【精编】2018年秋七年级数学上册第一章有理数1.5有理数的乘方1.5.2科学记数法练习课件新版新人教版.ppt
- 格式:ppt
- 大小:1.30 MB
- 文档页数:15
七年级上册第一章1.1具有相反意义的量
1.2数轴相反数与绝对值
1.3有理数大小的比较
1.4.1有理数的加法
1.4.2有理数的减法
1.5有理数的乘法和除法
1.6有理数的乘方
1.7有理数的混合运算
第一章复习题
第二章2.1用字母表示
2.2列代数式
2.3代数式的值
2.4整式
2.5整式的加法和减法
第二章复习题
第三章3.1建立一元一次方程模型
3.2等式的性质
3.2一元一次方程的解法
3.4一元一次方程模型的应用
第三章复习题
第四章4.1几何图形
4.2线段射线直线
4.3.1角与角的大小
4.3.2角的度量与计算
第五章复习题
5.1数据的收集与抽样
5.2统计图
第六章复习题。
1.5.2科学记数法1.5.3近似数课堂练习知识点一:科学记数法1.用科学记数法表示下列各数:10000,800000,56000000,-7400000.知识点二:由用科学记数法表示的数转化为一般形式的数2.⑴4×107⑵7.04×105⑶-3.96×106知识点三:比较用科学记数法表示的两个数的大小3.比较大小(填“>”、“=”、“<”)⑴3.872×103 3.872×104⑵4.8×1015 3.82×1015⑶2.46×109 8.7×108⑷-4.03×103-3.8×104知识点四:由精确度取近似值4.用四舍五入法对下列各数取近似数:⑴0.00356 (精确到万分位)⑵61.235 (精确到个位)⑶1.8935 (精确到0,001)⑷1.99635 (精确到0,01) 知识点五:精确度5.下列由四舍五入得到的近似数,各精确到哪一位?(1)56.8;(2)0.00108;(3)8.5万.当堂达标1.把一个大于10的数表示成的形式(其中是整数数位只有一位的数,是正整数),使用的是科学记数法.2.亚运会火炬传递以“和谐之旅”为主题,以“点燃激情传递梦想”为口号进行,其传递总路程约为1370000千米,这个路程用科学计数法表示为().A .B .C .D .3.若一个数用科学记数法表示为1.2647×105 ,则原数是().A.12647B. 126470C. 1264700D. 126470004.用四舍五入法得到的近似数4.007万,下列说法正确的是().A.它精确到千分位B.精确到千位C.它精确到万位D.它精确到十位5.比较大小:____(用“>”、“<”或“=”填空).6.用科学记数法表示下列各数:(1)光速为300000000米/秒;(2)截止2009年5月底,我国股市开户总数约95000000;(3)海洋表面积约为326000000平方千米;7.用四舍五入法对下列各数取近似值(1)0.0156(精确到千分位);(2)48020000(精确到十万位);(3)3.2583(精确到0.01);(4)0.0345(精确到0.001).课后作业1.下列语句中的数据,是近似数的是()A.某校有女生762人B.小明家今天支出42.8元C.今天最高温度是36℃D.语文书有182页.2.数据26000用科学记数法表示为2.6×10n,则n 的值是().A. 2 B. 3 C. 4 D. 53.数23.0是由某数按四舍五入法得到的近似数,则下列各数中可能是这个数的是().A.22.85B.23.04C.22.948D.23.054.下列由四舍五入法得到的近似数中,精确到千位的是().A.2.5万B.35万C.2008D.5.用科学记数法表示下列各数:⑴1382000000=;⑵-100000=;⑶13亿=;⑷345×106=;6.写出以下用科学记数法表示的原数:⑴3.726×106=;⑵-3.058×107=7.近似数0.048精确到位,近似数13.5万,精确到___位.8.用四舍五入法,按括号内的要求对下列各数求近似值:⑴3.5952(精确到0.01) ;⑵23.45(精确到个位) ;⑶4.736×105(精确到千位) ;9.比较-5.64×109与-1.02×1010的大小.10.用科学记数法表示下列各数.(1) 自大学生志愿服务西部计划实施以来,至少有71920名大学生走进西部成为志愿者,支援西部建设;(2) 沈阳市计划从2016年到2018年新增林地面积2530000平方米.拓展探究1.