解析几何综合问题圆与椭圆双曲线抛物线等单元过关检测卷(三)带答案高中数学艺考生专用
- 格式:doc
- 大小:197.50 KB
- 文档页数:7
高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》
单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于
(A )9π (B )8π (C )4π (D )π
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2.若直线mx +ny =4和圆O :x 2+y 2=4没有公共点,则过点(m ,n )的直线与椭圆x 25+y 2
4
=1的交点个数为________. 解析:由题意可知,圆心O 到直线mx +ny =4的距离大于半径,即得m 2+n 2<4,所以点。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编福建理2)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知椭圆()222210x y a b a b+=>>和圆O :222x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为,A B .若90APB ∠=,则椭圆离心率e 的取值范围是▲ .3.已知实数0p >,直线3420x y p -+=与抛物线22x p y=和圆222()24p p x y +-=从左到右的交点依次为,A B C D 、、、则AB CD的值为 ▲ .高考资源网w 。
w-w*k&s%5¥u 评卷人得分三、解答题4.. 已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为23,两个焦点分别为1F 和2F ,椭圆G上一点到1F 和2F 的距离之和为12.圆k C :0214222=--++y kx y x )(R k ∈的圆心为点k A .(1)求椭圆G 的方程 ; (2)求21F F A k ∆的面积 (3)问是否存在圆k C 包围椭圆G? 请说明理由.5.如图,圆O 与离心率为23的椭圆T :12222=+by a x (0>>b a )相切于点M )1,0(。
⑴求椭圆T 与圆O 的方程;⑵过点M 引两条互相垂直的两直线1l 、2l 与两曲线分别交于点A 、C 与点B 、D(均不重合)。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编陕西文数)9.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) (A )12(B )1(C )2(D )4第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2. 如果以原点为圆心的圆经过双曲线C :)0,0(12222>>=-b a bya x 的顶点,并且被双曲线的右准线分成弧长之比为3:1的两段弧,则双曲线的离心率为________ 3.已知实数0p >,直线3420x y p -+=与抛物线22x p y=和圆222()24p p x y +-=从左到右的交点依次为,A B C D 、、、则AB CD的值为 ▲ .高考资源网w 。
w-w*k&s%5¥u 评卷人得分三、解答题4.已知,A B 分别是直线33y x =和33y x =-上的两个动点,线段AB 的长为23是AB 的中点,点P 的轨迹为.C(1)求轨迹C 的方程;(2)过点(1,0)Q 任意作直线l (与x 轴不垂直),设l 与轨迹C 交于,M N 两点,与y 轴交于R 点。
若,,RM MQ RN NQ λμ==证明:λμ+为定值。
5.已知椭圆()222210x y a b a b+=>>和圆O :222x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为,A B .(1)①若圆O 过椭圆的两个焦点,求椭圆的离心率e ; ②若椭圆上存在点P ,使得90APB ∠=,求椭圆离心率e 的取值范围;(2)设直线AB 与x 轴、y 轴分别交于点M ,N ,求证:2222a b ONOM+为定值.6.设分别21,F F 是椭圆C :()012222>>=+b a by a x 的左右焦点;(1)若椭圆C 上的点)23,1(A 到两焦点的距离之和为4,求椭圆C 的方程; (2)在(1)的条件下求21F AF ∆内切圆的方程;(3)设MN 是过椭圆C 中心的弦,P 是椭圆上的动点,求证:直线PM ,PN 的斜率之积为定值. 3.7.设椭圆2222:1(0)x y C a b a b+=>>的上顶点为A ,椭圆C 上两点,P Q 在x 轴上的射影分别为左焦点1F 和右焦点2F ,直线PQ 的斜率为32,过点A 且与1AF 垂直的直线与x 轴交于点B ,1AF B ∆的外接圆为圆M . (1)求椭圆的离心率; (2)直线213404x y a ++=与圆M 相交于,E F 两点,且21 2ME MF a ⋅=-,求椭圆方程;(3)设点(0,3)N 在椭圆C 内部,若椭圆C 上的点到点N 的最远距离不大于62,求椭圆C 的短轴长的取值范围.