE 、FD 交于G .在四边形ABCD 中,360A ABC C ADC ,90A C ∠=∠=︒,180ABC ADC ∴∠+∠=︒.180ADC CDN ∠+∠=︒,ABC CDN ∴∠=∠.BE 平分ABC ∠,DF 平分CDN ∠,12ABE ABC ∴∠=∠,12FDN CDN ∠=∠, ABE FDN ∴∠=∠,∵∠ABE+∠AEB=90°,∠AEB=∠DEG ,∠FDN=∠EDG ,∴∠DEG+∠EDG=90°,∴∠EGD=90°,即BE ⊥DF .(2)//DE BF .证明:连接DB .180ABC MBC ∠+∠=︒,180ADC CDN ∠+∠=︒.又180ABC ADC ∠+∠=︒,180MBC CDN ∴∠+∠=︒.BF 、DF 平分ABC ∠、ADC ∠的邻补角,12CBF MBC ∴∠=∠,12CDE CDN ∠=∠,90CBF CDE ∴∠+∠=︒.在Rt BDC 中,90CDB DBC ∠+∠=︒,180CDB DBC CBF CDE ∴∠+∠+∠+∠=︒,180EDB DBF ∴∠+∠=︒,//DE BF ∴.(3)延长DC 交BE 于H .由(1)得:180CDN CBM ∠+∠=︒. BE 、DE 分别五等分ABC ∠、ADC ∠的邻补角, 1180365CDE CBE ∴∠+∠=⨯︒=︒, 由三角形的外角性质得,BHD CDE E ∠=∠+∠,BCD BHD CBE ∠=∠+∠,BCD CBE CDE E ∴∠=∠+∠+∠,903654E ∴∠=︒-︒=︒.【点睛】本题考查多边形内角和,三角形外角的性质,三角形内角和定理,平行线的判定等知识,解题的关键是学会添加常用辅助线.23.证明见详解【分析】根据多边形内角和度数可得每一个角的度数,然后再利用四边形DFBC 内角和计算出∠EFC 的度数即可证明.【详解】解:解:∵五边形ABCDE 的内角都相等,∴∠C=∠D=∠AED=180°×(5-2)÷5=108°,又 EF 平分∠AED∴°1542FED AED ∠=∠= ∴在四边形DFBC 中°=360-D-C-FED EFC ∠∠∠∠=90°∴EF ⊥BC【点睛】此题主要考查了多边形内角和,关键是掌握多边形内角和定理:(n-2)•180° (n≥3且n 为整数).24.(1)画图见解析;(2)5.5;(3) (-1,-1),(5,3),(-3,5).【分析】(1)'AA 长度为32,将,B C 沿着'AA 平行方向分别平移32个单位长度即可; (2)应用割补法,ABC ∆的面积等于大矩形面积减去三个小三角形面积;(3)分别以ABC ∆的三边为对角线讨论,因此应该有三种情况.【详解】(1)如图,△A′B′C′为所作;(2)△ABC 的面积11134413231 5.5222=⨯-⨯⨯-⨯⨯-⨯⨯=; (3)分别以AB 、AC 、BC 三边为对角线,平移另外两条边, 第一种情况:以AC 为对角线,平移AB 和BC ,得到交点1D (-1,-1);第二种情况:以BC 为对角线,平移AB 和AC ,得到交点2D (5,3);第三种情况:以AB 为对角线,平移AC 和BC ,得到交点3D (-3,5);因此,点1D 、2D 、3D 的坐标分别为:(-1,-1),(5,3),(-3,5).【点睛】本题考查了平移变换,割补法求组合图形的面积,以及平行四边形的判定,要注意应以三角形三边分别为平行四边形的对角线,不要漏掉条件.25.(1)见解析;(2)D (3,1),B C D '''∆的面积为52;(3)存在,满足条件点Q 存在三个点,如图所示见解析.【分析】(1)根据同角的余角相等得到BCO CDE ∠=∠,通过AAS 即可得到结论;(2)通过待定系数法求出直线 AB 的一次函数式,设 OC= ED =m ,从而得到点D 的坐标,进而即可求出B C D '''∆的面积;(3)分别以CD 为平行四边形的边和对角线,画出图形,即可得到结论.【详解】(1)证明:如图 1 中,90BOC BCD CED ︒∠=∠=∠=90OCB DCE ︒∴∠+∠=,90DCE CDE ︒∠+∠=BCO CDE ∴∠=∠BC CD =BOC CED ∴∆≅∆(2)设直线 AB 的一次函数式为:y kx b =+∵直线 AB 与 x 轴, y 轴交于 A(6,0) , B(0,2)两点,∴062k b b =+⎧⎨=⎩,解得:132kb ⎧=-⎪⎨⎪=⎩ ∴可求得直线 AB 的一次函数式为:123y x =-+ BOC CED ∆≅∆∵BO=CE=2,设 OC= ED =m ,则 D( m+2,m ),把D(m+2,m) 代入得到123y x =-+,得m=1, ∴D(3,1)∴等腰直角 △BCD 腰长:5CB CD ==, ∵B C D '''∆与△BCD 的全等,∴B C D '''∆的面积=△BCD 的面积=52;(3)满足条件点 Q 存在三个点,如图所示【点睛】本题主要考查一次函数的图象和性质、三角形全等的判定和性质定理以及平行四边形的性质,熟练掌握全等三角形的判定和性质定理以及平行四边形的性质,以及分类讨论思想是解题的关键.26.证明见详解.【分析】通过全等三角形(△AEB ≌△DFC )的对应边相等证得BE=CF ,由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE ∥CF .则四边形BECF 是平行四边形.【详解】证明:∵BE ⊥AD ,CF ⊥AD ,∴∠AEB=∠DFC=90°,∵AB ∥CD ,∴∠A=∠D ,在△AEB 与△DFC 中,AEB DFC AE DFA D ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEB ≌△DFC (ASA ),∴BE=CF .∵BE ⊥AD ,CF ⊥AD ,∴BE ∥CF .∴四边形BECF 是平行四边形.【点睛】本题考查了平行四边形的判定、全等三角形的判定与性质.一组对边平行且相等的四边形是平行四边形.。