如果规定:0.1==10-1,0.01==10-2,0.001==10-3,….(1)你能用幂的形式表示0.0001,0.00001吗?(2)你还能将0.000001768表示成a×10n的形式吗?(其中1≤a<10,n是负整数)1.5.2科学记数法1.5.3近似数参考答案课堂练习1.104;8×105;5.6×107;-7.4×1062.⑴40000000;⑵704000;-39600003.⑴<;>;>;>4.⑴0.0036;⑵61;⑶1.893;⑷2.005.(1)精确到十分位;(2)精确到十万分位;(3)精确到千位.当堂达标1. 2.D. 3.B. 4.D 5.<6.解:(1);(2);(3). 7.解:(1)0.016 ;(2);(3)3.26 ;(4)0.035.课后作业1.C 2.C 3.B 4.A.5.⑴1.382×109;⑵-105;⑶1.3×109⑷3.45×108 6.⑴3726000;⑵-30580000 7.千分;千.8.⑴3.60;⑵23;⑶4.74×1059.解:∵ 5.64×109<1.02×1010∴-5.64×109>-1.02×101010.解:(1);(2).拓展探究1.解:(1)10-4,10-5;(2)1.768×10-6.。
1.5 有理数的乘方1.5.1 乘方第2课时 有理数的混合运算置疑导入 归纳导入 类比导入活动内容:多媒体展示24点游戏的画面.游戏规则:从一副扑克牌(去掉大小王)中任意抽取4张,根据牌面上的数字进行混合运算(每张牌只能用一次),使得运算结果为24或-24.其中红色代表负数,黑色代表正数,J ,Q ,K 分别表示11,12,13.图1-5-7问题1:怎样将扑克牌上的数字通过我们学习的有理数运算得到24呢?问题2:在游戏中需要运用有理数的加、减、乘、除、乘方等运算,若在一个算式里,将这些运算的两种或两种以上混合在一起,你想在游戏中尽快地胜出又该怎样准确地计算呢?这就是本节课我们要学习的内容.(板书“有理数的混合运算”)[说明与建议] 说明:从学生感兴趣的数学游戏入手,激发学生的学习兴趣及求知欲,让学生在不知不觉中感受学习数学的乐趣,同时也让学生进一步体会了数学来源于生活又服务于生活.建议:问题1让学生自由探究,然后列出算式,学生会得到:(7-5)×(4+8),(8-7+5)×4等算式,问题2由教师提出,学生回答,引出本节课题.活动内容:完成下列题目.问题1:我们目前都学习了哪些运算?能不能举出一些例子.问题2:完成下列运算12+13×2-30÷5;30+4×(5+3)-2.问题3:尝试解决(-3)×(-8)÷6;18-6÷(-2)×(-13)2. [说明与建议] 说明:通过回顾小学时的混合运算,提出并尝试解决新的问题,让学生类比简单的有理数混合运算的运算顺序揭示课题,一方面激发了学生的求知欲,另一方面也为接下来学习新知识做准备.建议:问题1设计成自由发言形式,鼓励学生回答,活跃课堂气氛.问题2设计成考一考的形式,由学生独立完成后,指定一名学生报出答案,师生共同订正后引导学生叙述小学时学过的混合运算的运算顺序.问题3设计成闯关的形式,完成后,教师指定一名学生分析运算的顺序,并报出答案,师生共同讨论,从而引出课题.教材母题——教材第43页例3计算:(1)2×(-3)3-4×(-3)+15;(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).【模型建立】有理数的混合运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,按从左到右的顺序进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号的顺序依次进行.这一顺序,在使用运算律的时候要紧扣使用条件,不能盲目使用.【变式变形】1.下列计算正确的是(C )A .(-1)4×32=6B .8÷(-110)×5=8×(-12)=-4C .-32×19=-1D .4-(-8)÷2=4-4=02.计算12÷(-3)-2×(-3)的值为(C )A .-18B .-10C .2D .183.计算-16÷(-2)3-22×(-12)2的值是(B ) A .0 B .1 C .-3 D .-44.计算:(-3)2÷15×0-54的结果是__-54__. 5.在算式1-|-2□3|中的□里,填入运算符号__×__,可使得算式的值最小(在+,-,×,÷中选择一个).6.