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.C 本题考查抛物线的相关几何性质及直线与圆的位置关系 法一:抛物线y 2=2px (p >0)的准线方程为2p x -=,因为抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,所以2,423==+p p法二:作图可知,抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切与点(-1,0) 所以2,12=-=-p p第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.;23.第13题过程设,,则,(),则,由得,得,,.高考资源网w 。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编福建理2)以抛物线24y x 的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称.直线4x -3y -2=0与圆C相交于A 、B 两点,且|AB |=6,则圆C 的方程为________.解析:抛物线y 2=4x ,焦点为F (1,0).∴圆心C (0,1),C 到直线4x -3y -2=0的距离d=55=1,且圆的半径r 满足r 2=12+32=10.∴圆的方程为x 2+(y -1)2=10.3.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =_____.(汇编全国理,16)评卷人得分三、解答题4.在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足MB//OA , MA •AB = MB •BA ,M 点的轨迹为曲线C 。
(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值。
(汇编年高考全国新课标卷理科20)(本小题满分12分)分析:(1)按照“建系、设点、列式、化简”求轨迹方程;(2)把点到直线的距离用动点坐标表示,然后化简,利用均值不等式求最值。
5.已知抛物线:C 22(0)y px p =>的准线为l ,焦点为F .M 的圆心在x 轴的正半轴上,且与y 轴相切.过原点O 作倾斜角为3π的直线n ,交l 于点A ,交M 于另一点B ,且2AO OB ==. (Ⅰ)求M 和抛物线C 的方程;(Ⅱ)若P 为抛物线C 上的动点,求PM PF ⋅的最小值;(Ⅲ)过l 上的动点Q 向M 作切线,切点为,S T ,求证:直线ST 恒过一个定点,并求该定点的坐标.O lxyA B F · M第17题6.已知椭圆2221(01)y x b b+=<<的左焦点为F ,左、右顶点分别为A 、C ,上顶点为B .过F 、B 、C 作⊙P ,其中圆心P 的坐标为(m ,n ). (Ⅰ)当m +n >0时,求椭圆离心率的范围; (Ⅱ)直线AB 与⊙P 能否相切?证明你的结论.7.已知椭圆162422y x +=1,直线l :x =12.P 是直线l 上一点,射线OP 交椭圆于点R .又点Q 在OP 上且满足|OQ |·|OP |=|OR |2.当点P 在直线l 上移动时,求点Q 的轨迹方程,并说明轨迹是什么曲线. (汇编全国文,26)94.如图8—25,设点P 、Q 、R 的坐标分别为(12,y P ),(x ,y ),(x R ,y R ),由题设知x R >0,x >0.由点R 在椭圆上及点O 、Q 、R 共线,得方程组⎪⎪⎩⎪⎪⎨⎧==+xy x y y x R R R R 1162422 图8—25解得:⎪⎪⎩⎪⎪⎨⎧+=+=2222222232483248y x y x y x x x R R由点O 、Q 、R 共线,得x y y P =12,即xyy P 12= ③由题设|OQ |·|OP |=|OR |2,得2222222)(12R R P y x y y x +=+⋅+.将①、②、③代入上式,整理得点Q 的轨迹方程(x -1)2+322y =1(x >0).所以,点Q 的轨迹以(1,0)为中心,长、短半轴长分别为1和36且长轴在x 轴上的椭圆,去掉坐标原点.评述:本题主要考查直线、椭圆的方程和性质,曲线与方程的关系,轨迹的概念和求法等解析几何的基本思想及综合运用知识的能力.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.DD【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为22x-1)+y =1(,即22x -2x+y =0,选D 。
高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》
单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人得分
一、选择题
1.(汇编陕西文数)9.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为()
(A)1
2
(B)1
(C)2 (D)4
