第8讲_自然语言的熵
- 格式:ppt
- 大小:337.50 KB
- 文档页数:25
熵的起源、历史和发展一、熵的起源1865年,德国物理学家鲁道夫·克劳修斯Rudolf Clausius, 1822 –1888在提出了热力学第二定律后不久,首次从宏观上提出了熵Entropy的概念.Entropy来自希腊词,希腊语源意为“内向”,亦即“一个系统不受外部干扰时往内部最稳定状态发展的特性”另有一说译为“转变”,表示热转变为功的能力.在中国被胡刚复教授一说为清华刘先洲教授译为“熵”,因为熵是Q除以T温度的商数.他发表了力学的热理论的主要方程之便于应用的形式一文,在文中明确表达了“熵”的概念式——dS=dQ/T.熵是物质的状态函数,即状态一定时,物质的熵值也一定.也可以说熵变只和物质的初末状态有关.克劳修斯用大量的理论和事实依据严格证明,一个孤立的系统的熵永远不会减少For an irreversible process in an isolated system, the thermodynamic state variable known as entropy is always increasing.,此即熵增加原理.克劳修斯提出的热力学第二定律便可以从数学上表述为熵增加原理:△S≥0.在一个可逆的过程中,系统的熵越大,就越接近平衡状态,虽然此间能量的总量不变,但可供利用或者是转化的能量却是越来越少.但是克劳修斯在此基础上把热力学第一定律和第二定律应用于整个宇宙,提出了“热寂说”的观点:宇宙的熵越接近某一最大的极限值,那么它变化的可能性越小,宇宙将永远处于一种惰性的死寂状态.热寂说至今仍引发了大量争论,没有得到证明.二、熵的发展在克劳修斯提出熵后,19世纪,科学家为此进行了大量研究.1872年奥地利科学家玻尔兹曼L. E. Boltzmann首次对熵给予微观的解释,他认为:在大量微粒分子、原子、离子等所构成的体系中,熵就代表了这些微粒之间无规律排列的程度,或者说熵代表了体系的混乱度The degree of randomness or disorder in a thermodynamic system..这也称为是熵的统计学定义.玻尔兹曼提出了着名的玻尔兹曼熵公式S=klnΩ,k=×10^-23 J/K,被称为玻尔兹曼常数;Ω则为该宏观状态中所包含之微观状态数量,或者说是宏观态出现的概率,一般叫做热力学概率.玻尔兹曼原理指出系统中的微观特性Ω与其热力学特性S的关系,后来这个伟大的等式被刻在他的墓碑上.三、熵的应用自从Clausius提出熵的概念以来,它在热学界发挥的作用有目共睹.提及这个概念,我们往往把它与热力学定律,熵增原理,卡诺循环等联系在一起,除了热学之外,从它的宏观、微观意义出发,它还被抽象地应用到信息、生物、农业、工业、经济等领域,提出了广义熵的概念.熵在其他领域中的应用在此不再赘述,下面仅在热学领域对熵进行一个基本的探讨.一、熵的定义Definition1.宏观:宏观上来说,熵是系统热量变化与系统温度的商.Amacroscopic relationship between heat flow into a system and the system's change in temperature.这个定义写成数学关系是:dS是系统的熵变, δq是系统增加的热量,仅在可逆过程成立,T是温度.注:对于可逆过程,等号成立;对于不可逆过程,大于号成立;所有自发过程都是不可逆过程.2.微观:微观上说,熵是一个系统宏观态对应的相应微观态的数目热力学概率的自然对数与玻尔兹曼常量的乘积.On a microscopic level, as the natural logarithm of the number of microstates of a system.数学表达如下:S是熵,kB是玻尔兹曼常量, Ω微观态的数目热力学概率.二熵的相关定义1.比熵:在工程热力学中,单位质量工质的熵,称为比熵.表达式为δq=Tds, s称为比熵,单位为J/ kg·K 或 kJ/ kg·K.2.熵流:系统与外界发生热交换,由热量流进流出引起的熵变.定义式为:.熵流可正可负,视热流方向而定.3.熵产:纯粹由不可逆因素引起的熵的增加,定义式为:.熵产永远为正,其大小由过程不可逆性的大小决定,熵产为零时该过程为可逆过程.熵产是不可逆程度的度量.