使用2,3,6,9四个数字列出一个算式,使得四个数的运算结果是24(每个数只使用一次).算式为__2×6+3+9=24(答案不唯一)__.7.(1)(13+16-12)×(-12); (2)2×(-3)2-5÷12×2. 解:(1)原式=13×(-12)+16×(-12)-12×(-12) =-4-2+6=0.(2)原式=2×9-5×2×2=18-20=-2.[命题角度] 有理数的混合运算有理数混合运算的顺序和注意事项:1.三个顺序:(1)同级运算,按照从左到右的顺序计算.(2)按照先乘方,再乘除,最后加减的顺序计算.(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行..2.注意事项:(1)注意分清运算符号和性质符号,每一步运算都要先确定符号,再确定绝对值.(2)进行分数的乘除运算时,一般要把带分数化为假分数,把除法转化为乘法.(3)能用运算律的一定要用运算律简化运算.例 计算:[-32×(16-12)2-0.2]×412÷(-214).解:[-32×(16-12)2-0.2]×412÷(-214)=[-9×(16-36)2-15]×92÷(-94)=[-9×(-13)2-15]×92×(-49)=(-9×19-15)×[92×(-49)]=(-1-15)×(-2)=(-65)×(-2)=125.P44练习计算:(1)(-1)10×2+(-2)3÷4;(2)(-5)3-3×⎝ ⎛⎭⎪⎫-124;(3)115×⎝ ⎛⎭⎪⎫13-12×311÷54;(4)(-10)4+[(-4)2-(3+32)×2].[答案] (1)0;(2)-200316;(3)-225; (4)9 992.[当堂检测]1. 求(1+ 31)÷(31-1)× 83之值为( )A .-43 B. 83 C.31 D.3162. 计算(- 2)²÷(-1.6)- 47÷2.5之值为( ) A .-1.1 B.-1.8 C.-3.2 D.-3.93. 计算(-1)3×(-2)4÷(-3)3之值为( )A .38 B.2716 C. 8116 D.316 4. 定义一种新的运算“⊕”,规定它的运算法则为:a ⊕b=a 2+2ab ,例如:3⊕(-2)=32+2×3×(-2)=-3.则(-2)⊕3的值为______ .5. 计算:(1) 103(1)2(2)-⨯+-÷4;(2)4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦.参考答案:1. A2. C3. B4. -85.(1)0(2)61师生对话有理数混合运算生:老师好!师:同学们好!生:自从学了负数之后,我们知道了在有理数这个“大家庭”中又增加了“新成员”,请问老师,有理数的混合运算与小学里学过的加、减、乘、除四则混合运算相同吗?师:有理数的混合运算与小学里学过的加、减、乘、除四则混合运算相似,但因引入负数概念和乘方运算以后,有理数的混合运算因此也有它的特点.生:那请你说来听听:师:好的! 有理数的混合运算法则是:1、先算乘方,再算乘除、最后算加减,2、同级运算按照从左到右的顺序进行,3、如果有括号,先算小括号里的、再算中括号里的、最后算大括号里的.生:那何谓同级运算呢?师:为了便于计算,我们将有理数的基本运算分为三级:其中加法和减法称为一级运算 ,乘法和除法称为二级运算 ,乘方称为三级运算,还是现举个例子来说明吧!如计算:32-50÷22×101-1时,就应先算32和22,再算除法和乘法运算,最后再算减法运算. 生:结果等于436,对吗? 师:你做得很对!生:可有些题如果按照有理数的运算顺序去做的话,过程复杂、繁琐.有时候甚至做不出来,这又是怎么一回事呢?师:你问得好,有理数的运算要遵循运算顺序,但并不一定要刻板地执行,这就是有理数混合运算的技巧问题,有理数运算的技巧性很强,掌握一些常见的技巧对提高运算的准确性和速度大有帮助,常见的运算技巧有:①灵活正用、逆用有理数的运算律,②灵活进行小数和分数的互化,③将互为相反数的和、互为倒数的积、有因数0的先结合、④正、负数分别结合相加,⑤分数中,同分母或分母有倍数关系的分数结合……都能使运算过程简明、快捷. 生:举个例子来说明吧!师:比如,在计算:-3.375×12+4.375×12-36×(181-121+91)时,将前两项逆用分配律,提取12、后面再直接利用分配律,可使过程变得简单生:我来试试,果真如此,运算过程的确很简单,免去了小数乘法和分数的通分运算的麻烦,结果等于9,对吗?