第II卷(非选择题)请点击修改第II卷的文字说明
评卷人得分
二、填空题
2.以椭圆
22
22
1
x y
a b
+=(a>b>0)的右焦点为圆心的圆经过原点O,且与该椭圆的。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于(A )9π (B )8π (C )4π (D )π第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称.直线4x -3y -2=0与圆C相交于A 、B 两点,且|AB |=6,则圆C 的方程为________.解析:抛物线y 2=4x ,焦点为F (1,0).∴圆心C (0,1),C 到直线4x -3y -2=0的距离d=55=1,且圆的半径r 满足r 2=12+32=10.∴圆的方程为x 2+(y -1)2=10.3. 已知直线l 的方程为2x =-,圆22:1O x y +=,则以l 为准线,中心在原点,且与圆O 恰好有两个公共点的椭圆方程为 . 评卷人得分 三、解答题4.在平面直角坐标系xOy 中,已知双曲线1C :1222=-y x .(1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OQ OP ⊥;(3)设椭圆2C :1422=+y x ,若M 、N 分别是1C 、2C 上的动点,且ON OM ⊥,求证:O 到直线MN 的距离是定值. 【汇编高考真题上海理22】(4+6+6=16分)5.已知,A B 分别是直线33y x =和33y x =-上的两个动点,线段AB 的长为23是AB 的中点,点P 的轨迹为.C(1)求轨迹C 的方程;(2)过点(1,0)Q 任意作直线l (与x 轴不垂直),设l 与轨迹C 交于,M N 两点,与y 轴交于R 点。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0 C .22x +y -x=0D .22x +y -2x=0(汇编福建理)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2. 已知直线l 的方程为2x =-,圆22:1O x y +=,则以l 为准线,中心在原点,且与圆O 恰好有两个公共点的椭圆方程为 .3.若抛物线212y x =与圆222210x y ax a +-+-=有且只有两个不同的公共点,则实数a 的取值范围为___错 评卷人得分三、解答题4.已知正三角形OAB 的三个顶点都在抛物线y 2=2x 上,其中O 为坐标 原点,设圆C 是△OAB 的外接圆(点C 为圆心). (1)求圆C 的方程;(2)设圆M 的方程为(x -4-7cos θ)2+(y -7sin θ)2=1,过圆M 上任意一点P 分别作圆C的两条切线PE 、PF ,切点为E 、F ,求CE ·CF 的最大值和最小值.5.在平面直角坐标系xoy 中,已知圆心在直线4y x =+上,半径为22的圆C经过坐标原点O ,椭圆()222109x y a a +=>与圆C 的一个交点到椭圆两焦点的距离之和为10。
(ⅰ)求圆C 的方程;(ⅱ)若F 为椭圆的右焦点,点P 在圆C 上,且满足4PF =,求点P 的坐标。
6.在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴和y 轴上(如图),且OC =1,OA =a +1(a >1),点D 在边OA 上,满足OD =a . 分别以OD 、OC 为长、短半轴的椭圆在矩形及其内部的部分为椭圆弧CD . 直线l :y =-x +b 与椭圆弧相切,与AB 交于点E .(1)求证:221b a -=;(2)设直线l 将矩形OABC 分成面积相等的两部分, 求直线l 的方程;(3)在(2)的条件下,设圆M 在矩形及其内部, 且与l 和线段EA 都相切,求面积最大的圆M 的方程.7.已知椭圆162422y x +=1,直线l :x =12.P 是直线l 上一点,射线OP 交椭圆于点R .又点Q 在OP 上且满足|OQ |·|OP |=|OR |2.当点P 在直线l 上移动时,求点Q 的轨迹方程,并说明轨迹是什么曲线. (汇编全国文,26)94.如图8—25,设点P 、Q 、R 的坐标分别为(12,y P ),(x ,y ),(x R ,y R ),由题设知x R >0,x >0.由点R 在椭圆上及点O 、Q 、R 共线,得方程组⎪⎪⎩⎪⎪⎨⎧==+xy x y y x R R R R 1162422 解得:⎪⎪⎩⎪⎪⎨⎧+=+=2222222232483248y x y x y x x x R R由点O 、Q 、R 共线,得x y y P =12,即xyy P 12= ③由题设|OQ |·|OP |=|OR |2,得图8—25①③2222222)(12R R P y x y y x +=+⋅+.将①、②、③代入上式,整理得点Q 的轨迹方程(x -1)2+322y=1(x >0).所以,点Q 的轨迹以(1,0)为中心,长、短半轴长分别为1和36且长轴在x 轴上的椭圆,去掉坐标原点.评述:本题主要考查直线、椭圆的方程和性质,曲线与方程的关系,轨迹的概念和求法等解析几何的基本思想及综合运用知识的能力.