化工原理 测定物性数据的方法
- 格式:pdf
- 大小:887.15 KB
- 文档页数:40
篇一:化工原理实验报告吸收实验姓名专业月实验内容吸收实验指导教师一、实验名称:吸收实验二、实验目的:1.学习填料塔的操作;2. 测定填料塔体积吸收系数kya.三、实验原理:对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。
但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。
(一)、空塔气速与填料层压降关系气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。
若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。
当液体喷淋量l0=0时,可知为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z?p值较小时为恒持z折线位置越向左移动,图中l2>l1。
每条折线分为三个区段,液区,?p?p?p~uo关系曲线斜率与干塔的相同。
值为中间时叫截液区,~uo曲zzz?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。
姓名专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。
在液泛区塔已z无法操作。
塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。
图2-2-7-1 填料塔层的?p~uo关系图 z图2-2-7-2 吸收塔物料衡算(二)、吸收系数与吸收效率本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。
若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。
其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2]h——填料层高度[m]?ym——气相对数平均推动力kya——气相体积吸收系数[kmolnh3/m3·h]被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2):na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h]l——吸收剂(水)的流量[kmolh20/h]y1——塔底气相浓度[kmolnh3/kmol空气]y2——塔顶气相浓度[kmolnh3/kmol空气]x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20]由式(1)和式(2)联解得:kya?v(y1?y2)(3) ??h??ym为求得kya必须先求出y1、y2和?ym之值。
原料物理性能检测方法
1.密度和比重检测:常用于测量固体原料的密度和比重,一般使用密
度测量仪或天平进行测量。
对于液体原料,可以使用比重计来测量比重。
2.粒径分析:用于测量颗粒状原料的颗粒大小。
常见的方法包括筛分法、激光粒度分析法和显微镜观察等。
3.粉末流动性检测:用于评估粉末原料的流动性能。
常见的方法有角
度仪法、流动度仪法和震荡漏斗法等。
4.热性能检测:用于测量原料在加热或冷却过程中的热性能。
包括热
导率、热膨胀系数、熔点和玻璃转变温度等。
5.电性能检测:用于测量原料的电导率、介电常数和电阻率等电性能。
常用的方法包括四电极法、电桥法和电导仪法等。
6.强度和硬度检测:用于评估固体原料的强度和硬度。
常见的方法有
抗拉强度测试、压缩强度测试和硬度测量等。
7.粘度检测:用于测量液体原料的粘度。
常见的方法有旋转式粘度计法、滴定法和流变学法等。
8.界面张力检测:用于测量液体原料与气体或其他液体之间的界面张力。