师:对,明白了运算律在有理数混合运算中的作用了吧! 生:我明白了!有这样一道题:计算(-87)÷(431-87-127),我是这样做的:原式=(-87)÷431-(-87)÷87-(-87)÷127=2,可老师说我做错了,请问错在哪里呀? 师:你这种做法犯了个张冠李戴、滥用运算律的大错!这也是很多同学常犯的错误!我们知道乘法对加法有分配律,可除法并不满足,也就是说在除法运算中不能随意套用分配律,只有将除法转化为乘法以后才能运用.生:那这道题的运算顺序就应该是先算小括号里的减法运算,再做除法运算了啦! 师:是的,在进行有理数的混合运算时,有时候还要创造条件进行巧妙计算,比如计算:211⨯+321⨯+431⨯+……+200820071⨯的值 生:这道题可以通分再计算啊!师:哈哈!千万别硬做,繁琐难算又易错!若想到通分,这道题将无法计算,这道题的规律是:211⨯=1-21,321⨯=21-31,431⨯=31-41,……200820071⨯=20071-20081由于中间的各项一正一负,相加后都抵消了,只剩下首项和末项,这样问题就迎忍而解了呀. 生:我来验证一下,果然如此,最后的结果是20082007,对吗? 师:对!这种方法叫裂项相消法,凡是带有省略号的分数加减运算,可以用这种方法,可要掌握哟!生:哦,我懂了,我前次碰到了这样一道题,计算:2006+2005-2004-2003+2002+2001-2000-1999+……+6+5—4—3+2+1的值,我想按从左到右的运算顺序去做,运算过程复杂,请问老师还有其它好的方法吗?师:这道题如果按部就班自左到右依次计算,可以算出结果,但运算量大,稍有闪失,还可能全军覆没,因此这种方法不可取.生:那你能告诉我一种既简单又实用的方法吗?师:可以呀!你观察一下,此题有2个特点:①题中的“加数”或“减数”自左到右依次少1;②自2006向后,都是先两个加数相加,再连减两个数,因此这样想,从2006起,由左向右,每4个数组成一组,例如(2006+2005-2004-2003),而每组中,第一个比第三个大2,第二个比第四个大2,正因如此,所以每一组数的计算结果都相同,都等于4,这样一来,就将这道题转化为可分成多少个这样的组?是否还有剩余?因题中涉及到的加减运算的数共有2006个,每4个一组,共有2006÷4=501……2,即共分成501组,还剩两个数,∴原式=200712444501=+++++个.这种方法叫做“适当分组”法,也是一种常见的有理数运算技巧.生:听了你的讲解,我大有启发,你能否给我总结一下有理数的混合运算该注意些什么吗? 师:好的,在进行有理数的混合运算时应先审题,看题中有哪几种运算和哪几种括号,计算时要先确定运算顺序:先算乘方,再算乘除,最后算加减,有括号的先算括号里的,注意去括号的顺序,并按规定的顺序进行括号里的运算.在运算过程中要注意运算符号,先确定每一步运算结果的符号再计算绝对值,对每一步的运算要做到有理有据,切勿滥用运算法则和运算律.生:那谢谢老师,再见!师:再见。
1.5 有理数的乘方1.5.3 近似数复习导入 1:(1)我班有________名学生,________名男生,__________名女生;(2)我今年________岁;(3)我的体重约为________千克,我的身高约为________厘米;(4)我们的数学课本有________页.(5)量一量我们的数学课本的长度是________厘米,宽度是________厘米.问题2:在这些数据中,哪些数是与实际接近的?哪些数据是与实际完全符合的?(师生共同完成:问题1中(1)(5)与实际完全符合,(2)(3)(4)是与实际接近的) 与实际接近的数就是我们今天要研究的近似数.[说明与建议] 说明:提出现实生活中的实际问题,根据自己已有的生活经验观察身边熟悉的事物,收集一些数据,吸引学生的注意力,激发学生的学习兴趣,自然引入新课.建议:你还能举出生活中的一些准确数与近似数吗?生活中哪些方面用到近似数?1.阅读报道:中国是世界面积第3大国;中国有世界第一高峰珠穆朗玛峰,海拔约8844米;中国共划分为34个省级单位,包括23个省,5个自治区,4个直辖市和2个特别行政区,中国共有56个民族,少数民族人口最多的是壮族,约有1700万人.2.回答问题:你能找出这篇报道中的精确数据和近似数据吗?