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.D 抛物线的焦点为)0,1(F ,又圆过原点,所以1=R ,方程为021)1(2222=+-⇔=+-y x x y x 。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1.(汇编陕西文数)9.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为()(A)12(B)1(C)2 (D)4第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题2.已知121(0,0),m nm n+=>>当mn取得最小值时,直线22y x=-+与曲线x x m+1y yn =的交点个数为 ▲3.以抛物线y 2=4x 的焦点为圆心、2为半径的圆,与过点A (-1,3)的直线l 相切,则直线l 的方程是______________________.评卷人得分三、解答题4.(汇编年高考福建卷(文))如图,在抛物线2:4E y x =的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心OC 为半径作圆,设圆C 与准线l的交于不同的两点,M N .(1)若点C 的纵坐标为2,求MN ; (2)若2AFAM AN =⋅,求圆C 的半径.5.已知正三角形OAB 的三个顶点都在抛物线y 2=2x 上,其中O 为坐标 原点,设圆C 是△OAB 的外接圆(点C 为圆心). (1)求圆C 的方程;(2)设圆M 的方程为(x -4-7cos θ)2+(y -7sin θ)2=1,过圆M 上任意一点P 分别作圆C的两条切线PE 、PF ,切点为E 、F ,求CE ·CF 的最大值和最小值.6.如图,已知A 、B 、C 是长轴长为4的椭圆上的三点,点A 是长轴的右顶点,BC 过椭圆中心O ,且AC ·BC =0,||2||BC AC =,(1)求椭圆的方程;(2)若过C 关于y 轴对称的点D 作椭圆的切线DE ,则AB 与DE 有什么位置关系?证明你的结论.7.设椭圆的方程为2222ny m x +=1(m ,n >0),过原点且倾角为θ和π-θ(0<θ<2π=的两条直线分别交椭圆于A 、C和B 、D 两点,(Ⅰ)用θ、m 、n 表示四边形ABCD 的面积S ; (Ⅱ)若m 、n 为定值,当θ在(0,4π]上变化时,求S 的最小值u ;(Ⅲ)如果μ>mn ,求nm的取值范围. (汇编上海,24) 93.(Ⅰ)设经过原点且倾角为θ的直线方程为y =x tan θ,可得方程组⎪⎩⎪⎨⎧=+=1t a n2222n ym x x y θ又由对称性,得四边形ABCD 为矩形,同时0<θ<2π,所以四边形ABCD 的面积S =4|xy |=θθ22222tan tan 4m n n m +. (Ⅱ)S =θθtan tan 42222m n n m +.(1)当m >n ,即m n<1时,因为θtan 2n +m 2tan θ≥2nm ,当且仅当tan 2θ=22m n 时等号成立,所以mn mnn m m n n m S 224tan tan 4222222=≤+=θθ. 由于0<θ≤4π,0<tan θ≤1,OyxCBA故tan θ=mn得u =2mn . (2)当m <n ,即m n>1时,对于任意0<θ1<θ2≤4π, 由于)tan tan ()tan tan (12122222θθθθn m n m +-+21221212tan tan tan tan )tan (tan θθθθθθn m --=.因为0<tan θ1<tan θ2≤1,m 2tan θ1tan θ2-n 2<m 2-n 2<0,所以(m 2tan θ2+22tan θn )-(m 2tan θ1+12tan θn )<0,于是在(0,4π]上,S =θθtan tan 42222m n n m +是θ的增函数,故取θ=4π,即tan θ=1得u =22224n m n m +.所以u =⎪⎩⎪⎨⎧<<+<<)0(4)0( 22222n m n m n m m n mn(Ⅲ)(1)当nm>1时,u =2mn >mn 恒成立.(2)当n m <1时,224n m mn mn u += >1,即有(n m )2-4(n m)+1<0, 所以3232+<<-n m ,又由nm<1, 得132<<-nm. 综上,当u >mn 时,nm的取值范围为(2-3,1)∪(1,+∞). 评述:本题主要考查椭圆的对称性及不等式的应用,通过求最小值来考查逻辑思维能力和应用能力,同时体现分类讨论思想.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.C 本题考查抛物线的相关几何性质及直线与圆的位置关系 法一:抛物线y 2=2px (p >0)的准线方程为2p x -=,因为抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,所以2,423==+p p法二:作图可知,抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切与点(-1,0) 所以2,12=-=-p p第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.23.x =-1或5x +12y -31=0. 