常用的方法有悬滴法、悬浮法和自由浮体法等。
9.拉伸性能检测:用于评估原料在受拉伸力作用下的性能表现。
常见
的方法有拉伸试验和剪切试验等。
10.弹性模量检测:用于测量原料的弹性模量,以评估其弹性性能。
常用的方法有压缩模量测定和弹簧振子法等。
以上是一些常用的原料物理性能检测方法,不同的原料可能需要使用不同的检测方法进行检测。
根据实际需要,可以选择合适的方法对原料的物理性能进行检测和评估。
化工原理实验讲义专业:环境工程应用化学教研室2015.3实验一 流体机械能转化实验一、实验目的1、了解流体在管内流动情况下,静压能、动能、位能之间相互转化关系,加深对伯努利方程的理解。
2、了解流体在管内流动时,流体阻力的表现形式。
二、实验原理流动的流体具有位能、动能、静压能、它们可以相互转换。
对于实际流体, 因为存在内摩擦,流动过程中总有一部分机械能因摩擦和碰撞,而被损失掉。
所以对于实际流体任意两截面,根据能量守恒有:2211221222f p v p v z z H g g g gρρ++=+++上式称为伯努利方程。
三、实验装置(d A =14mm ,d B =28mm ,d C =d D =14mm ,Z A -Z D =110mm )实验装置与流程示意图如图1-1所示,实验测试导管的结构见图1-2所示:图1-1 能量转换流程示意图图1-2实验导管结构图四、操作步骤1.在低位槽中加入约3/4体积的蒸馏水,关闭离心泵出口上水阀及实验测试导管出口流量调节阀和排气阀、排水阀,打开回水阀后启动离心泵。
2.将实验管路的流量调节阀全开,逐步开大离心泵出口上水阀至高位槽溢流管有液体溢流。
3.流体稳定后读取并记录各点数据。
4.关小流量调节阀重复上述步骤5次。
5.关闭离心泵出口流量调节阀后,关闭离心泵,实验结束。
五、数据记录和处理表一、转能实验数据表流量(l/h)压强mmH2O压强mmH2O压强mmH2O压强mmH2O压强mmH2O压强mmH2O测试点标号12345678五、结果与分析1、观察实验中如何测得某截面上的静压头和总压头,又如何得到某截面上的动压头?2、观察实验,对于不可压缩流体在水平不等径管路中流动,流速与管径的关系如何?3、实验观测到A、B截面的静压头如何变化?为什么?4、实验观测到C、D截面的静压头如何变化?为什么?5、当出口阀全开时,计算从C到D的压头损失?六、注意事项1.不要将离心泵出口上水阀开得过大以免使水流冲击到高位槽外面,同时导致高位槽液面不稳定。
化工原理实验数据处理概述:在化工原理实验中,数据处理是非常关键的一步。
通过对实验数据的处理,可以得到实验结果的定量化、评价实验方法的有效性、检验理论与实验结果的吻合程度,以及进一步分析实验结果的规律性和内在关系。
以下将介绍化工原理实验数据处理的基本方法和步骤。
方法和步骤:1.数据收集与整理在进行实验之前,需要明确实验目的,并设计实验方案。
实验过程中需要将实验所需的各项数据准确记录下来,包括时间、温度、压力、质量、体积、浓度等。
数据应该按照一定的记录格式整理,方便后续数据处理的操作。
2.数据处理(1)数据归一化对实验数据进行归一化处理是为了消除数据间的量纲影响,使得数据具有可比性。
可以采用最大值或平均值对数据进行归一化,将数据转化为相对值。
(2)数据均值和标准差计算在实验中,通常会进行多次测量,数据处理时需要计算数据的均值和标准差。
均值可以反映数据的集中趋势,标准差可以反映数据的离散程度。
(3)数据曲线拟合通过拟合实验数据,可以得到数据背后的内在关系和规律。
可以选择合适的数学模型,如线性模型、二次曲线模型等,进行数据的曲线拟合,得到拟合曲线的相关参数。
(4)数据统计分析通过统计分析实验数据,可以对数据进行更深层次的研究。
可以使用t检验、方差分析等方法对数据进行统计检验,评价数据之间的差异是否显著。
3.结果评价根据实验目的和方法,可以对实验结果进行评价。
可以比较实验结果与理论值之间的差异,分析差异的原因。
