(2)集合法:根据p,q成立的对应的集合之间的包含关系进行判断. 观察选项,根据集合间关系{a|a<0} {a|a≤0或a>1},故选A. ≠∅”的逆命题、否命题、逆否命题的真假性,下列结论成立的是 【解析】“a,b都是偶数”的否定为“a,b不都是偶数,”“a+b是偶数”的否定为“a+b不是偶数”,故其逆否命题为“若a+b不是偶数,则a,b不都是偶数”. 则(a+b-1)(a2-ab+b2)=0, “四边形ABCD为菱形”⇒“AC⊥BD”,“AC⊥BD”推不出“四边形ABCD为菱形”,所以“四边形ABCD为菱形”是“AC⊥BD”的充分不必要条件. 这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的何种条件,即可转化为判断“x=1且y=1”是“xy=1”的何种条件. 【典例2】(2014·湖北高考)设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁UC”是“A∩B=∅”的( ) 这类试题一般有两种设置格式. 必备结论 教材提炼 记一记
必要
,q是p的_____条件 p是q的 充分不必要 p⇒q且q
_______必__要__不条充件分
p
p是q的
p q且
_______充__要__条件 q⇒p
p是q的_既__不__充条分件也不必p要⇔q
p是q的 ________________ _条件
p q
q且 p
2.必备结论 教材提炼 记一记
(1)四种命题中的等价关系:
【解题提示】分清条件和结论,根据充分条件、必要条件的定义判断. 【解析】选B.由ln(x+1)<0,得0<x+1<1,即-1<x<0,
由于{x|-1<x<0} {x|x<0},