八年级数学下册《平行四边形的判定》练习题及答案解析一、选择题(共12小题)1. 下面几组条件中,能判定一个四边形是平行四边形的是( )A. 一组对边相等B. 两条对角线互相平分C. 一组对边平行D. 两条对角线互相垂直2. 在同一平面内,设a,b,c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为( )A. 1cmB. 3cmC. 5cm或3cmD. 1cm或3cm3. 下面条件中,能判定四边形是平行四边形的条件是( )A. 一组对角相等B. 对角线互相平分C. 一组对边相等D. 对角线互相垂直4. 如图,四边形ABCD中,AD∥BC,点M是AD的中点,若动点N从点B出发沿边BC方向向终点C运动,连接BM,CM,AN,DN,则在整个运动过程中,阴影部分面积和的大小变化情况是( )A. 不变B. 一直变大C. 先减小后增大D. 先增大后减小5. 在平面直角坐标系中,长为2的线段CD(点D在点C右侧)在x轴上移动A(0,2),B(0,4),连接AC,BD,则AC+BD的最小值为( )A. 2√5B. 2√10C. 6√2D. 3√56. 如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A. a户最长B. b户最长C. c户最长D. 三户一样长7. 在同一平面内,已知a∥b∥c,若直线a,b间的距离为3cm,直线a,c间的距离为5cm,则直线b,c间的距离是( ).A. 2cmB. 8cmC. 2cm或8cmD. 不确定8. 下列命题中,说法正确的是( )A. 所有菱形都相似B. 两边对应成比例且有一组角对应相等的两个三角形相似C. 三角形的重心到一个顶点的距离,等于它到这个顶点对边距离的两倍D. 斜边和直角边对应成比例,两个直角三角形相似9. 如图,已知直线a∥b,小王在直线a上任取5个点:P1,P2,P3,P4,P5,经测量发现它们到直线b的距离都是3cm;小丁在直线b上任取5个点:Q1,Q2,Q3,Q4,Q5,经测量发现它们到直线a的距离b也都是3cm.该操作反映了平行线的某种性质,下列对该性质的描述中,不正确的是( )A. 如果直线a∥b,那么直线a上任意一点到直线b的距离都相等B. 如果直线a∥b,那么直线b上任意一点到直线a的距离都相等C. 两条平行线中,任意一条直线上的所有点到另一条直线的距离是一个定值D. 两条平行线中,一条直线上的任意一点与另一条直线上的任意一点之间的距离都是一个定值10. 平行四边形ABCD中,E,F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )A. BE=DFB. AE=CFC. AF∥CED. ∠BAE=∠DCF11. 如图所示,l1∥l2,B,C是l2上的两点,A,D,E是l1上的三点,S△ABC记作S1,S△DBC记作S2,S△EBC记作S3,则( )A. S1>S2>S3B. S3>S2>S1C. S1=S2=S3D. 无法比较12. 有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形(如图①),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图②),如果按此规律继续“生长”下去,那么它将变得“枝繁叶茂”.在“生长”了2021次后形成的图形中所有正方形的面积和是( )A. 2019B. 2020C. 2021D. 2022二、填空题(共8小题)13. 下列四边形中,是平行四边形的是(请填写序号).14. 如图,在四边形ABCD中,AB∥CD,请你添加—个条件,使得四边形ABCD成为平行四边形,你添加的条件是 .15. 一个四边形四条边顺次是a,b,c,d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是.16. 如图,a∥b,AB⊥b,CD⊥b,AB=4cm,则CD=.17. 已知直线a、b、c互相平行,直线a与b的距离是2厘米,直线b与c的距离是6厘米,那么直线a与c的距离是.18. 如图,已知AD∥BC,AB∥CD,过点A分别画直线BC,CD的垂线,垂足为点E,F.通过度量,可以得到平行线AD与BC间的距离为,平行线AB 与CD间的距离为.19. 在平面直角坐标系中,点A,B,C的坐标分别为A(−2,1),B(−3,−1),C(1,−1).若四边形ABCD为平行四边形,那么点D的坐标是.20. 如图,AD∥BC,E是线段AD上任意一点,BE与AC相交于点O,若△ABC的面积是5,△EOC的面积是1,则△BOC的面积是.三、解答题(共6小题)21. 已知:如图所示,C为线段BE上一点,AB∥DC,AB=EC,BC=CD.求证:∠A=∠E.22. 如图,已知点E,F分别在长方形ABCD的边AB,CD上,且AF∥CE.请分别度量AE与CF之间的距离,AF与CE之间的距离(精确到0.1cm).23. 若两个角的两边分别垂直,其中一个角比另一个角的2倍少30∘,求这两个角的度数.24. 如图,已知E为平行四边形ABCD的边BC上的任一点,DE延长线交AB延长线于点F.试说明S△ABE=S△CEF的理由.25. 如图,在平行四边形ABCD中,E是对角线BD上的一点,过点C作CF∥DB,且CF=DE,连接AE,BF,EF.求证:AE=BF.26. 如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=√a−21+√21−a+16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P,Q分别从点A,O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒).(1)求B,C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P,Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P,Q两点的坐标.参考答案与解析1. B2. C3. B4. A【解析】连接MN,过F作WQ⊥AD于Q,交BC于W,过E作EH⊥AD于Q,交BC于P,∴QW=PH,∵AD∥BC,∴WQ⊥BC,∴S△MFD+S△FNC=12×MD×FQ+12×NC×FW=12×(MD+NC)×QW,S△AEM+S△BNE=12×AM×EH+12×BN×EP=12×(AM+BN)×PH,∴阴影部分面积=12×(AD+BC)×QW,∴阴影部分面积不变.5. B【解析】作A(0,2)关于x轴的对称点A′(0,−2),过A′作A′E∥x轴且A′E=CD=2,故E(2,−2),连接BE交x轴与D点,过A′作A′C∥DE交x轴于点C,所以四边形CDEA′为平行四边形,此时AC+BD最短等于BE的长,即AC+BD=A′C+BD=DE+BD=BE=√(2−0)2+(−2−4)2=2√10.6. D7. C8. D9. D10. B【解析】A.