也可以比较实验结果与其他实验结果之间的差异,分析差异的影响因素。
实验结果的评价可以从准确性、可重复性、稳定性等方面进行。
4.结论撰写在进行数据处理和结果评价后,需要撰写实验报告的结论部分。
结论要准确、简洁地总结实验结果,并给出相应的分析和判断。
同时,结论还可以对实验方法和结果进行改进和展望,为以后的实验提供参考。
总结:。
第二章实验数据的处理2.1 实验结果的图示法根据解析几何的原理,可将实验数据的函数关系整理成图形的形式表示出来。
这种方法在数据处理中非常重要。
它的优点是:1.能够直观地表示在一定条件下,某一待测量与其他量之间的依赖关系。
2.便于对各组数据进行比较。
在分析数据时可以直接找出需要剔除的点或可以取均值的点,使实验结果更接近真实情况。
3.在曲线的应用范围内,可以从图上直接读出任何需要的数据,4.可以根据曲线的形状确定经验公式的类型。
虽然图示法对实验数据处理很有帮助,但如不能正确的运用也起不到应有的效果。
需要注意以下几点:1.作图必须使用坐标纸。
化工原理实验中常用的坐标纸有直角坐标纸、半对数坐标纸、对数坐标纸,供不同需要的选择。
要学会正确使用。
2.作图时必须仔细考虑在坐标纸上选取单位的大小。
太小时很难表示出结果,太大则容易夸大误差。
3.坐标的“原点”不一定非要从零开始,而是要使数据标出的点位置适中。
例如我们读出这样一组数据:51.2,53.8,55.6,57.3,59.2,62.8,65.4,现在要以这组数据为横坐标作图,若此时坐标原点选为零,同时又要照顾到数据的精度,分度又不能取得太大。
这样一来画出的图便过于偏右,而左边是空白。
此时将“原点”选在50.0作出的图位置便比前者合适4.根据使用参数间的关系正确选用合适的坐标纸。
试验曲线以直线最易标绘,使用也最方便,因此在处理数据时尽量使曲线直线化。
在化工原理的实验数据处理中常使用对数坐标纸使曲线直线化。
如传热实验中,努塞尔准数Nu和雷诺准数Re之间存在如下关系:Nu=CRe m在直角坐标上,上面关系为一条曲线。
若将其两边取对数,则有:lgNu=mlgRe+lgC令y=lgNu x=lgRe b=lgC则化为y=mx_+b便为一条直线关系。
于是,对待上述问题,若选用双对数坐标纸标点绘图就可将曲线化为一条直线,从直线的斜率和截距可求得待定的m和c,此时,若选用直角坐标纸显然是不合适的。
1热膨胀系数測定方法熱膨張係数為了設計組装、做高低温測定、观看寸法有無変化試験方法:ASTM D696例如:常温:20℃→80℃差異60℃膨張率7×10e-5/℃x60=0.0042所以、成形品的長度10cm (20℃)→変到10.042cm (80℃)TD 流動方向和MD 垂直方向都是同様的数据!2衝撃強度試験方法電気抵抗測定3絶縁体の体積抵抗率、表面抵抗率二重リング電極法(IEC60093, ASTM D257,JIS K6911, JIS K6271)絶縁体の抵抗率測定。
円形電極の間で絶縁抵抗計により電気抵抗を測定し、電極形状から体積抵抗率及び表面抵抗率を求めます。
測定方法:500V を電極間に印加し、1分後の抵抗値を測定します。
(参考)電気抵抗測定鉛筆硬度-Pencil Hardness-(JIS K5600-5-4・ISO15184・ASTM D3363)装置仕様:鉛筆先端の負荷荷重750±10g使用鉛筆三菱鉛筆:Uni(軟←6B ~HB ~6H→硬)鉛筆の芯の調整:木部だけを削り、芯は削らずに円柱状に保つ。
先端は、90度の角度を保ち研磨紙で研磨し、平滑で円形の断面を得る。
測定方法:0.5~1.0mm/s の速度で、少なくとも7mm の距離を走行させる。
評価:傷または圧痕が付いた場合は、鉛筆スケールを軟らかくし、傷跡が付かない鉛筆スケールを探す。
逆に傷または圧痕が付かない場合は、鉛筆スケールを硬くし、傷跡が付く鉛筆スケールを探す。
鉛筆硬度の定義:傷跡が付かない最も硬い鉛筆スケールで、2回とも同じ結果が得られるまで測定を続ける。
5荷重:750g 試験片(導光板)拡大図。