[说明与建议] 说明:通过阅读一篇报道,找出其中的近似数和精确数,其一可以改变枯燥的概念复习,使复习环节变得更加有趣;其二通过阅读可以让学生掌握更多的知识,例如此报道可以让学生更多地了解我们的祖国,同时也为新课的学习和探究作铺垫和准备工作.建议:可以让学生寻找身边的实例,为本节课的学习做好铺垫.羊村超市开业了,懒羊羊买东西的时候发生了纠纷,一斤大米1.9元,一斤半大米共2.85元,可是,懒羊羊没有5分钱的零钱,村长又不愿意,懒羊羊给了村长3元,村长又没办法找零钱.怎么办呢?喜羊羊总是有办法.他想了什么办法呢?原来是四舍五入.今天我们来学习求一个数的近似数.[说明与建议] 说明:用来源于学生身边的问题吸引他们的注意力,激发他们的好奇心,体会数学来源于生活并服务于生活,诱发学生对新知识的需求.建议:先留给学生自主思考的时间,然后教师要引导学生进行分析,为进一步学习积累数学活动经验.[命题角度1] 准确数和近似数的意义近似数识别的方法:①语句中带有“约”“左右”等词语,里面出现的数据都是近似数.如“某城市约有100万人口”“这篇文章有2000字左右”,这两个语句中的100万和2000都是近似数.②诸如“温度”“身高”“体重”“长度”等这些词语用数据来描述时,这些数都是近似数.如:“现在的气温是-2 ℃”“小明的体重是55千克”,这两个语句中的-2和55都是近似数. 例 下列各题中的数据,哪些是准确数?哪些是近似数?(1)某字典共有1234页;(2)我们班级有97人,买门票大约需要800元;(3)小红测得数学书的长度是21.0厘米.解:(1)1234是准确数;(2)97是准确数,800是近似数;(3)21.0是近似数.[命题角度2] 精确度的确定一个近似数四舍五入到哪一位,我们就说这个数精确到哪一位.(1)普通数直接判断;(2)对于科学记数法形式(形如a×10n)的数,先将其还原成普通数,再看a最右边的数字处在哪个数位上,则其就精确到了哪个数位.(3)带有“文字单位”的近似数,在确定它的精确度时,分两种情况:当“文字单位”前面的数是整数时,则近似数精确到“文字单位”;当“文字单位”前面的数是小数时,则先将近似数还原成原来的数,再看最原小数中最右边的数字的位置.例1 12.30万精确到(D)A.千位 B.百分位 C.万位 D.百位例2 由四舍五入法得到的近似数3.20×105,下列说法中正确的是(D)A.精确到百位B.精确到个位C.精确到万位D.精确到千位[命题角度3] 按要求取近似数题目要求精确到哪一位,就观察下一位确定是“舍”还是“入”.例 用四舍五入法,按括号中的要求对下列各数取近似数.(1)0.03049(精确到0.001);(2)199.5(精确到个位);(3)48.396(精确到百分位);(4)67294(精确到万位).解:(1)0.03049≈0.030;(2)199.5≈200;(3)48.396≈48.40;(4)67294≈7×104.P46练习用四舍五入法对下列各数取近似数:(1)0.003 56(精确到万分位);(2)61.235(精确到个位);(3)1.8935(精确到0.001);(4)0.0571(精确到0.1).[答案] (1)0.0036;(2)61;(3)1.894;(4)0.1. P47习题1.5 复习巩固 1.计算:(1)(-3)3; (2)(-2)4;(3)(-1.7)2; (4);(-43)3(5)-(-2)3; (6)(-2)2×(-3)2.[答案] (1)-27;(2)16;(3)2.89;(4)-;(5)8;(6)36.64272.用计算器计算:(1)(-12)8; (2)1034; (3)7.123; (4)(-45.7)3.[答案] (1)429 981 696;(2)112 550 881; (3)360.944 128;(4)-95 443.993. 3.计算:(1)(-1)100×5+(-2)4÷4;(2)(-3)3-3×;(-13)4(3)××÷; 76(16-13)31435(4)(-10)3+[(-4)2-(1-32)×2];(5)-23÷×; 49(-23)2(6)4+(-2)3×5-(-0.28)÷4.[答案] (1)9;(2)-27;(3)-;127572(4)-968;(5)-8;(6)-35.93. 4.