如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B.如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C.如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF∥CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF∥CE且AF=CE,∴四边形AECF是平行四边形,故不符合题意;D.如图,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE∥CF,∴AE∥CF且AE=CF,∴四边形AECF是平行四边形,故不符合题意.11. C【解析】同底等高的三角形的面积相等.12. D 【解析】设正方形A,B,C围成的直角三角形的三条边长分别是a,b,c.如图,根据勾股定理,得a2+b2=c2,一次“生长”后,S A+S B=S C=1.第二次“生长”后,S D+S E+S F+S G=S A+S B=S C=1,推而广之,“生长”了2021次后形成的图形中所有的正方形的面积和是2022×1=2022.13. ①②③14. 答案不唯一,如:AB=CD或AD∥BC或∠A=∠C或∠B=∠D或∠A+∠B= 180∘或∠C+∠D=180∘等.15. 平行四边形16. 4cm17. 4厘米或8厘米18. 4cm,5cm【解析】如图所示:通过度量,得到AE=4cm,AF=5cm,故平行线AD与BC的距离为4cm,AB与CD 的距离为5cm.19. (−6,1),(2,1),(0,−3)20. 421. ∵AB∥DC,∴∠B=∠ECD,在△ABC和△ECD中,{AB=EC,∠B=∠ECD, BC=CD,∴△ABC≌△ECD(SAS),∴∠A=∠E(全等三角形的对应角相等).22. 过点E作EH⊥AF于点H.经测量可得:AD=3.2cm,EH=1.3cm,则AE与CF之间的距离是 3.2cm,AF与CE之间的距离是 1.3cm.23. 设另一个角的度数为α,则这个角的度数是2α−30∘.因为两个角的两边分别垂直,所以α+2α−30∘=180∘或α=2α−30∘,解得α=70∘或α=30∘,所以2α−30∘=110∘或2α−30∘=30∘.故这两个角的度数分别是110∘,70∘或30∘,30∘.24. 提示:连接BD,因为AD∥BC,所以S△ABE=S△DBE,因为CD∥AF,所以S△EFD=S△BFC,所以S△BED=S△CEF,所以S△ABE=S△CEF.25. ∵CF∥BD且CF=DE,∴四边形CDEF是平行四边形,∴CD∥EF,CD=EF.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴AB∥EF,AB=EF,∴四边形ABFE是平行四边形,∴AE=BF.26. (1)因为b=√a−21+√21−a+16,所以a=21,b=16,故B(21,12),C(16,0).(2)根据题意得:QP=2t,QO=t,则:PB=21−2t,QC=16−t,因为当PB=QC时,四边形PQCB是平行四边形,所以21−2t=16−t,计算得出:t=5,所以P(10,12),Q(5,0).(3) 当 PQ =CQ 时,过 Q 作 QN ⊥AB ,如图所示,根据题意得:122+t 2=(16−t )2,计算得出:t =72,故 P (7,12),Q (72,0),当 PQ =PC 时,过 P 作 PM ⊥x 轴,如图所示,根据题意得:QM =t ,CM =16−2t ,则 t =16−2t ,计算得出:t =163,2t =323, 故 P (323,12),Q (163,0).。
D A CB 6.2 平行四边形的判定第2课时 平行四边形的判定定理3与两平行线间的距离【学习内容】平行四边形的判定(P143—P145页)【学习目标】1、理解平行四边形的另一种判定方法,并学会简单运用。
2、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展逻辑思维能力和推理论证的表达能力。
【学习重难点】重点:平行四边形判定方法理解运用;难点:平行四边形判 定方法运用【自研课】定向导学 (15分钟)复习引入1.平行四边形的定义是什么?平行四边形的定义: 的四边形,叫做平行四边形2.判定四边形是平行四边形的方法有哪些?(1)两组对边分别 的四边形是平行四边形. (2)两组对边 的四边形是平行四边形.(3)一组对边 的四边形是平行四边形.探究 活动:工具:两根不同长度的细木条.动手:能否合理摆放这两根细木条,使得连接四个顶点后成为平行四边形? 思考:你能说明你得到的四边形是平行四边形吗?已知:如图,四边形ABCD 的对角线AC 、BD 相交于点O,并且OA=OC,OB=OD.求证:四边形ABCD 是平行四边形.已知:如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O,点E 、F 在对角线AC 上,并且AE=CF .求证:四边形BFDE 是平行四边形【训练课】(时段:晚自习,时间20分钟)基础题:1、如图,四边形ABCD中,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是______ ___ ,根据是。
