区域物资保障力量布局优化模型及算法研究
- 格式:pdf
- 大小:240.04 KB
- 文档页数:3
应急物资储备点选址多目标优化模型及算法研究冯舰锐;盖文妹【摘要】为应急物资储备点的选址问题提供一个合理的解决方法,提高应急救援工作的响应能力,基于运筹学中求解多目标优化问题的理论和方法,根据紧急情况下物资运输调度的时效性与经济性特征,构造相应目标函数,引入权重综合考虑时效性和经济性,并利用可变权重因子构造辅助函数,进而建立应急选址问题的优化模型;在此基础上,借用智能算法中系统动态演化方法,提出求解权重的算法,并拓展到多目标决策,将多目标问题逐步转化为单目标问题进而解决;实例计算结果验证了所提算法的正确性及优势,以及求解效率、辅助函数性质的正确性,可以为决策者提供多种在灾变条件下的选择方案;此外,提出的算法也可用于应急管理领域中其他相关优化与选址问题.%To provide a reasonable solution for the problem of site selection for the reserve sites of emergency materials,and improve the response ability of emergency rescue work,based on the threory and method to solve the multi-objective optimiza-tion problem in the operational research,the corresponding objective functions were constructed accoring to the characteristics of timeliness and economy in the transportation and scheduling of emergency materials under the emergency situation.The timeliness and economy were comprehensively considered by introducing into the weights,and the auxiliary functions were constructed by using the variable weight factor,thus the optimization model of emergency site selection was established.On this basis,the algorithm for solving the weights was put forward by using the system dynamic evolution method of the intelli-gent algorithm,and it was extended to the multi-objectivedecision-making to convert the multi-objective problem into the sin-gle objective problem step by step for solving.The correctness and advantages of the proposed new algorithm were verified by the calculation results of case,as well as the solving efficiency and the correctness of the properties of auxiliary functions.It can provide various selection schemes under the catastrophic conditions to the decision makers,and can also be applied in other relevant optimization and site selection problems in the field of emergency management.【期刊名称】《中国安全生产科学技术》【年(卷),期】2018(014)006【总页数】6页(P64-69)【关键词】应急管理;多目标优化;应急物资;选址【作者】冯舰锐;盖文妹【作者单位】中国地质大学(北京)工程技术学院,北京100083;中国地质大学(北京)工程技术学院,北京100083【正文语种】中文【中图分类】X913.40 引言随着城市的不断发展,建筑物、各类网络系统工程密集程度增加。
物资紧急调运的最优模型摘要本文对防洪救灾时的物资紧急调运问题进行了较深入的研究。
对于问题1,由于国家储备库的重要性我们把国家储备库的的权重看成是无穷大,这样就能保证国家储备库的优先性,所以我们将调运过程分为两个阶段,第一阶段是从企业和现有库存量已超出预测需求量的仓库向储备库调运,直至其达到预测需求量;第二阶段是从企业往其他仓库调运,尽量满足其预测需求量。
运用图论的知识,我们用Floyd最短路径算法求出任意两点的最短距离,设计出最佳调运路线,从而给出合理的紧急调运方案。
问题2要求我们在前面所确立的紧急调运方案的基础上,合理调度车辆来完成调运任务。
与问题1类似,调运过程分为两个阶段。
运用线性规划模型进行求解,得到车辆的调度方案以及完成任务所用的最少时间。
经过分析,由于算法的局限性,所得结果还可以进一步改进。
于是我们对其进行再优化,最终求得最少时间为48天,并给出较为理想的车辆调度方案。
对于问题3,在时间容许的条件下,希望能尽可能地降低成本,通过对普通公路和高等级公路建立不同的权重因子,利用Floyd算法,求出运费最省的路径。
然后,我们建立以总运输费用最少为目标函数的线性规划模型,运用LINGO编程求得最少需要32辆车,完成调运任务所需的最少时间为55.8天。