评卷人得分三、解答题4.解:(Ⅰ)抛物线24y x =的准线l 的方程为1x =-, 由点C 的纵坐标为2,得点C 的坐标为(1,2) 所以点C 到准线l 的距离2d =,又||5CO =.所以22||2||2542MN CO d =-=-=.(Ⅱ)设200(,)4y C y ,则圆C 的方程为242220000()()416y y x y y y -+-=+, 即22200202y x x y y y -+-=.由1x =-,得2202102y y y y -++=设1(1,)M y -,2(1,)N y -,则:222000201244(1)240212y y y y y y ⎧∆=-+=->⎪⎪⎨⎪=+⎪⎩由2||||||AF AM AN =⋅,得12||4y y =所以2142y +=,解得06y =±,此时0∆>所以圆心C 的坐标为3(,6)2或3(,6)2-从而233||4CO =,33||2CO =,即圆C 的半径为3325.(1)解法一:设A 、B 两点坐标分别为⎝⎛⎭⎫y 212,y 1,⎝⎛⎭⎫y 222,y 2, 由题设知⎝⎛⎭⎫y 2122+y 21=⎝⎛⎭⎫y 2222+y 22=⎝⎛⎭⎫y 212-y 2222+(y 1-y 2)2,解得y 21=y 22=12. 所以A (6,23),B (6,-23)或A (6,-23),B (6,23). 设圆心C 的坐标为(r,0),则r =23×6=4.因此圆C 的方程为(x -4)2+y 2=16.解法二:设A 、B 两点坐标分别为(x 1,y 1),(x 2,y 2),由题设知x 21+y 21=x 22+y 22.又因为y 21=2x 1,y 22=2x 2,可得x 21+2x 1=x 22+2x 2,即(x 1-x 2)(x 1+x 2+2)=0.由x 1>0,x 2>0,可知x 1=x 2,故A 、B 两点关于x 轴对称,所以圆心C 在x 轴上.设C 点的坐标为(r,0),则A 点坐标为⎝⎛⎭⎫32r ,32r ,于是有⎝⎛⎭⎫32r 2=2×32r ,解得r=4,所以圆C 的方程为(x -4)2+y 2=16.(2)设∠ECF =2α,则CE ·CF =|CE |·|CF |·cos 2α=16cos 2α=32cos 2α-16. 在Rt △PCE 中,cos α=r |PC |=4|PC |.由圆的几何性质得 PC ≤MC +1=7+1=8, PC ≥MC -1=7-1=6.所以12≤cos α≤23,由此可得-8≤CE ·CF ≤-169.故CE ·CF 的最大值为-169,最小值为-8. 6.(1)A (2,0),设所求椭圆的方程为:224by x 2+=1(0<b <2), 由椭圆的对称性知,|OC |=|OB |, 由AC ·BC =0得,AC ⊥BC ,∵|BC |=2|AC |,∴|OC |=|AC |,∴△AOC 是等腰直角三角形, ∴C 的坐标为(1,1).∵C 点在椭圆上,∴22141b +=1,∴b 2=34.所求的椭圆方程为43422y x +=1. (2)是平行关系.…………10分D (-1,1),设所求切线方程为y-1=k (x+1)2213144y kx k x y =++⎧⎪⎨+=⎪⎩,消去x ,222(13)6(1)3(1)40k x k k x k +++++-=上述方程中判别式=29610k k -+=,13k =又13AB k =,所以AB 与DE 平行. 7.。
专题三 压轴解答题第四关 以解析几何中与圆相关的综合问题【名师综述】纵观近三年的高考题,解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及与其它知识之间的综合,圆不会单独出大题,一般是结合椭圆、抛物线一起考查,预计在15年高考中解答题仍会重点考查圆与椭圆、抛物线相结合的综合问题,同时可能与平面向量、导数相交汇,每个题一般设置了两个问,第(1)问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第(2)问主要涉及最值问题、定值问题、对称问题、轨迹问题、探索性问题、参数范围问题等.这类问题综合性大,解题时需根据具体问题,灵活运用解析几何、平面几何、函数、不等式、三角知识,正确构造不等式,体现了解析几何与其他数学知识的密切联系.这体现了考试中心提出的“应更多地从知识网络的交汇点上设计题目,从学科的整体意义、思想含义上考虑问题”的思想. 类型一 以圆的切线为背景的相关问题典例1(2019·山东省实验中学高考模拟(文))已知椭圆()2222:10x y O a b a b+=>>的左、右顶点分别为A ,B ,点P 在椭圆O 上运动,若△PAB 面积的最大值为23,椭圆O 的离心率为12. (1)求椭圆O 的标准方程;(2)过B 点作圆E :()()2222,02x y r r +-=<<的两条切线,分别与椭圆O 交于两点C ,D(异于点B),当r 变化时,直线CD 是否恒过某定点?若是,求出该定点坐标,若不是,请说明理由.【名师指点】圆的切线的应用,往往从两个方面进行考查,一是设切线方程,利用圆心到切线的距离等于半径列方程求解;二是结合切线长定理与勾股定理求解. 