A DOB C2、四边形ABCD中,AC、BD相交于点O,且OA=OC,如果要使四边形ABCD 是平行四边形,则还需补充的条件是()A.AC⊥BD B. OA=OB C.OC=OD D.OB=OD3、下列条件中,能判定四边形是平行四边形的是()A.一组对角相等 B. 对角线互相平分C.一组对边相等 D. 对角线互相相等4、如图,在平行四边形ABCD中,O是AC,BD的交点,点E,F,G,H分别是AO,BO,CO,DO的中点,四边形EFGH是平行四边形吗?说说你的理由.A DE O HF GB C发展题5、下列条件中不能确定四边形ABCD是平行四边形的是()A.AB=CD,AD∥BCB.AB=CD,AB∥CDC.AB∥CD,AD∥BCD.AB=CD,AD=BC6、A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC=AD;④BC∥AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有()A.3种 B.4种 C.5种 D.6种提高题:7、已知如图:在ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.北师大版九年级数学上册期中测试题一、选择题(本大题共10小题,每小题3分,共30分)1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12 C.13 D.14 2. 关于方程x 2-2=0的理解错误的是 A.这个方程是一元二次方程 B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是 ①菱形的对角线相等 ②对角线互相垂直的四边形是菱形; ③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形 ⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是 A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定 5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是 7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.23B.12C.13D.498.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.24013 9.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.342 D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..二、填空题(本题共6小题,每小题4分,共24分)11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________. 14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________. 16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转(1)请用画树状图法或列表法列出所有可能的结果;(2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)商场平均每天可能盈利1700元吗?请说明理由.20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F.(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y 与销售单价x 之间的函数关系式;(2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x.23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。
一、选择题1.如图,在平行四边形ABCD 中,点O 是对角线BD 的中点,过点O 作线段EF ,使点E ,点F 分别在边AD ,BC 上(不与四边形ABCD 顶点重合),连结EB ,EC .设ED kAE =,下列结论:①若1k =,则BE CE =;②若2k =,则EFC 与OBE △面积相等;③若ABE FEC ≌,则EF BD ⊥.其中正确的是( )A .①B .②C .③D .②③ 2.下列关于多边形的说法不正确的是( )A .内角和外角和相等的多边形是四边形B .十边形的内角和为1440°C .多边形的内角中最多有四个直角D .十边形共有40条对角线3.如图,在平面直角坐标系中,▱ABCD 三个顶点坐标分别为A (-1,-2),D (1,1),C (5,2),则顶点B 的坐标为( )A .(-1,3)B .(4,-1)C .(3,-1)D .(3,-2) 4.如图,将△ABC 沿着它的中位线DE 折叠后,点A 落到点A ',若∠C =120°,∠A =25°,则∠A 'DB 的度数是( )A .100°B .110°C .115°D .120°5.如图,设M 是ABCD 边AB 上任意一点,设AMD ∆的面积为1S ,BMC ∆的面积为2S ,CDM ∆的面积为S ,则( )A .12S S S =+B .12S S S >+C .12S S S <+D .不能确定 6.如图,平行四边形ABCD 的周长是56cm ,ABC ∆的周长是36m ,则AC 的长为( )A .6cmB .12cmC .4cmD .8cm 7.如图,在ABCD 中,DAB ∠的平分线AE 交CD 于E ,6AB =,4BC =,则EC的长为( )A .2B .2.5C .3D .3.58.如图,下列哪组条件不能判定四边形ABCD 是平行四边形( )A .AB ∥CD ,AB =CDB .AB ∥CD ,AD ∥BC C .OA =OC ,OB =ODD .AB ∥CD ,AD =BC 9.在□ABCD 中,∠A :∠B =7:2,则∠C 、∠D 的度数分别为( ) A .70°和20° B .280°和80° C .140°和40° D .105°和 30° 10.如图,在△ABC 中,∠ACB=90°,分别以点A 和点C 为圆心,以相同的长(大于12AC )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD ,下列结论错误的是( )A .AD=CDB .∠A=∠DCEC .∠ADE=∠DCBD .∠A=2∠DCB 11.