三熵和热力学第二定律1.热力学第二定律的三种表述:1克劳修斯描述Clausius statement:不可能将热从低温物体传至高温物体而不引起其它变化.It is impossible to construct a device that operates in a cycle and produces no effect other than the transfer of heat from a lower-temperature body to a higher-temperature body.2开尔文描述Kelvin statement:不可能从单一热源取热,并使之完全转变为有用功而不产生其它影响.It is impossible for any device that operates on a cycle to receive heat from a single reservoir and produce a net amount of work.3熵增原理principle of entropy increase:孤立热力系所发生的不可逆微变化过程中,熵的变化量永远大于系统从热源吸收的热量与热源的热力学温度之比;也可以说成,一个孤立的系统的熵永远不会减少.The second law of thermodynamics states that the entropy of an isolated system never decreases, because isolated systems always evolve toward thermodynamic equilibrium— a state depending on the maximum entropy.2.熵增原理:根据这一原理,我们得到了对于孤立体系的熵判据:ΔS 孤>0 自发ΔS 孤=0 平衡ΔS 孤<0 非自发利用熵判据能够对孤立体系中发生的过程的方向和限度进行判别.如:把氮气和氧气于一个容器内进行混合,体系的混乱程度增大,熵值增加即ΔS>0,是一个自发进行的过程;相反,欲使该气体混合物再分离为N2 和O2,则混乱度要降低,熵值减小ΔS<0,在孤立体系中是不可能的.当然,若环境对体系做功,如利用加压降温液化分离的方法可把此混合气体再分离为O2 和N2,但此时体系与环境之间发生了能量交换,故已不是孤立体系了.四熵的性质1.非负性:SnP1,P2,…,Pn≥0;2.可加性:熵是一个状态函数,对于相互独立的状态,其熵的和等于和的熵;3.极值性:当状态为等概率的时候,即pi=1/n,i==1,2,…,n其熵最大,有SnP1,P2,…,Pn≤Sn1/n,1/n,…,1/n=㏑n;4.影响熵值的因素:①同一物质:S高温>S低温,S低压>S高压;Sg>Sl>Ss;②相同条件下的不同物质:分子结构越复杂,熵值越大;③S混合物>MS纯净物;④对于化学反应,由固态物质变成液态物质或由液态物质变成气态物质或气体物质的量增加的反应,熵值增加.5.对于纯物质的晶体,在热力学零度时,熵为零.热力学第三定律6.系统的熵越大,就越接近平衡状态,虽然此间能量的总量不变,但可供利用或者是转化的能量却是越来越少.In a physical system, entropy provides a measure of the amount of thermal energy that cannot be used to do work.四、参考资料Reference工程热力学第三版高等教育出版社;现代化学基础清华大学出版社;薛凤佳熵概念的建立和发展;李嘉亮,刘静玻尔兹曼熵和克劳修斯熵的关系;顾豪爽熵及其物理意义;熵——百度百科;Introduction to entropy, From Wikipedia, the free encyclopedia;A History of Thermodynamics——Springer。
熵的概念和本质特征嘿,朋友,今天咱们来聊聊一个特别神奇又有点烧脑的概念——熵。
你可能一听这个词就觉得有点懵,啥是熵呀?这就像是突然有人跟你说一个来自外太空的神秘词汇一样。
不过别担心,跟着我,咱们一点点把这个神秘的面纱揭开。
我有个朋友,叫小李。
有一次我们一起整理他那超级乱的房间。
他的房间简直就像被龙卷风席卷过一样,衣服到处扔,书桌上各种东西堆得乱七八糟。
