41特征函数42大数定律43随机变量序列的两种收敛性
- 格式:ppt
- 大小:502.00 KB
- 文档页数:35
2004年7月第1版2008年4月第10次印刷第一章随机事件与概率1.1 随机事件及其运算1.1.1 随机现象在一定的条件下,并不总是出现相同结果的现象称为随机现象.在相同条件下可以重复的随机现象又称为随机试验.1.1.2 样本空间随机现象的一切可能基本结果组成的集合称为样本空间,记为,其中表示基本结果,又称为样本点.样本点是今后抽样的最基本单元.1.1.3 随机事件随机现象的某些样本点组成的集合称为随机事件,简称事件.1.1.4 随机变量用来表示随机现象结果的变量称为随机变量.1.1.7 事件域定义1.1.1 设为一样本空间,为的某些子集所组成的集合类.如果满足:(1);(2)若,则对立事件;(3)若,则可列并.则称为一个事件域,又称为代数.在概率论中,又称为可测空间.1.2 概率的定义及其确定方法1.2.1 概率的公理化定义定义1.2.1设为一样本空间,为的某些子集所组成的一个事件域.若对任一事件,定义在上的一个实值函数满足:(1)非负性公理若,则;(2)正则性公理;(3)可列可加性公理若互不相容,有则称为事件的概率,称三元素为概率空间.第二章随机变量及其分布2.1 随机变量及其分布2.1.1 随机变量的概念定义2.1.1 定义在样本空间上的实值函数称为随机变量.2.1.2 随机变量的分布函数定义2.1.2 设是一个随机变量,对任意实数,称为随机变量的分布函数.且称服从,记为.2.1.4 连续随机变量的概率密度函数定义2.1.4 设随机变量的分布函数为,如果存在实数轴上的一个非负可积函数,使得对任意实数有则称为连续随机变量,称为的概率密度函数,简称为密度函数.密度函数的基本性质(1)非负性;(2)正则性.第三章多维随机变量及其分布3.1 多维随机变量及其联合分布3.1.1 多维随机变量定义3.1.1 如果定义在同一个样本空间上的个随机变量,则称为维(或元)随机变量或随机向量.3.1.2 联合分布函数定义3.1.2 对任意的个实数,则个事件同时发生的概率称为维随机变量的联合分布函数.3.4 多维随机变量的特征数3.4.5 随机向量的数学期望与协方差阵定义3.4.3 记维随机向量为,若其每个分量的数学期望都存在,则称为维随机向量的数学期望向量,简称为的数学期望,而称为该随机向量的方差—协方差阵,简称协方差阵,记为.例3.4.12(元正态分布) 设维随机变量的协方差阵为,数学期望向量为.又记,则由密度函数定义的分布称为元正态分布,记为.第四章大数定律与中心极限定理4.1 特征函数4.1.1 特征函数的定义定义4.1.1 设是一个随机变量,称为的特征函数.设是随机变量的密度函数,则4.2 大数定律4.2.1伯努利大数定律定理 4.2.1(伯努利大数定律) 设为重伯努利试验中事件发生的次数,为每次试验中出现的概率,则对任意的,有4.2.2 常用的几个大数定律4.3 随机变量序列的两种收敛性4.3.1 依概率收敛定义4.3.1(依概率收敛) 设为一随机变量序列,为一随机变量,如果对任意的,有则称依概率收敛于,记作.4.4 中心极限定理4.4.2 独立同分布下的中心极限定理定理 4.4.1(林德贝格—勒维中心极限定理) 设是独立同分布的随机变量序列,且.记则对任意实数有第五章统计量及其分布第六章参数估计第七章假设检验第八章方差分析与回归分析。
§4.2随机变量序列的两种收敛性在上一节中,我们从频率的稳定性出发,引入了n η=∑=n i i n 11ξ−→−p a (n ∞→) 即随机变量序列{}n η依概率收敛于常数a 这么一个概念。
我们自然可以把所讨论的问题推广到a 不是一个常数,而是一个随机变量这样的情形,于是需要引入下面的定义。
定义4.2 设有一列随机变量1η,2η,3η,…,n η,如果对任意的ε>0,都有 lim ∞→n P ()εηη<-n (4.6)则称随机变量序列{}n η依概率收敛于η,并记作lim ∞→n r η−→−p η 或n η−→−p η (n ∞→) 由此可知,前一节中讨论过的大数定律只是上述依概率收敛的一种特殊情况。
我们已经知道分布函数全面地描述了随机变量的统计规律,如果已知n η−→−p η(n ∞→),那么它们相应的分布函数n F (x )与F (x )之间的关系会有什么样的关系呢?一个猜测是,对所有的x ,都有n F (x )→ F (x )(n ∞→)成立,这个猜测对不对呢?让我们看一个很简单的例子。
例4.2 设η,n η都是服从退化分布的随机变量,且P (η=0)=1,P (n η=-n 1)=1,n=1,2,… 于是对任给的ε>0,当n>ε1时有 P (ηη-n ≥ε)=P (n η≥ε)=0所以n η−→−p η (n ∞→) 成立。
又设η,n η的分布函数分别为F (x ),n F (x ),则F (x )=⎩⎨⎧≤>0,20,1x xF (x )=⎪⎩⎪⎨⎧-≤->n x n x 1,21,1 显然,当x ≠0时,lim ∞→n n F (x )= F (x )成立,当x=0时,lim ∞→n n F (0)=lim ∞→n 1=1≠0= F (0) 这个简单的例子表明,一个随机变量序列依概率收敛于某一个随机变量,相应的分布函数列不一定是在每一点上都收敛于这个随机变量的分布函数的。
概率空间•几乎必然收敛(almost sure convergence)–随机变量序列收敛到,同时}{n X X {li – a.s. 1}{lim ==∞→X X P n n X X =lim XX −→−.s .a 表示为或者n n ∞→n →)}()(lim :{ςςςX X n n =∞→•依概率收敛(convergence in probability)–随机变量序列以及满足对任意}{n X X li ε–p. 0}||{lim=>-∞→εX X P n n X X =lim XX −→−.p 表示为p 或者n n ∞→n →也有可能的数值极大|X X n -|•均方收敛(mean square convergence)–随机变量序列以及满足,同时}{n X X li ∞<}{2nX E –m.s. 0}){(lim2=-∞→X X E n n X X =lim XX −→−m.s.表示为或者n n ∞→n →•均方收敛(mean square convergence)–随机变量序列以及满足,同时}{n X X li ∞<}{2nX E –m.s. 0}){(lim2=-∞→X X E n n X X =lim XX −→−m.s.表示为或者则n n ∞→n →m s •若,则X X n −→−m.s.∞<}{2X E 几乎必然收敛或依概率收敛都不能确保均方收敛•以概率分布收敛(convergence in distribution)–随机变量序列以及满足在任意连续的x}{n X X li )()(limx F x F X X n n =∞→–表示为 d. 或者X X n n =∞→lim XX n −→−d.•依据特征函数判断收敛–XX n −→−d.––)}({)}({X f E X f E n →)t ()t (XX nΦ→Φ.s .a ⇒XX −→−.p(Cauthy criteria)在不知道极限的情况下,判定随机变量序列收敛随机变量序列的收敛特性。