如图,P 为□ABCD 对角线BD 上一点,△ABP 的面积为S 1,△CBP 的面积为S 2,则S 1和S 2的关系为 ( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .无法判断 12.如图,ABCD 中,点E 在边BC 上,以AE 为折痕,将ABE △向上翻折,点B 正好落在CD 上的点F 处,若FCE △的周长为7,FDA △的周长为21,则FD 的长为( )A .5B .6C .7D .8二、填空题13.在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图BD 是平行四边形ABCD 的对角线,点E 在BD 上,DC =DE =AE ,∠1=25°,则∠C 的大小是_____.14.如图,小明从A 点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°…照这样走下去,他第一次回到出发点A 时,共走路程为____米.15.如图,在平行四边形纸片ABCD 中,2cm AB ,将纸片沿对角线AC 对折至CF ,交AD 边于点E ,此时BCF △恰为等边三角形,则图中折叠重合部分的面积是________.16.已知平行四边形两邻边的长分别为4和7,夹角为150°,则它的面积为________. 17.如图,在四边形ABCD 中,//AD BC ,12AD cm =,15BC cm =,点P 自点A 向D 以1/cm s 的速度运动,到D 点即停止.点Q 自点C 向B 以2/cm s 的速度运动,到B 点即停止,点P ,Q 同时出发,设运动时间为()t s .当t ______s 时,四边形APQB 是平行四边形.18.如图,平行四边形ABCD 在平面直角坐标系中,已知∠DAB =60°,A (﹣2,0),点P 在AD 上,连接PO ,当OP ⊥AD 时,点P 到y 轴的距离为_____.19.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为__________.20.如图,在ABCD 中,点E 是AD 边上的一点,CD=CE ,将CDE △沿CE 翻折得到CEF △,若∠B=55°.那么BCF ∠的度数为__________.三、解答题21.如图1,在△ABC 中,∠ABC 、∠ACB 的平分线相交于点O ,过点O 作MN ∥BC .分别交AB 、AC 于M 、N .(1)求证:BM+CN=MN.(2)如图2,若△ABC是等边三角形,请从以下两个问题任选一题作答.若两题都作答,以问题①计分.问题①BC=6,求MN的长.问题②求证:O是MN的中点.22.已知一个多边形,它的内角和等于1800︒,求这个多边形的边数.23.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标;(3)在平面内有一动点P,使得以P、A、B、C为顶点的四边形是平行四边形,满足条件的点P的个数为_______.24.如图,在平行四边形AFCE中,EF是对角线,B、D是直线EF上的点,且=.求证:四边形ABCD是平行四边形.DE BF25.如图1,在平面直角坐标系中,直线AB与 x轴、y轴相交于A(6,0)、B(0,2)两点,动点C在线段OA 上(不与 )O、A重合 ),将线段CB绕着点C顺时针旋转 90°得到CD,当点D恰好落在直线AB时,过点D作DE⊥x轴于点E.(1)求证:BOC CED ∆≅∆;(2)求经过A 、B 两点的一次函数表达式,如图2,将BCD ∆沿x 轴正方向平移得B C D '''∆,当直线B′C′经过点D 时,求点D 的坐标、B C D '''∆的面积;(3)若点P 在y 轴上,点Q 在直线AB 上,是否存在以C 、D 、P 、Q 为顶点的四边形是平行四边形?若存在,通过画图说明理由,并指出点Q 的个数.26.如图,已知:平行四边形ABCD 中,,ABC BCD ∠∠的平分线交于点E ,且点E 刚好落在AD 上,分别延长,BE CD 交于F()1AB 与AD 之间有什么数量关系?并证明你的猜想()2CE 与BF 之间有什么位置关系?并证明你的猜想【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由1k =,则有E ,F 分别是AD ,BC 的中点,进而可判定①,当2k =时,则有EFC 的面积=12BEF S ,OBE △的面积=12BEF S ,然后可判定②;若EF ⊥BD 成立,则必须BE BF =,因为前提ABE △≌FEC ,BE CE =,进而可判定③.【详解】 解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴∠EDO=∠FBO ,∠DEO=∠BFO ,∵点O 是对角线BD 的中点,∴BO=DO ,∴△DEO ≌△BFO (AAS ),∴DE=BF ,∵1k =,∴E ,F 分别是AD ,BC 的中点,∴EC AF BE =≠,故①错;连接EC ,如图所示:∵2k =,∴EFC 的面积=12BEF S , ∵点O 是EF 的中点, ∴OBE △的面积=12BEF S ,所以EFC 与OBE △面积相等,故②对;若EF ⊥BD 成立,则必须BE BF =,因为前提ABE △≌FEC ,BE CE =,得不到CE BF =,故③错;故选B .【点睛】本题主要考查平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.2.D解析:D【分析】根据多边形的内角和、外角和,多边形的内角线,即可解答.【详解】A 、内角和与外角和相等的多边形是四边形,正确;B 、十边形的内角和为()102180-⨯︒=1440°,正确;C 、多边形的内角中最多有四个直角,正确;D 、十边形共有()101032⨯-=35条对角线,故错误;故选:D .【点睛】本题考查了多边形,解决本题的关键是熟记多边形的有关性质.3.C解析:C【分析】根据平行四边形的性质,CD=AB,CD∥AB,根据平移的性质即可求得顶点B的坐标.【详解】∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵▱ABCD的顶点A、D、C的坐标分别是A(-1,-2)、D(1,1)、C(5,2),D(1,1)向左平移2个单位,再向下3个单位得到A(-1,-2),则C(5,2)向左平移2个单位,再向下3个单位得到(3,-1),∴顶点B的坐标为(3,-1).