【举一反三】【浙江省台州市2019届高三上学期期末质量评估】设点为抛物线外一点,过点作抛物线的两条切线,,切点分别为,.(Ⅰ)若点为,求直线的方程; (Ⅱ)若点为圆上的点,记两切线,的斜率分别为,,求的取值范围.类型二 与圆有关的面积问题典例2 (2019·山东高考模拟(理))已知椭圆22122:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,椭圆的离心率为12,过椭圆1C 的左焦点1F ,且斜率为1的直线l ,与以右焦点2F 为圆心,半径为2的圆2C 相切.(1)求椭圆1C 的标准方程;(2)线段MN 是椭圆1C 过右焦点2F 的弦,且22MF F N λ=,求1MF N ∆的面积的最大值以及取最大值时实数λ的值.【名师指点】对于平面图形的面积问题,可以直接表示或者可以利用割补的办法,以及弦长公式等,将面积科学有效表示,其中通过设直线和曲线的交点,利用韦达定理是解决该种问题的关键.【举一反三】设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 类型三 圆与其他圆锥曲线的结合问题典例3【山东省济南外国语学校2019届高三1月份阶段模拟】抛物线的焦点为F ,圆,点为抛物线上一动点.已知当的面积为.(I )求抛物线方程; (II )若,过P 做圆C 的两条切线分别交y 轴于M ,N 两点,求面积的最小值,并求出此时P点坐标.【名师指点】圆与圆锥曲线的交汇问题以公共点为基点,派生出弦长问题、中点问题、垂直问题、切线问题、恒过定点问题、定长问题等等,应对不同的题目,会采用不同的方式方法,但总体上仍以设而不求的处理策略为主.常规的策略是数形结合,将数反映的形画出来,结合图形解决问题.【举一反三】(2019·山东高三月考(文))已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,以原点为圆120+=相切. (1)求椭圆C 的方程;(2)设(4,0)A -,过点(3,0)R 作与x 轴不重合的直线l 交椭圆C 于P ,Q 两点,连接AP ,AQ 分别交直线163x =于M ,N 两点,若直线MR 、NR 的斜率分别为1k 、2k ,试问:12k k 是否为定值?若是,求出该定值,若不是,请说明理由. 【精选名校模拟】1.(2019·山东新泰市第一中学高三月考(文))已知抛物线C 的顶点在坐标原点,焦点为圆22:40M x y x +-=的圆心,直线l 与抛物线C 的准线和y 轴分别交于点P 、Q ,且P 、Q 的纵坐标分别为13t t-、()2,0t t R t ∈≠. (1)求抛物线C 的方程;(2)求证:直线l 恒与圆M 相切.2.(2020·山东高三期末)设中心在原点O ,焦点在x 轴上的椭圆C 过点12A ⎫⎪⎭,F 为C 的右焦点,⊙F的方程为221104x y +-+= (1)求C 的方程;(2)若直线:(l y k x =(0)k >与⊙O 相切,与⊙F 交于M 、N 两点,与C 交于P 、Q 两点,其中M 、P 在第一象限,记⊙O 的面积为()S k ,求(||||)()NQ MP S k -⋅取最大值时,直线l 的方程. 3.(2020·山东高三期末)在平面直角坐标系中,()()1 ,0,1,0A B -,设ABC 的内切圆分别与边,,AC BC AB 相切于点,,P Q R ,已知1CP =,记动点C 的轨迹为曲线E .(1)求曲线E 的方程;(2)过()2,0G 的直线与y 轴正半轴交于点S ,与曲线E 交于点,H HA x ⊥轴,过S 的另一直线与曲线E 交于M N 、两点,若6SMGSHNSS=,求直线MN 的方程.4.(2020·山东高三期末)已知椭圆E :()222210y x a b a b+=>>的一个焦点为()0,3,长轴与短轴的比为2:1.直线l y kx m =+:与椭圆E 交于P 、Q 两点,其中k 为直线l 的斜率. (1)求椭圆E 的方程;(2)若以线段PQ 为直径的圆过坐标原点O ,问:是否存在一个以坐标原点O 为圆心的定圆O ,不论直线l 的斜率k 取何值,定圆O 恒与直线l 相切?如果存在,求出圆O 的方程及实数m 的取值范围;如果不存在,请说明理由.5.(2012·山东高三月考(理))如图,椭圆G 的中心在坐标原点,其中一个焦点为圆F :x 2+y 2﹣2x =0的圆心,右顶点是圆F 与x 轴的一个交点.已知椭圆G 与直线l :x ﹣my ﹣1=0相交于A 、B 两点. (I )求椭圆的方程;(Ⅱ)求△AOB 面积的最大值.6.(2019·山东高三月考)已知椭圆L :()222210x y a b a b +=>>32.(1)求椭圆L 的标准方程;(2)过点()0,2Q 的直线l 与椭圆L 交于A 、B 两点,若以AB 为直径的圆恰好过坐标原点,求直线l 的方程及AB 的大小.7.(2019·济南市历城第二中学高二月考)已知椭圆C :()222210x y a b a b+=>>,圆Q (x ﹣2)2+(y 2)2=2的圆心Q 在椭圆C 上,点P (02)到椭圆C 6 .(1)求椭圆C 的方程;(2)过点P 作互相垂直的两条直线l 1 .l 2 , 且l 1交椭圆C 于A ,B 两点,直线l 2交圆Q 于C ,D 两点,且M 为CD 的中点,求△MAB 的面积的取值范围.8.