我就跟他说:“你这房间的熵可太高了。
”他一脸疑惑地看着我,就像我在说外星语似的。
我就跟他解释,熵啊,在这种情况下就像是混乱的程度。
你看你这房间,东西毫无秩序,熵就很大。
从科学的角度来说,熵最早是在热力学里被提出来的。
想象一下,你有一杯热茶放在桌上。
刚开始的时候,这杯茶是很热的,它的热量集中在这杯茶里,这时候它的熵比较低。
为啥呢?因为它的能量状态比较有序。
可是随着时间推移,这杯茶的热量会慢慢散发到周围的空气中。
最后,茶凉了,热量均匀地分布在茶和周围的空气里了。
这个时候,整个系统(茶和周围空气)的熵就增加了。
就好比一群小朋友在操场上排队做早操,刚开始排得整整齐齐的,这时候就像低熵状态。
后来下课了,小朋友们到处跑,分散在整个操场,变得混乱无序了,这就类似熵增加了。
那熵的本质特征到底是啥呢?我觉得啊,熵就像是一个宇宙的“混乱管理员”。
它总是倾向于让事物变得更加混乱无序。
你看大自然里,水总是从高处往低处流。
山上的石头,随着时间的推移,可能会因为风化、地震等原因滚落下来,然后散落在各处。
这都是熵在起作用。
我记得我在大学里上物理课的时候,老师给我们讲过一个有趣的例子。
他说有个封闭的盒子,中间有个隔板,一边装着氧气分子,另一边装着氮气分子。
当把隔板拿掉的时候,你猜怎么着?这些分子就开始自由地跑来跑去,最后混合得乱七八糟的。
这就是熵增加的过程。
如果说分子们都乖乖地待在自己原来的那一边,那就是低熵状态,可是它们才不会那么听话呢,就像调皮的小孩子一样,总是要到处跑,让整个系统变得混乱。
熵的起源、历史和发展一、熵的起源1865年,德国物理学家鲁道夫·克劳修斯(Rudolf Clausius, 1822 – 1888)在提出了热力学第二定律后不久,首次从宏观上提出了熵(Entropy)的概念。
Entropy来自希腊词,希腊语源意为“内向”,亦即“一个系统不受外部干扰时往内部最稳定状态发展的特性”(另有一说译为“转变”,表示热转变为功的能力)。
在中国被胡刚复教授(一说为清华刘先洲教授)译为“熵”,因为熵是Q除以T(温度)的商数。
他发表了《力学的热理论的主要方程之便于应用的形式》一文,在文中明确表达了“熵”的概念式——dS=(dQ/T)。
熵是物质的状态函数,即状态一定时,物质的熵值也一定。
也可以说熵变只和物质的初末状态有关。
克劳修斯用大量的理论和事实依据严格证明,一个孤立的系统的熵永远不会减少(For an irreversible process in an isolated system, the thermodynamic state variable known as entropy is always increasing.),此即熵增加原理。
克劳修斯提出的热力学第二定律便可以从数学上表述为熵增加原理:△S≥0。
在一个可逆的过程中,系统的熵越大,就越接近平衡状态,虽然此间能量的总量不变,但可供利用或者是转化的能量却是越来越少。
但是克劳修斯在此基础上把热力学第一定律和第二定律应用于整个宇宙,提出了“热寂说”的观点:宇宙的熵越接近某一最大的极限值,那么它变化的可能性越小,宇宙将永远处于一种惰性的死寂状态。
热寂说至今仍引发了大量争论,没有得到证明。
二、熵的发展在克劳修斯提出熵后,19世纪,科学家为此进行了大量研究。
1872年奥地利科学家玻尔兹曼(L. E. Boltzmann)首次对熵给予微观的解释,他认为:在大量微粒(分子、原子、离子等)所构成的体系中,熵就代表了这些微粒之间无规律排列的程度,或者说熵代表了体系的混乱度(The degree of randomness or disorder in a thermodynamic system.)。
最大熵模型自然语言处理什么是最大熵模型?最大熵模型在自然语言处理中应用的原理是什么?如何使用最大熵模型解决实际的自然语言处理问题?最大熵模型在自然语言处理中都有哪些典型应用?现在,让我们一步一步深入探讨这些问题。
最大熵模型是一种统计模型,其核心思想是基于最大熵原理。
在信息熵的概念中,熵被定义为系统的不确定性量度,而最大熵原理则是一种寻找最符合已知信息且不引入新的不确定性的方法。
最大熵模型的目标是构建一个能够最大程度上满足已知信息、但没有任何额外假设的模型。
在自然语言处理中,最大熵模型被广泛应用于各种问题的解决。