故选:C.【点睛】本题考查了平行四边形的性质,平移的性质.注意数形结合思想的应用是解此题的关键.4.B解析:B【分析】根据轴对称和平行线的性质,可得∠A'DE=∠B,又根据∠C=120°,∠A=25°可求出∠B 的值,继而求出答案.【详解】由题意得:∠A'DE=∠B=180°−120°−25°=35°,∠BDE=180°−∠B=145°,故∠A'DB=∠BDE−∠A'DE=145°−35°=110°.故选:B.【点睛】本题考查了轴对称的性质及三角形中位线定理,有一定难度,根据题意得出各角之间的关系是关键.5.A解析:A【分析】MN BC,交CD于点N,先根据平行四边形的判定可得四边如图(见解析),过点M作//形AMND和四边形BMNC都是平行四边形,再根据平行四边形的性质即可得.【详解】MN BC,交CD于点N,如图,过点M作//四边形ABCD是平行四边形,∴,AB CD AD BC//,//∴,AD BC MN////∴四边形AMND和四边形BMNC都是平行四边形,12,DMN CMN S S SS ∴==, 12DMN CMN S S SS S ∴=+=+, 故选:A .【点睛】本题考查了平行四边形的判定与性质,通过作辅助线,构造平行四边形是解题关键. 6.D解析:D【分析】ABC ∆的周长=AB+BC+AC ,而AB+BC 为平行四边形ABCD 的周长的一半,代入数值求解即可.【详解】因为四边形ABCD 是平行四边形,∴AB=DC ,AD=BC ,∵▱ABCD 的周长是56cm ,∴AB+BC=28cm ,∵△ABC 的周长是36cm ,∴AB+BC+AC=36cm ,∴AC=36cm−28cm=8cm.故选D .【点睛】本题考查了平行四边形的性质,根据题意列出三角形周长的关系式,结合平行四边形周长的性质求解是本题的关键.7.A解析:A【分析】根据平行四边形的性质及AE 为角平分线可知:BC=AD=DE=4,又有CD=AB=6,可求EC 的长.【详解】解:根据平行四边形的对边相等,得:CD=AB=6,AD=BC=4.根据平行四边形的对边平行,得:CD ∥AB ,∴∠AED=∠BAE ,又∠DAE=∠BAE ,∴∠DAE=∠AED .∴ED=AD=4,∴EC=CD-ED=6-4=2.故选:A.【点睛】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.8.D解析:D【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【详解】根据平行四边形的判定,A、B、C均符合是平行四边形的条件,D则不能判定是平行四边形.故选D.【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.9.C解析:C【分析】由平行四边形的性质可得∠A=∠C,∠B=∠D,∠A+∠B=180°,又有∠A:∠B=7:2,可求得∠A=140°,∠B=40°,即可得出结果.【详解】∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AD∥BC,∴∠A+∠B=180°又∵∠A:∠B=7:2∴∠A=140°,∠B=40°,∴∠C=140°,∠D=40°;故选C.【点睛】此题主要考查了平行四边形的性质;熟记平行四边形的两组对角分别相等,邻角互补是解题的关键.10.D解析:D【分析】根据题意可知DE是AC的垂直平分线,由此即可一一判断.【详解】∵DE是AC的垂直平分线,∴DA=DC,AE=EC,故A正确,∴DE∥BC,∠A=∠DCE,故B正确,∴∠ADE=∠CDE=∠DCB,故C正确,故选D.【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形中位线定理等知识,解题的关键是熟练运用这些知识解决问题.11.B解析:B【解析】分析:根据平行四边形的性质可得点A、C到BD的距离相等,再根据等底等高的三角形的面积相等.详解:∵在□ABCD中,点A、C到BD的距离相等,设为h.∴S1= S△ABP=12BP h ,S2= S△CPB=12BP h.∴S 1=S2,故选B.点睛:本题主要考查的平行四边形的性质,关键在于理解等底等高的三角形的面积相等的性质.12.C解析:C【分析】由题意易得AB=AF,FE=BE,然后根据三角形的周长及线段的等量关系进行求解即可.【详解】解:由题意得:AB=AF,FE=BE,四边形ABCD是平行四边形,∴BC=AD,AB=DC=AF,FCE△的周长为7,FDA△的周长为21,∴FE+EC+FC=7,AD+AF+DF=21,∴BC+FC=7,AF=DC=DF+FC,∴7-FC+DF+FC+DF=21∴DF=7.故选C.【点睛】本题主要考查折叠的性质及平行四边形的性质,熟练掌握平息四边形及折叠的性质是解题的关键.二、填空题13.105°【分析】由已知根据等腰三角形的性质可以求出∠BAE的大小从而得到∠BAD的大小再根据平行四边形对角相等的性质可以得到答案【详解】解:∵DE=AE∠1=25°∴∠ADE=∠1=25°∴∠AEB解析:105°.【分析】由已知,根据等腰三角形的性质,可以求出∠BAE的大小,从而得到∠BAD的大小,再根据平行四边形对角相等的性质可以得到答案.【详解】解:∵DE=AE,∠1=25°,∴∠ADE=∠1=25°,∴∠AEB=∠1+∠ADE=50°,又∵平行四边形ABCD中,AB=CD,∴AB=AE,∴∠ABE=∠AEB=50°,∴∠BAE=80°,∠BAD=80°+25°=105°,又∵∠BAD=∠C,∴∠C=105°,故答案为:105°.【点睛】本题考查平行四边形的应用,熟练掌握平行四边形的性质、等腰三角形的性质、三角形的内外角性质是解题关键.14.64【分析】根据题意可知他需要转360÷45=8次才会回到原点所以一共走了8×8=64米【详解】解:设边数为n多边形外角和为360°所以n=360°÷45°=8总边长为8×8=64米故答案为:64【解析:64【分析】根据题意可知,他需要转360÷45=8次才会回到原点,所以一共走了8×8=64米.【详解】解:设边数为n,多边形外角和为360°,所以n=360°÷45°=8,总边长为8×8=64米,故答案为:64.