【河北省邢台市2018届高三上学期期末考试】已知椭圆2222:1(0)y x W a b a b +=>>的焦距与椭圆22:14x y Ω+=的短轴长相等,且W 与Ω的长轴长相等,这两个椭圆在第一象限的交点为A ,与直线OA(O 为坐标原点)垂直的直线l 与W 交于,M N 两点,且l 与圆222:C x y R +=相切.(1)求W 的方程; (2)若2030MN =,求圆C 的方程. 9.【河南省郑州市2019届高中毕业年级第一次(1月)质量预测】已知抛物线的焦点为,过的直线与抛物线交于,两点,过,分别向抛物线的准线作垂线,设交点分别为,,为准线上一点. (1)若,求的值; (2)若点为线段的中点,设以线段为直径的圆为圆,判断点与圆的位置关系.10.在平面直角坐标系xOy 中,O 为坐标原点,以O 为圆心的圆与直线x-y-4=0相切.(1)求圆O 的方程;(2)直线l:y=kx+3与圆O 交于A,B 两点,在圆O 上是否存在一点M,使得四边形OAMB 为菱形,若存在,求出此时直线l 的斜率;若不存在,说明理由.11.已知抛物线2:2(0)C y px p =>的焦点为F ,过F 且倾斜角为45︒的直线与抛物线C 相交于,P Q 两点,且线段PQ 被直线2y =平分.(1)求p的值;,求以A为圆心且与PQ相切的圆的标准方程. (2)直线l是抛物线C的切线,A为切点,且l PQ12.【山东省新泰市第一中学2019届高三上学期第二次质量检测】已知抛物线的顶点在坐标原点,焦点为圆的圆心,直线与抛物线的准线和轴分别交于点、,且、的纵坐标分别为、.(1)求抛物线的方程;(2)求证:直线恒与圆相切.13. 【安徽省黄山市2019届高三第一次质量检测】设椭圆()的左、右焦点分别为,以线段为直径的圆与直线相切,若直线与椭圆交于两点,坐标原点为. (Ⅰ)求椭圆的离心率;(Ⅱ)若,求椭圆的方程.14.【陕西省榆林市2019届高考模拟第一次测试】已知椭圆的离心率,左顶点到直线的距离,为坐标原点.(1)求椭圆的方程;(2)设直线与椭圆相交于两点,若以为直径的圆经过坐标原点,证明:到直线的距离为定值. 15.【黑龙江省哈尔滨市第三中学2019届高三上学期期末考试】在圆上取一点,过点作轴的垂线段,为垂足,当点在圆上运动时,设线段中点的轨迹为.(1)求的方程;(2)试问在上是否存在两点关于直线对称,且以为直径的圆恰好经过坐标原点?若存在,求出直线的方程;若不存在,请说明理由.。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0 C .22x +y -x=0D .22x +y -2x=0(汇编福建理)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p 的值为 .3.设椭圆x2a2+y2b2=1(a>b>0)的离心率为e=12,右焦点为F(c,0),方程ax2-bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)________.①必在圆x2+y2=2上②必在圆x2+y2=2外③必在圆x2+y2=2内解析:由e=12=ca,得a=2c,b=3c.所以x1+x2=ba=32,x1x2=-ca=-12.于是,点P(x1,x2)到圆心(0,0)的距离为x21+x22=(x1+x2)2-2x1x2=34+1=74<2,所以点P在圆x2+y2=2内.评卷人得分三、解答题4.设A为椭圆221259x y+=上任一点,B为圆22(1)1x y-+=上任一点,求AB的最大值及最小值.5.已知正三角形OAB的三个顶点都在抛物线y2=2x上,其中O为坐标原点,设圆C是△OAB的外接圆(点C为圆心).(1)求圆C的方程;(2)设圆M的方程为(x-4-7cos θ)2+(y-7sin θ)2=1,过圆M上任意一点P分别作圆CO A 1A 2B 1 B 2xy (第17的两条切线PE 、PF ,切点为E 、F ,求CE ·CF 的最大值和最小值.6.在平面直角坐标系xOy 中,如图,已知椭圆E :22221(0)y x a b a b+=>>的左、右顶点分别为1A 、2A ,上、下顶点分别为1B 、2B .设直线11A B 的倾斜角的正弦值为13,圆C 与以线段2OA 为直径的圆关于直线11A B 对称.(1)求椭圆E 的离心率;(2)判断直线11A B 与圆C 的位置关系,并说明理由; (3)若圆C 的面积为π,求圆C 的方程.7.在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴和y 轴上(如图),且OC =1,OA =a +1(a >1),点D 在边OA 上,满足OD =a . 分别以OD 、OC 为长、短半轴的椭圆在矩形及其内部的部分为椭圆弧CD . 直线l :y =-x +b 与椭圆弧相切,与AB 交于 点E .(1)求证:221b a -=;(2)设直线l 将矩形OABC 分成面积相等的两部分,求直线l 的方程;(3)在(2)的条件下,设圆M 在矩形及其内部, 且与l 和线段EA 都相切,求面积最大的圆M 的方程.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.D 抛物线的焦点为)0,1(F ,又圆过原点,所以1=R ,方程为021)1(2222=+-⇔=+-y x x y x 。