用科学记数法表示下列各数:(1)235 000 000; (2)188 520 000; (3)701 000 000 000; (4)-38 000 000. [答案] (1)2.35×108;(2)1.8852×108; (3)7.01×1011;(4)-3.8×107.5.下列用科学记数法表示的数,原来各是什么数?3×107,1.3×103,8.05×106,2.004×105,-1.96×104. [答案] 30 000 000;1300;8 050 000; 200 400;-19 600.6.用四舍五入法对下列各数取近似数: (1)0.003 56(精确到0.0001); (2)566.1235(精确到个位); (3)3.8963(精确到0.01); (4)0.0571(精确到千分位).[答案] (1)0.0036;(2)566;(3)3.90;(4)0.057. 综合运用7.平方等于9的数是几?立方等于27的数是几?[答案] 3或-3;3.8.一个长方体的长、宽都是a ,高是b ,它的体积和表面积怎样计算?当a =2 cm ,b =5 cm 时,它的体积和表面积是多少?[答案] V =a ×a ×b ;S =2(a ×b +a ×a +a ×b ).V =20,S =48.9.地球绕太阳公转的速度约是1.1×105 km/h ,声音在空气中的传播速度约是340 m/s ,试比较两个速度的大小.[答案] 340 km/h<1.1×105 km/h.10.一天有8.64×104 s ,一年按365天计算,一年有多少秒(用科学记数法表示)? [答案] 3.1536×107秒. 拓广探索11.(1)计算0.12,12,102,1002.观察这些结果,底数的小数点向左(右)移动一位时,平方数小数点有什么移动规律?(2)计算0.13,13,103,1003.观察这些结果,底数的小数点向左(右)移动一位时,立方数小数点有什么移动规律?(3)计算0.14,14,104,1004.观察这些结果,底数的小数点向左(右)移动一位时,四次方数小数点有什么移动规律?[答案] (1)0.01,1,100,10 000,向左(右)移动两位;(2)0.001,1,1000,1 000 000,向左(右)移动三位;(3)0.0001,1,10 000,100 000 000,向左(右)移动四位.12.计算(-2)2,22,(-2)3,23.联系这类具体的数的乘方,你认为当a <0时下列各式是否成立?(1)a 2>0; (2)a 2=(-a )2; (3)a 2=-a 2; (4)a 3=-a 3.[答案] 4,4,-8,8,(1)成立,(2)成立; (3)不成立;(4)不成立. P51复习题1 复习巩固1.在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来:3.5,-3.5,0,2,-2,-1.6,-,0.5.13[答案] 图略,-3.5<-2<-1.6<-<0<0.5<2<3.5.132.已知x 是整数,并且-3<x <4,在数轴上表示x 可能取的所有数值. [答案] 如图所示:3.设a =-2,b =-,c =5.5,分别写出a ,b ,c 的绝对值、相反数和倒数.23[答案] 2,2,-;,,-;5.5,-5.5,.122323322114.互为相反数的两数的和是多少?互为倒数的两数的积是多少? [答案] 0,1. 5.计算:(1)-150+250;(2)-15+(-23);(3)-5-65;(4)-26-(-15);(5)-6×(-16);(6)-×27;13(7)8÷(-16);(8)-25÷;(-23)(9)(-0.02)×(-20)×(-5)×4.5;(10)(-6.5)×(-2)÷÷(-5);(-13)(11)6+-2-(-1.5);(-15)(12)-66×4-(-2.5)÷(-0.1); (13)(-2)2×5-(-2)3÷4; (14)-(3-5)+32×(1-3).[答案] (1)100;(2)-38;(3)-70;(4)-11;(5)96;(6)-9;(7)-;(8);(9)-127529;(10);(11)5.3;(12)-289;(13)22;(14)-16.3956.用四舍五入法,按括号内的要求,对下列各数取近似值: (1)245.635(精确到0.1); (2)175.65(精确到个位); (3)12.004(精确到百分位); (4)6.5378(精确到0.01).[答案] (1)245.6;(2)176;(3)12.00; (4)6.54.7.