向量范数的等价性定理
- 格式:docx
- 大小:12.79 KB
- 文档页数:1
第五专题 矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例.证明二:利用AB 和BA 有相同的非零特征值的性质;从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
定义:nnii i i 1i 1tr(A)a ====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2.Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4.1tr(P AP)tr(A)-=; 5.H H tr(x Ax)tr(Axx ),x =为向量; 6. nnkk i i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A HB)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c 为一常数。
I 、向量的范数向量x ∈R n的范数f(x )是定义在R n空间上取值为非负实数且满足下列性质的函数:1ο对于所有的x ≠ 0,x ∈R n有f(x )>0; (非负性)2ο对于所有的α∈R 有f(αx )=αf(x ); (正齐性) 3ο对于所有的x,y ∈R n有f(x+y )≤f(x )+f(y ). (三角不等式)一、 一般情况下,f(x )的具体模式如下:p x = p ni pix 11)(∑=,p 1≥ 也称它为p-范数。
下证p-范数满足上述的三个性质:1、对于所有的x ∈R n,x ≠ 0,p ni pix 11)(∑=显然是大于0的,故性质1ο成立。
2、 由pxα = pni pix 11)(∑=α = αp ni pix 11)(∑= = αp x 知性质2ο成立。
3、欲验证性质3ο,我们的借助下列不等式:设p>1,q>1,且p 1 + q1 = 1,则对所有的0,≥βα有αββα≥+qpqp证:考虑函数ptptt -=1)(ϕ,因为)1(1)(11'-=-p t pt ϕ,由()t 'ϕ=0 t=1,又因为01)1(''<-=pqϕ,所以当t = 1的时候)(t ϕ取最大值,则有:p p ttp111-≤-, 令t = q pβα,代入可得:q p p q ppq p1111=-=-⎪⎪⎭⎫⎝⎛βαβα, 化简之后即得: αββα≥+qpqp证毕!又令∑=)(1i px x piα,∑=)(1i qy y qiβ,代入上不等式可得:∑∑+)()(iq i i p iy y x x qqpp∑∑≥)()(11y x yx i qi pqpii,两边同时对i 求和,并利用关系式p 1 + q1 = 1可知:∑∑≥+=∑∑∑∑∑)()(11)()(1y x yx y y x x i qi piq i ip i qpiiqqpp从而有:∑∑≤∑)()(11y x y x i qi pqpii另一方面,又有:∑+∑++=-yx y x y x iip pii ii 1)(1y x y x ii p ii +≤∑+-yy x x y x ip ip i i ii ∑+∑+--+=11()()()()()()∑∑-+∑∑-≤++y y x x y x ipiiq p ipiiq p pqpq111111()()()()⎥⎥⎦⎤⎢⎢⎣⎡∑∑-=+∑+y x y x ipip piiqp pq1111()()()⎥⎥⎦⎤⎢⎢⎣⎡∑∑=+∑+y x y x ipip piipp111 左右两边同时除以()∑+y x iip1得:()()()∑∑≤∑++y x y x ipipiip ppp111。
第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p×q, B q×p, 则|I p+AB|=|I q+BA|证明一:参照课本194页,例4.3.证明二:利用AB和BA有相同的非零特征值的性质;从而I p+AB,I q+BA中不等于1的特征值的数目相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
定义:n nii ii1i1tr(A)a====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2. Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4. 1tr(P AP)tr(A)-=;5. H Htr(x Ax)tr(Axx ),x =为向量;6. nnk ki i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。
范数等价判别定理的证明范数等价判别定理是线性代数中重要的定理之一。
它的证明依赖于一些基本概念和定理,但是通过逐步详细论述和举例,我们可以全面理解这个定理的背后原理和重要性。
让我们回顾一下范数的定义和性质。
范数是定义在向量空间上的一种函数,它满足以下三个性质:1. 非负性:对于任意向量x,范数的值大于等于零。
2. 齐次性:对于任意向量x和标量a,范数的值与向量x乘以标量a 的值相等。
3. 三角不等式:对于任意向量x和y,范数的值小于等于向量x和向量y之和的值。
接下来,我们来介绍等价范数的概念。
在同一个向量空间中,如果两个范数定义了相同的“长度”概念,我们就称这两个范数是等价的。
具体地说,设∥·∥1和∥·∥2是向量空间V上的两个范数,如果存在正数a和b使得对于任意向量x∈V,有a∥x∥1 ≤ ∥x∥2 ≤ b∥x∥1那么我们就称∥·∥1和∥·∥2是等价的。
接下来,我们将证明范数等价判别定理。
这个定理的表述如下:设∥·∥1和∥·∥2是向量空间V上的两个范数,并且V是有限维的,那么当且仅当∥·∥1和∥·∥2诱导出相同的拓扑时,它们是等价的。
证明过程如下。
Step 1: 我们首先假设V上的一个有限维标准基是{e1, e2, ..., en}。
设x是V中的一个向量,它的坐标表示为x = (x1, x2, ..., xn)。
假设∥·∥1和∥·∥2是等价的,我们将证明它们诱导出相同的拓扑。
Step 2: 根据范数的性质,我们知道存在正数k1和k2,使得对于任意i = 1, 2, ..., n,有k1|xi| ≤ ∥x∥1 ≤ k2|xi|Step 3: 我们定义一个新的范数∥·∥3,它满足∥x∥3 = ∥x∥1 + ∥x∥2。
我们来证明∥·∥3也是一个范数。
Step 4: 根据范数的定义,我们知道∥x∥3 ≥ 0,对于任意标量a有∥ax∥3 = ∥ax∥1 + ∥ax∥2 = |a|∥x∥1 + |a|∥x∥2 = |a|∥x∥3,以及对于任意两个向量x和y有∥x+y∥3 = ∥x+y∥1 + ∥x+y∥2 ≤ ∥x∥1+ ∥y∥1 + ∥x∥2 + ∥y∥2 = ∥x∥3 + ∥y∥3。