对于问题4,由于16号地区受灾严重,需要往该地区紧急调运10万件救灾物资。
灾情紧急,一切优先考虑用时最短。
即将仓库、企业、储备库到16号地区的最短路程进行排序,再考虑是否能满足所需物资的数量,由这两点来确定调运方案。
如果要求在5天内完成调运,则以车辆最少为目标函数,时间不超过5天为约束条件,建立规划模型求得最少车辆数为57辆,并给出最优的车辆调度方案。
关键词:物资紧急调运、Floyd算法、线性规划、再优化、LINGO1.问题的重述我国地域辽阔,气候多变,洪水、泥石流等各种自然灾害频频发生,给国家和人民财产带来重大损失,防洪救灾成为各级政府的一项重要工作。
应急物资供应区域的物资调度模型与算法研究季开青,李大卫(辽宁科技大学理学院,辽宁 鞍山1140511)摘 要: 对跨区域的大规模应急物资调度来说,应急物资供应区域的物资调度是保障应急后续物资的关键。
本文将轴辐式网络应用在应急物资供应区域的物资调度中,建立以外运开始时间最早、成本最少为目标的连续消耗型物资调度的双层优化数学模型,基于该问题的特点,给出了相应的求解算法,并对具体算例进行了求解。
关键词: 轴辐式网络;应急物资调度;区域系统;模型;算法 中图法分类号: C935;TP391.9 文献标识码: AOn material dispatch model and algorithm in the emergency suppliesregionJI Kai-qing, LI Da-wei(School of Science, University of Science and Technology Liaoning, Anshan Liaoning 114051, China )Abstract: To large-scale emergency distribution of materials across regions, the material dispatches in emergency supplies regions is the key ensuring follow-up materials of emergency. In this paper, hub-and-spoke network is applied to the dispatch of emergency supplies in the region, and, for continuous consumption problem, a bi-level optimization mathematical model based on both the earliest start time for materials outside-transports and the lowest cost is established. Finally, we give the algorithm and an example for this model.Key words: hub-and-spoke network; emergency materials dispatch; region system; mathematical model; algorithm发生大规模自然灾害和突发性公共事件后,对应急物资的需求量一般很大,对应急时间具有强烈要求,有时这样的要求还具有刚性特征,因此对应急物资的调度往往会跨地区进行。
2011年南京理工大学数学建模竞赛承诺书我们仔细阅读了全国大学生数学建模的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。
我们的参赛(报名)队号为: 17参赛组别(研究生或本科):本科参赛队员 (先打印,后签名,并留联系电话) :2011年南京理工大学数学建模竞赛编号专用页参赛队伍的参赛队号:(请各个参赛队提前填写好):竞赛统一编号(由竞赛组委会送至评委团前编号):竞赛评阅编号(由竞赛评委团评阅前进行编号):2011年南京理工大学数学建模竞赛题 目 地震灾后物资分配优化模型摘 要本文研究了在地震发生后对各灾区进行物资合理分配的问题。
针对问题我们首先利用层次分析法确定了各个灾区对各种物资的相对急需程度,记为ij a 。
其次,我们根据救灾物资分配使所有灾区整体效用最高的原则,引入符号:ij x ,—第i 个灾区对所需的第j 种物资的实际分配量,j C —第j 种物资的可供分配总量,构建了以整体效用为目标函数的整数规划模型及约束条件: MAX11I Jijij i j ax ==∑∑ . 1Iij j i x C =≤∑ ,然后利用LINDO 软件进行数据处理与求解,在求解过程中我们考虑到每个灾区对每种物资的最低保障量ij M 和满意度,于是引入满意度系数,记为ij ijx T 以及最低保障量的约束条件得到以整体满意度为目标函数的整数规划模型及约束条件:MAX11I Jiji j ijx T==∑∑ . ij ij ij M x T ≤≤ 其中ij T —第i 个灾区对第j 种物资的需求量 ,最后利用多目标规划法对两个目标函数进行优化:MAX1λ11I Jij ij i j a x ==∑∑+2λ11IJiji j ijx T==∑∑.1Iijj i xC =≤∑ ,ij ij ij M x T ≤≤。
物资调运问题的优化模型肖凤莲 涂礼才 何三才摘 要:本题所说的是防洪抗涝物质调运问题。
在此问题中我们求各企业、物资仓库及国家级储备库之间物资的运费每一百件最少的路线,把附件2(生产企业,物资仓库及国家级储备库分布图)的分布图转化为数学直观简图(见模型求解中图1),所得图是连通图,设为()E V G ,=,各个边的权为相连两点每百件物资的运费。
我们利用“破圈法”和“最短路”求任意企业、物资仓库及国家级储备库两两之间及仓库与仓库之间的最优路线,显然我们建立的数学(简单图形)模型是可行的、合理的。
得出最优路线见表二、三、四、五。