把下列各数用科学记数法表示: (1)100 000 000; (2)-4 500 000; (3)692 400 000 000.[答案] (1)1×108;(2)-4.5×106; (3)6.924 ×1011. 8.计算:(1)-2-|-3|; (2)|-2-(-3)|. [答案] (1)5;(2)1. 综合运用9.下列各数是10名学生的数学考试成绩: 82,83,78,66,95,75,56,93,82,81.先估算他们的平均成绩,然后在此基础上计算平均成绩,由此检验你的估值能力. [答案] 平均成绩79.1分.10.a ,b 是有理数,它们在数轴上的对应点的位置如图所示. 把a ,-a ,b ,-b 按照从小到大的顺序排列,正确的是( )A .-b <-a <a <bB .-a <-b <a <bC .-b <a <-a <bD .-b <b <-a <a [答案] C[解析] 一对相反数在原点的两侧,并且到原点的距离相等,所以a 的相反数-a 在表示b 的点的左侧,b 的相反数-b 在表示a 的点的左侧,数轴上左边的点表示的数比右边的点表示的数小,所以选C.11.某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位:元):星 期 一 星 期 二 星 期 三 星 期 四 星 期 五 星 期 六星 期 日 合 计 -27.8-70.3200138.1-8188458 表中星期六的盈亏数被墨水涂污了,请你算出星期六的盈亏数,并说明星期六是盈还是亏?盈亏是多少?[答案] 盈,盈38元12.当温度每上升1 ℃时,某种金属丝伸长0.002 mm.反之,当温度每下降1 ℃时,金属丝缩短0.002 mm.把15 ℃的这种金属丝加热到60 ℃,再使它冷却降温到5 ℃,金属丝的长度经历了怎样的变化?最后的长度比原长度伸长多少?[答案] 先伸长0.09 mm ,再缩短0.11 mm ,比原长度伸长-0.02 mm.13.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿km ,试用科学记数法表示1个天文单位是多少千米.[答案] 1.496×108千米.拓广探索14.结合具体的数的运算,归纳有关特例,然后比较下列数的大小: (1)小于1的正数a ,a 的平方,a 的立方; (2)大于-1的负数b ,b 的平方,b 的立方. [答案] (1)a >a 的平方>a 的立方; (2)b 的平方>b 的立方>b .15.结合具体的数,通过特例进行归纳,然后判断下列说法的对错. 认为对,说明理由;认为错,举出反例.(1)任何数都不等于它的相反数;(2)互为相反数的两个数的同一偶数次方相等; (3)如果a 大于b ,那么a 的倒数小于b 的倒数. [答案] (1)×(零的相反数为0);(2)√((a )2n =[(a )2]n =[(-a )2]n =(-a )2n );(3)×.(若a >0>b , 则1a >0>1b)16.用计算器计算下列各式,将结果写在横线上:1×1=________; 11×11=________; 111×111=________; 1111×1111=________. (1)你发现了什么?(2)不用计算器,你能直接写出111 111 111×111 111 111的结果吗? [答案] 1;121;12321;1234321;(1)每单个乘数有几个1,积就从1数到几,以后在倒数回来; (2)12 345 678 987 654 321.[当堂检测]1. 下列属于准确数的是( ). A .我国有13亿人口 B .七年二班有49名学生C .我国人口的平均寿命为76岁D .北京到太原的距离为512km2.【2012•西宁改编】2012年5月28日,我国《高效节能房间空气调节器惠民工程推广实施细则》出台,根据奥维咨询(AVC )数据测算,节能补贴新政能直接带动空调终端销售1.030千亿元.那么1.030四舍五入精确到0.1的近似数是( ) A .1 B .10 C .1.0 D .1.033. 对近似数:2.03万,下列说法正确的是( ) A .精确到百分位 B.精确到百位, C. 精确到万位 D.以上都不对。