【点睛】此题考查多边形的外角和,正多边形的性质,正确理解题意是解题的关键.15.【分析】为等边三角形点A为BF的中点可得求得再证明出点E为AD的中点得到可求出面积【详解】解:折叠至处AB=AF=2cmBC=BF=CF=4cm为等边三角形又四边形ABCD为平行四边形cmCD=AB2cm【分析】BCF △为等边三角形,点A 为BF 的中点,可得90BAC ∠=︒,求得12ACD S AC CD =,再证明出点E 为AD 的中点,得到12ACE ACD S S =,可求出面积. 【详解】解:ABC 折叠至ACF 处,∴AB=AF=2cm ,BC=BF=CF=4cm ,BCF △为等边三角形,AC BF ∴⊥,90BAC ∠=︒,又四边形ABCD 为平行四边形,∴//AB CD ,90ACD ∴∠=︒,2223AC BC AB =-=cm ,CD=AB=2cm ,12ACD S AC CD ∴==2323212⨯⨯=2cm , 点A 为BF 的中点,//AE BC , ∴AE 为BCF △的中位线,1122AE BC AD ∴==, ∴点E 为AD 的中点,12ACE ACD S S ∴==1232⨯=32cm 为折叠重合部分的面积, 故答案为:32cm .【点睛】本题考查了折叠问题以及等边三角形和平行四边形的综合问题,还涉及勾股定理,需要有一定的推理论证能力,熟练掌握等边三角形和平行四边形的性质是解题的关键. 16.14【分析】首先根据题意画出图形然后过点A 作AE ⊥BC 交CB 的延长线于点E 可求得其高继而求得答案【详解】解:如图▱ABCD 中AB=4BC=7∠ABC=150°过点A 作AE ⊥BC 交CB 的延长线于点E 则解析:14【分析】首先根据题意画出图形,然后过点A 作AE ⊥BC 交CB 的延长线于点E ,可求得其高,继而求得答案.【详解】解:如图,▱ABCD 中,AB=4,BC=7,∠ABC=150°,过点A作AE⊥BC交CB的延长线于点E,则∠ABE=180°-150°=30°,∴AE=12AB=2,∴S▱ABCD=BC•AE=2×7=14.故答案为:14.【点睛】此题考查了平行四边形的性质以及含30°角的直角三角形的性质.注意结合题意画出图形,利用图形求解是关键.17.【分析】由题意可以用含t的代数式表示AP和BQ令AP=BQ可得关于t的一元一次方程解方程可得t的值【详解】解:由题意得:当时间为t秒时AP=tcmBQ=BC-CQ=(15-2t)cm令AP=BQ得:解析:5【分析】由题意,可以用含t的代数式表示AP和BQ,令AP=BQ可得关于t的一元一次方程,解方程可得t的值.【详解】解:由题意得:当时间为t秒时,AP=tcm,BQ=BC-CQ=(15-2t)cm,令AP=BQ得:t=15-2t,解得:t=5故答案为5 .【点睛】本题考查平行四边形和一元一次方程的综合应用,掌握“一组对边平行且相等的四边形是平行四边形”的判定方法是解题关键.18.【分析】首先根据点A的坐标求得OA的长然后求得PO的长从而求得点P 到y轴的距离即可【详解】解:∵A(﹣20)∴OA=2∵∠DAB=60°OP⊥AD∴∠AOP=30°∴AP=1∴OP=作PE⊥y轴∵∠解析:3 2【分析】首先根据点A的坐标求得OA的长,然后求得PO的长,从而求得点P到y轴的距离即可.【详解】解:∵A(﹣2,0),∴OA=2,∵∠DAB=60°,OP⊥AD,∴∠AOP=30°,∴AP=1,∴OP作PE⊥y轴,∵∠POA=30°,∴∠OPE=30°,∴OE=3∴PE=32,∴点P到y轴的距离为32,故答案为32.【点睛】考查了平行四边形的性质,能够将点的坐标转化为线段的长是解答本题的关键,难度不大.19.60°【分析】先根据平行四边形的性质得出∠A+∠B=180°∠A=∠C再由∠B=2∠A可求出∠A的度数进而可求出∠C的度数【详解】解:如下图∵四边形ABCD是平行四边形∴∠A+∠B=180°∠A=∠解析:60°【分析】先根据平行四边形的性质得出∠A+∠B=180°,∠A=∠C,再由∠B=2∠A可求出∠A的度数,进而可求出∠C的度数.【详解】解:如下图,∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∠A=∠C,∵∠B=2∠A,∴∠A+2∠A=180°,∴∠A=∠C=60°.故答案为:60°.【点睛】本题考查的是平行四边形的性质.熟知平行四边形的对角相等,邻角互补是解答此题的关20.【分析】先根据平行四边形的性质可得再根据等腰三角形的性质可得然后根据平行线的性质翻折的性质可得最后根据角的和差即可得【详解】四边形ABCD 是平行四边形由翻折的性质得:又故答案为:【点睛】本题考查了平 解析:15︒【分析】先根据平行四边形的性质可得55,//D B AD BC ∠=∠=︒,再根据等腰三角形的性质可得55CED ∠=︒,70DCE ∠=︒,然后根据平行线的性质、翻折的性质可得55BCE CED ∠=∠=︒,70ECF DCE ∠=∠=︒,最后根据角的和差即可得.【详解】四边形ABCD 是平行四边形,55B ∠=︒,55,//D B AD BC ∴∠=∠=︒,CD CE =,55CED D ∴∠=∠=︒,18070DCE CED D ∴∠=︒-∠-∠=︒,由翻折的性质得:70ECF DCE ∠=∠=︒,又//AD BC ,55BCE CED ∴∠=∠=︒,705515BCF ECF BCE ∴∠=∠-∠=︒-︒=︒,故答案为:15︒.【点睛】本题考查了平行四边形的性质、平行线的性质、翻折的性质、等腰三角形的性质等知识点,熟练掌握平行四边形的性质和翻折的性质是解题关键.三、解答题21.