第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2. 3.③ 评卷人得分三、解答题4.(选修4—4:坐标系与参数方程)解:设圆22(1)1x y -+=的圆心C(1,0),求AB 的最大值只需求AC 的最大值.A 在椭圆上,设A(5cos ,3sin )θθ,22225135(5cos 1)9sin 16(cos )1616AC θθθ=-+=-+, ∴当5cos 16θ=时,mi n 3154AC =,当cos 1θ=-时,mi n 6AC =, min 7AB ∴=,min 31514AB =-.………………………………………………………10分5.(1)解法一:设A 、B 两点坐标分别为⎝⎛⎭⎫y 212,y 1,⎝⎛⎭⎫y 222,y 2, 由题设知⎝⎛⎭⎫y 2122+y 21=⎝⎛⎭⎫y 2222+y 22=⎝⎛⎭⎫y 212-y 2222+(y 1-y 2)2,解得y 21=y 22=12. 所以A (6,23),B (6,-23)或A (6,-23),B (6,23). 设圆心C 的坐标为(r,0),则r =23×6=4.因此圆C 的方程为(x -4)2+y 2=16.解法二:设A 、B 两点坐标分别为(x 1,y 1),(x 2,y 2),由题设知x 21+y 21=x 22+y 22.又因为y 21=2x 1,y 22=2x 2,可得x 21+2x 1=x 22+2x 2,即(x 1-x 2)(x 1+x 2+2)=0.由x 1>0,x 2>0,可知x 1=x 2,故A 、B 两点关于x 轴对称, 所以圆心C 在x 轴上.设C 点的坐标为(r,0),则A 点坐标为⎝⎛⎭⎫32r ,32r ,于是有⎝⎛⎭⎫32r 2=2×32r ,解得r=4,所以圆C 的方程为(x -4)2+y 2=16.(2)设∠ECF =2α,则CE ·CF =|CE |·|CF |·cos 2α=16cos 2α=32cos 2α-16. 在Rt △PCE 中,cos α=r |PC |=4|PC |.由圆的几何性质得 PC ≤MC +1=7+1=8, PC ≥MC -1=7-1=6.所以12≤cos α≤23,由此可得-8≤CE ·CF ≤-169.故CE ·CF 的最大值为-169,最小值为-8. 6.(1)设椭圆E 的焦距为2c (c >0), 因为直线11A B 的倾斜角的正弦值为13,所以2213b a b =+, 于是228a b =,即228()a a c =-,所以椭圆E的离心率22147.84c e a=== …………4分 (2)由144e =可设()40a k k =>,14c k =,则2b k =, 于是11A B 的方程为:2240x y k -+=, 故2OA 的中点()20k ,到11A B 的距离d =2423k kk +=, …………………………6分 又以2OA 为直径的圆的半径2r k =,即有d r =,所以直线11A B 与圆C 相切. …………………………8分 (3)由圆C的面积为π知圆半径为1,从而12k =, …………………………10分设2OA 的中点()10,关于直线11A B :2220x y -+=的对称点为()m n , , 则21,141222022n m m n ⎧⋅=-⎪-⎨+⎪-⋅+=⎩. …………………………12分解得42133m n ==, .所以,圆C 的方程为()()22421133x y -+=-.…………………14分7.题设椭圆的方程为2221x y a +=.…………………………1分 由2221,x y a y x b⎧+=⎪⎨⎪=-+⎩消去y 得22222(1)2(1)0a x a bx a b +-+-=. …………………………2分 由于直线l 与椭圆相切,故△=(-2a 2b )2-4a 2(1+a 2) (b 2-1)=0,化简得221b a -=. ① …………………………4分(2)由题意知A (a +1,0),B (a +1,1),C (0,1),于是OB 的中点为()11,22a +.…………………………5分因为l 将矩形OABC 分成面积相等的两部分,所以l 过点()11,22a +,即(1)122a b -+=+,亦即22b a -=. ② …………………………6分 由①②解得45,33a b ==,故直线l 的方程为5.3y x =-+ (8)分(3)由(2)知()()57,0,,033E A . 因为圆M 与线段EA 相切,所以可设其方程为2220()()(0)x x y r r r -+-=>.………9分因为圆M 在矩形及其内部,所以0010,25,37.3r x x r ⎧<⎪⎪⎪>⎨⎪⎪+⎪⎩≤≤ ④ (10)分圆M 与 l 相切,且圆M 在l 上方,所以03()532x r r +-=,即03()532x r r +=+.………………………12分代入④得10,253(21)5,335327,33r r r ⎧<⎪⎪⎪+->⎨⎪⎪+⎪⎩≤≤即20.3r <≤………………………13分所以圆M 面积最大时,23r =,这时,0723x -=.故圆M 面积最大时的方程为227222.339x y ⎛⎫⎛⎫--+-= ⎪ ⎪⎝⎭⎝⎭ (15)分。