化工原理实验数据处理引言:实验数据处理是化工原理实验中非常关键的一步,通过对实验数据进行统计和分析,可以得出实验结果,并对实验结果进行评价和解释。
本文将以其中一化工原理实验为例,详细介绍数据处理的步骤和方法。
实验目的:本次实验的目的是研究其中一化工反应的物料平衡,并通过实验数据计算反应的摩尔收率。
实验原理:该化工反应是一个双原料的反应,反应物A和反应物B的摩尔比为1:2,反应生成产物C和副产物D。
在此反应中,起着决定性作用的是反应物B,反应速率与反应物B的浓度呈一阶反应关系。
实验步骤:1.准备实验装置:将反应釜和计量罐连接起来,设定好反应釜的工作温度和压力。
2.称取反应物A和B的初始质量,并记录下来。
3.将反应物A和B分别加入反应釜中,开始反应。
4.反应一段时间后,停止反应,记录下反应时间,转化物料釜中的产物收集。
5.将收集的产物进行干燥处理,并称取其质量。
数据处理步骤:1.计算反应物A和B的摩尔量:根据实验中称取的质量和物质的摩尔质量,可以得到物质的摩尔量,计算公式为:n=m/M其中,n为物质的摩尔量,m为物质的质量,M为物质的摩尔质量。
2.计算反应物A和B的摩尔比:根据实验数据,可以计算出反应物A和B的摩尔比,计算公式为:α=n(A)/n(B)其中,n(A)为反应物A的摩尔量,n(B)为反应物B的摩尔量,α为反应物A和B的摩尔比。
3.计算反应物B的转化率:根据实验数据,可以计算出反应物B的转化率,计算公式为:X=(n(B)初始-n(B)终)/n(B)初始其中,n(B)初始为反应开始时反应物B的摩尔量,n(B)终为反应结束时反应物B的摩尔量,X为反应物B的转化率。
4.计算摩尔收率:根据实验数据,可以计算出反应的摩尔收率,计算公式为:η=(n(C)实测-n(C)理论)/n(B)初始其中,n(C)实测为实际得到的产物C的摩尔量,n(C)理论为理论上应该得到的产物C的摩尔量,n(B)初始为反应开始时反应物B的摩尔量,η为反应的摩尔收率。
物理实验技术中的材料物性测量方法与技巧在物理学和工程学领域中,了解材料的物性是非常重要的。
材料的物性包括密度、熔点、热导率、电阻率等等。
为了准确测量材料物性,科学家们发展了各种各样的测量方法和技巧。
本文将介绍一些常见的物性测量方法、技巧和注意事项。
1. 密度测量密度是材料的重要物性参数,可用于确定材料的质量。
测量材料密度的方法有许多种,其中之一是浸水法。
这种方法是将材料完全浸没在水中,通过测量材料在水中排开的体积来计算材料的密度。
需要注意的是,测量时要排除材料表面的气泡,以免影响测量结果。
2. 熔点测量熔点是材料从固态转变为液态的温度。
常用的熔点测量方法是差热分析法。
该方法利用样品在加热过程中吸收或释放热量的特性来确定熔点。
通过测量样品的热容量和温度变化,可以获得样品熔化曲线。
此外,还可以使用光学显微镜观察材料在升温过程中的形态变化,确定熔点。
3. 热导率测量热导率是材料导热性能的指标,也是制定绝缘材料和散热器等的重要依据。
热导率的测量方法有许多,如横向热导率测量法、垂直热导率测量法等。
其中比较常用的是热差生法。
该方法通过在材料两端施加热流,测量热流经过材料后的温度差,从而计算出材料的热导率。
需要注意的是,要保证样品处于稳态热传导状态,并消除边界热阻的影响。
4. 电阻率测量电阻率是材料导电性能的指标,对于电子器件的设计和制造非常重要。
常见的电阻率测量方法包括四探针测量法和霍尔效应测量法。
四探针测量法通过在样品上施加电流,并测量沿电流方向的电压降,从而计算出样品的电阻率。
霍尔效应测量法则通过施加磁场,测量样品中垂直于电流方向的霍尔电压,从而确定电阻率。
在测量中要注意排除外界磁场和温度的干扰。
5. 光学测量对于材料的光学性能测量,常用的方法有吸收光谱,透射光谱,反射光谱等。
通过测量材料在不同波长光下的吸收、透射和反射情况,可以研究材料的能带结构、晶格缺陷等。
此外,还可以利用拉曼光谱测量材料的结构信息,如晶格振动、化学键的强度等。