67第一章有理数1.5有理数的乘方教学备注1.5.1 乘方第2课时有理数的混合运算学习目标:1.进一步掌握有理数的运算法则和运算律2.熟练地按有理数运算顺序进行混和运算重点:有理数的混合运算.难点:准确地掌握有理数的运算顺序和运算中的符号问题.2.小学阶段四则混合运算的运算法则是什么?先算 _____________ , 再算 __________________ ,如果有 _________________3. 用数学语言(字母)来表示各种运算律:(1) 加法交换律 ___________________________ ; (2) 加法结合律 ___________________________ ; (3) 乘法交换律 ___________________________ ; (4) 乘法结合律 ___________________________ ; (5) 乘法对加法的分配律 ___________________ . 二、新知预习21. 观察式子3(2 1) (5-2),里面包含了哪几种运算?算式中,含有有理数的 _______ 、 ________ 、 ______ 、 _________ 及 _______ 运算, 运算叫做有理数的 混合运算.2. 有理数的混合运算,应该按照什么顺序 来计算?议一议:下面两题的解法 正确吗?若不正确,问题出在哪里?在只有加减或只有乘 除的同一级运算中,按照式子的顺序从 _______ 向 _________ 依次进行.X 89+11 X0.12.这样的 1(1) -3“6 ()解:原式二「3亠(-1)=332 6 一6亠32 =32 (6-6) 32=0.解:原式【自主归纳】有理数的混合运算顺序是:先算乘方,再算乘除,最后算加减;如果有括 号,要先算括号里面的 三、自学自测计算:课堂探究一、要点探究探究点1:有理数的混合运算 思考:下列式子含有哪几种运算 ?先算什么,后算什么?2130+5+2 x ( - 一 ) -15归纳:做有理数的混合运算时,应注意以下运算顺序: 1. 先乘方,再乘除,最后加减; 2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行(3) 在含有括号的运算中,要先算 _____ 里面的.在没有括号的不同级运算中,先算 再算乘除,最后算•教学备注 配套PPT 讲授(1)( - 3)2-(-6);四、我的疑惑 ⑵C4x 32)- (- 4 3)21•情景引入(见幻灯片3) 2•探究点1新 知讲授 (见幻灯片 4-7)例1计算:3(1) 2 X (-3) -4 X (-3)+15;3 2 2(2) (-2) +(-3) X [(-4)+2]-(-3)十(-2).(1) 第①行数按什么规律排列?(2) 第②③行数与第①行数分别有什么关系? (3) 取每行数的第10个数,计算这 三个数的和•分析:观察①,发现各数均为 2的倍数.联系数的乘方,从符号和绝对 值两方面考虑,可发现排列的规律 •1. 计算 10 3(1)(_ 1) X 2+(-2)十 4431(2)(_5) -3X ()2. 观察下列各式: 仁§ -121+2=2 -1若n 是正整数,那么 1+2+2?+…2=•二、课堂小结1. 乘方与加、减、乘、除的混合运算,运算顺序是:先乘方,再乘除, 最后加减;3•探究点2新 知讲授(见幻灯片 8-11)探究点2:数字规律探究 例2观察下面三行数:5•当堂检测(见幻灯片 12-13)-2 ,4 , -8 , 16 , -32 , 64 ,- …①,6 , -6 , 18 , -30 , 66 ,- …② -1,2 , -4 , 8 , -16 , 32 ,- ….③教学备注 配套PPT 讲授教学备注 配套PPT 讲授23 1+2+2 =2 -12猜想:1+2+2 +2 + (2)3634•课堂小结2. 数字规律探究当堂检测一 ]寸ii寸0L 寸 寸 (g o —col —T亠*严(G)X 「(COI —)—〔一+L 二寸)8厂(y ) x (g —xg cxl o —) X H 'S小9—sll x (-l L )—z (co —) (2)CXI CXI "L-J co x e — )—%x00 I n - 00.0 o o o -.m 000v .<二二巴丄g r x h s o y x b --) a <()殴超蘇亠贰夹誤拱闾咽沖眾戶「百d (r xJ丄)O E : H Li?<()赵不)/2 ¥朽7GH一< ()眾黑S亿G十U 士rl-77Q 115P H u 8—< -r-c f()y。