我们根据实际情况,在保证国家级储备库的情况下,采用就近原则,在此基础上建立线性规划模型(如下):)))()(())()()(((min 1111111111∑∑∑∑∑∑∑∑∑∑=++==++==++=====⋅+⋅+⋅+⋅+⋅⨯=bi cb b k k i ki a i cb b k k i ikbi cb b k j i b i bj j i j i ji ai bj j i j i w zy xq w z w zy x p A F运用Lingo 软件对我们所建立线性规划问题进行计算。
再把天数为20带入上述线性规划,运用Lingo 运用软件进行计算,可以得到20天后各库的库存量好下:由于汛期路段26—27交通中断,中断路线改为企业1—20—13—储备库1,企业2—6—40—储备库1,其他中断路段对物资运输的路线无影响。
建立线性规划,运用Lingo运用软件求解,其结果见问题4的求解。
此模型简单易懂,容易推广。
运用了LINGO数学软件,提高了计算的速度。
解得的结果符合实际。
关键词:破圈法、最短路、线性规划模型、Lingo.一、问题的重述我国地域辽阔,气候多变,各种自然灾害频频发生,特别是每年在长江、淮河、嫩江等流域经常爆发不同程度的洪涝灾害,给国家和人民财产带来重大损失,防洪抗涝成为各级政府的一项重要工作。
应急物资的最优存储和运送数学模型随着各种自然灾害和突发事件的频繁出现,应急救援工作变得越来越重要。
而在应急救援中,应急物资的存储和运送是一个关键环节。
为了确保应急物资的最优储存和运送,我们可以使用数学模型来进行计算和优化。
首先是应急物资的最优存储问题。
在应急储备物资的存储中,需要考虑以下因素:1. 存储地点:根据灾害的类型和发生地点,选择最优的存储地点,以便在第一时间到达灾区。
2. 存储容量:确定物资的储存容量和储存方式,以确保能够应对灾害发生后的需求。
3. 储备种类和数量:必须根据不同类型的灾难和应急需求,储备不同种类的物资,例如水、食品、医疗器械等,并根据历史数据和统计分析数据,确定在不同灾难发生时的物资需求量。
4. 物资更新和管理:储备物资需要定期更新,对存货的质量进行检查和管理。
以上因素需要量化转化为数学模型,以保证应急物资的最优储存。
例如,可以通过优化算法来确定最优的存储地点,采用 0-1 背包算法等来确定储备种类和数量等。
其次是应急物资的最优运送问题。
在应急救援时,物资的及时运送对救援工作至关重要。
因此,需要考虑以下因素:1. 运送路线:确定最短及最安全的路线,以确保物资能够尽快地到达灾区。
2. 运输方式:根据物资种类和数量,选择最优的运输方式,例如海运和航空运输等,以确保安全、高效地运送。
3. 运输周期:根据路线和运输方式确定最短的运输周期,以确保及时运送。
以上因素需要通过数学模型来转化。
可以通过最短路径算法和网络流等优化算法,确定物资的最短运输路线和运输方式,有效地提高物资的及时运送效率。
总之,应急物资的最优存储和运送数学模型十分重要,可以优化应急救援工作的效率。
在实践中,应考虑以上因素,量化为数学模型,以确保能够在最短时间内,提供最充足的应急救援物资。
物资调运问题的优化模型肖凤莲 涂礼才 何三才摘 要:本题所说的是防洪抗涝物质调运问题.在此问题中我们求各企业、物资仓库及国家级储备库之间物资的运费每一百件最少的路线,把附件2(生产企业,物资仓库及国家级储备库分布图)的分布图转化为数学直观简图(见模型求解中图1),所得图是连通图,设为()E V G ,=,各个边的权为相连两点每百件物资的运费。
我们利用“破圈法”和“最短路"求任意企业、物资仓库及国家级储备库两两之间及仓库与仓库之间的最优路线,显然我们建立的数学(简单图形)模型是可行的、合理的。
得出最优路线见表二、三、四、五。
我们根据实际情况,在保证国家级储备库的情况下,采用就近原则,在此基础上建立线性规划模型(如下):)))()(())()()(((min 1111111111∑∑∑∑∑∑∑∑∑∑=++==++==++=====⋅+⋅+⋅+⋅+⋅⨯=bi cb b k k i ki a i cb b k k i ikbi cb b k j i b i bj j i j i ji ai bj j i j i w zy xq w z w zy x p A F运用Lingo 软件对我们所建立线性规划问题进行计算。
再把天数为20带入上述线性规划,运用Lingo 运用软件进行计算,可以得到业2—6—40—储备库1,其他中断路段对物资运输的路线无影响。
建立线性规划,运用Lingo 运用软件求解,其结果见问题4的求解。
此模型简单易懂,容易推广。
运用了LINGO 数学软件,提高了计算的速度.解得的结果符合实际.关键词:破圈法、最短路、线性规划模型、Lingo 。
一、问题的重述我国地域辽阔,气候多变,各种自然灾害频频发生,特别是每年在长江、淮河、嫩江等流域经常爆发不同程度的洪涝灾害,给国家和人民财产带来重大损失,防洪抗涝成为各级政府的一项重要工作。
某地区为做好今年的防洪抗涝工作,根据气象预报及历史经验,决定提前做好某种防洪抗涝物资的储备。
防洪物资调运的优化模型
防洪物资调运的优化模型
本文以图论和优化理论为基础,综合利用最短路算法和优化模型的一般原理建立了防洪准备期和汛期的物资调运模型,解决了不同情况下的物资调运问题.本文首先通过建立该地区公路交通网的数学模型,利用Floyd算法寻求图中任意两个顶点问的最短路径,建立各企业到其管辖仓库的距离最小、仓库的总需求与企业的生产能力相匹配的双目标0-1规划模型,设计出防洪准备期的最佳调运方案.然后,将企业、仓库和储备库简化为13个顶点,采用顶点间的相互调运方式,建立非线性规划模型.得到汛期最短时间下的调运方案.
作者:薛珂张威刘长猛作者单位:解放军信息工程大学,河南郑州,450002 刊名:科技与生活英文刊名:TECHNOLOGY AND LIFE 年,卷(期):2010 ""(1) 分类号:U116 关键词:最短路多目标0-1规划非线性规划 Floyd算法。