(1)见解析;(2)①MN=4;②见解析【分析】(1)根据角平分线定义和平行线的性质可证得∠MOB=∠MBO ,∠NOC=∠NCO ,再根据等角对等边的性质可得BM=MO ,CN=ON ,再由MO+ON=MN 即可证得结论;(2)①过M 、N 分别作ME ⊥BC 于E ,NF ⊥BC 于F ,可证得四边形MEFN 为平行四边形,可得MN=EF ,再根据等边三角形的性质可得∠ABC=∠ACB=60°,进而有∠BME=∠CNF=30°,根据直角三角形中30°角所对的直角边是斜边的一半可证得BE=12BM ,CF=12CN ,由BC=BE+EF+CF 和BM+CN=MN 可得BC=32MN ,即可求得MN 的长;②过M 、N 分别作ME ⊥BC 于E ,NF ⊥BC 于F ,可证得四边形MEFN 为平行四边形,可得ME=NF ,再根据等边三角形的性质可得∠ABC=∠ACB ,再根据全等三角形的判定可证得△MEB ≌△NFC ,则有BM=CN ,由(1)中BM=MO ,CN=ON 可得MO=ON ,即可证得结【详解】(1)证明:∵BO、CO分别平分∠ABC、∠ACB,∴∠OBC=∠MBO,∠OCB=∠NCO,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MOB=∠MBO,∠NOC=∠NCO,∴BM=MO,CN=ON,∴BM+CN=MO+ON=MN,即BM+CN =MN;(2)若选①,解:如图2,过M、N分别作ME⊥BC于E,NF⊥BC于F,则ME∥NF,∠MEB=∠NFC=90°,∵MN∥BC,∴四边形MEFN为平行四边形,∴MN=EF,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,又∠MEB=∠NFC=90°,∴∠BME=∠CNF=30°,∴BE=12BM,CF=12CN,∵BC=BE+EF+CF=12BM+MN+12CN=32MN=6,∴MN=4;若选②,证明:如图2,过M、N分别作ME⊥BC于E,NF⊥BC于F,则ME∥NF,∠MEB=∠NFC=90°∵MN∥BC,∴四边形MEFN为平行四边形,∴ME=NF,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,又∠MEB=∠NFC=90°,∴△MEB≌△NFC(AAS),∴BM=CN,∵ BM=MO,CN=ON∴MO=ON,即O为MN的中点.【点睛】本题考查了角平分线的定义、平行线的性质、等腰三角形的判定、等边三角形的性质、平行四边形的判定与性质、含30°角的直角三角形的性质、全等三角形的判定与性质等知识,熟练掌握各知识点的运用,借助作辅助线进行计算或证明解答的关键.22.十二边形.【分析】设这个多边形的边数为n ,根据多边形的内角和定理即可列方程求解.【详解】解:设这个多边形是n 边形,根据题意得:()21801800n ︒︒-⨯=, 解得:12n =.故这个多边形是十二边形.【点睛】解题的关键是读懂题意,根据多边形的内角和:180°(n-2),正确列方程求解. 23.(1)见解析;(2)画图见解析;B 2(4,2-),C 2 (1,3-);(3)3【分析】(1)分别作出A 、B 、C 的对应点A 1、B 1、C 1即可;(2)分别作出B ,C 的对应点B 2、C 2即可;(3)分别作出P 的位置即可.【详解】解:(1)如图:(2)如图,可以得到B 2(4,2-),C 2(1,3-);(3)如图,满足条件的P 点有3个.【点睛】本题考查的是图形的变换以及平行四边形的存在性,注意掌握旋转和平移作图的知识点和正确认识平行四边形即可.24.见解析【分析】连接AC 交BD 于点O ,根据平行四边形的对角线互相平分可得OA=OC ,OE=OF ,然后求出OB=OD ,再根据对角线互相平分的四边形是平行四边形即可证明.【详解】连接AC 交BD 于点O ,如图所示:∵四边形AFCE 是平行四边形,∴OA=OC ,OE=OF ,∵DE=BF ,∴OE+DE=OF+BF ,即OB=OD ,∴四边形ABCD 是平行四边形.【点睛】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质,证出OB=OD 是解题的关键.25.(1)见解析;(2)D (3,1),B C D '''∆的面积为52;(3)存在,满足条件点Q 存在三个点,如图所示见解析.【分析】(1)根据同角的余角相等得到BCO CDE ∠=∠,通过AAS 即可得到结论;(2)通过待定系数法求出直线 AB 的一次函数式,设 OC= ED =m ,从而得到点D 的坐标,进而即可求出B C D '''∆的面积;(3)分别以CD 为平行四边形的边和对角线,画出图形,即可得到结论.【详解】(1)证明:如图 1 中,90BOC BCD CED ︒∠=∠=∠=90OCB DCE ︒∴∠+∠=,90DCE CDE ︒∠+∠=BCO CDE ∴∠=∠BC CD =BOC CED ∴∆≅∆(2)设直线 AB 的一次函数式为:y kx b =+∵直线 AB 与 x 轴, y 轴交于 A(6,0) , B(0,2)两点,∴062k b b =+⎧⎨=⎩,解得:132kb ⎧=-⎪⎨⎪=⎩ ∴可求得直线 AB 的一次函数式为:123y x =-+ BOC CED ∆≅∆∵BO=CE=2,设 OC= ED =m ,则 D( m+2,m ),把D(m+2,m) 代入得到123y x =-+,得m=1, ∴D(3,1)∴等腰直角 △BCD 腰长:5CB CD ==, ∵B C D '''∆与△BCD 的全等,∴B C D '''∆的面积=△BCD 的面积=52;(3)满足条件点 Q 存在三个点,如图所示【点睛】本题主要考查一次函数的图象和性质、三角形全等的判定和性质定理以及平行四边形的性质,熟练掌握全等三角形的判定和性质定理以及平行四边形的性质,以及分类讨论思想是解题的关键.26.(1)AD=2AB,证明见解析;(2)CE⊥BF,证明见解析.【分析】(1)结论:AD=2AB.只要证明AB=AE,CD=DE即可解决问题;(2)结论:CE⊥BF.只要证明∠EBC+∠BCE=90°即可;【详解】解:(1)结论:AD=2AB.理由:∵BF平分∠ABC,∴∠ABE=∠FBC,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠FBC=∠AEB,∴∠AEB=∠ABE,∴AB=AE,同理可证:CD=DE,∴AD=AE+ED=AB+CD=2AB.(2)结论:CE⊥BF.理由:∵BF平分∠ABC,∴∠ABC=2∠EBC,∵CE平分∠BCD,∴∠BCD=2∠BCE,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∴2∠EBC+2∠BCE=180°,∴∠EBC+∠BCE=90°,∴∠BEC=90°,即CE⊥BF.【点睛】本题考查平行四边形的性质、角平分线的定义,三角形的内角和定理的应用、等腰三角形的判定等知识,解题的关键是熟练掌握基本知识.。