最大熵模型的原理可以通过以下步骤进行理解:第一步是定义问题和收集训练数据。
在自然语言处理中的最大熵模型应用中,问题可以是文本分类、命名实体识别、语义角色标注等。
训练数据是指包含了问题定义所需要的相关信息的数据集,通常由标注人员对样本数据进行人工标注得到。
第二步是定义特征函数。
特征函数是将问题与训练数据联系起来的手段,它可以是一种对问题的描述,表达问题中的某种特征。
这些特征函数通常由专家根据经验和领域知识确定。
第三步是定义最大熵模型的模型结构和参数空间。
最大熵模型采用指数模型的形式,其中模型的输出是特征函数的线性组合,并且由参数来控制每个特征函数的权重。
参数的选择可通过迭代算法,例如改进的迭代尺度法(I I S)进行求解。
第四步是训练和优化模型。
这一步骤中,最大熵模型使用训练数据进行参数学习,以最大化模型对训练数据的似然函数,从而得到最优的模型参数。
训练的过程可以通过梯度下降、牛顿法等优化算法进行求解。
第五步是使用训练好的最大熵模型解决实际问题。
这一步骤中,通过将待处理的文本数据转化成特征表示,然后利用训练好的最大熵模型进行预测和分类,从而实现自然语言处理任务的解决。
最大熵模型在自然语言处理中有许多典型的应用。
举例来说,最大熵模型可以应用于文本分类任务,用于将文本归类到不同的主题或类别中。
最大熵模型还可以用于命名实体识别,即从文本中识别并分类出人名、地名等具有特殊意义的实体。
熵简单解释熵(entropy)是一个非常重要的概念,在热力学、信息论、统计物理学等领域都有广泛的应用。
然而,对于普通人来说,熵是一个非常抽象的概念,很难理解。
本文将尝试用尽可能简单的语言,解释熵的概念和意义。
1. 熵的定义熵最早是由德国物理学家克劳修斯(Rudolf Clausius)在19世纪提出的。
他把熵定义为一个系统的无序程度,也就是系统的混乱程度。
熵越大,系统越混乱,熵越小,系统越有序。
这个定义非常直观,但是也有一些问题,因为它没有明确说明“无序”和“有序”是什么意思。
后来,美国物理学家布里丹(Ludwig Boltzmann)提出了更加精确的定义。
他把熵定义为系统的微观状态数的对数。
也就是说,如果一个系统有N个微观状态,那么它的熵就是lnN(其中ln是自然对数,以e为底的对数)。
这个定义比较抽象,但是它更加准确地描述了熵的本质。
2. 熵的意义熵的意义非常重要,因为它涉及到了自然界的基本规律。
熵是一个系统的混乱程度,也就是说,它描述了系统的无序程度。
这个无序程度与能量转化的效率有关系。
例如,如果一个发动机的熵越小,那么它的能量转化效率就越高。
这是因为熵越小,系统越有序,能量转化的过程就越容易进行。
相反,如果熵越大,系统越混乱,能量转化的效率就越低。
熵的意义还涉及到了自然界的趋势。
根据热力学第二定律,一个孤立系统的熵总是趋向于增加。
也就是说,自然界的趋势是朝着混乱和无序的方向发展的。
这个趋势是不可逆转的,因为熵的增加是一个热力学过程,它需要能量的输入才能逆转。
3. 熵的计算熵的计算需要知道系统的微观状态数。
微观状态是指系统中每一个粒子的状态,包括它的位置、速度、自旋等等。
对于一个大的系统来说,微观状态数是非常巨大的,通常是以指数形式增长的。
因此,熵的计算非常困难,需要借助于统计物理学的方法。
统计物理学是一门研究系统微观状态和宏观性质之间关系的学科。
它的基本假设是,一个系统的微观状态是随机的,所有可能的微观状态出现的概率是相等的。
Shannon关于“熵”的研究Shannon关于“熵”的研究冯志伟1948年,美国科学家C. E. Shannon(⾹农,1916-2001,图2-8)在《贝尔系统技术杂志》(Bell System Technical Journal,27: pp 379-423, 1948)上发表了《通信的数学理论》(A mathematical theory of communication)的长篇论⽂,奠定了信息论(Information Theory)的理论基础,Shannon被尊为“信息论之⽗”。
Shannon于1916年4⽉30⽇出⽣于美国密歇根州的Petoskey,1936年毕业于密歇根⼤学并获得数学和电⼦⼯程学⼠学位,1940年获得⿇省理⼯学院(MIT)数学博⼠学位和电⼦⼯程硕⼠学位。
1941年他加⼊贝尔实验室数学部,⼯作到1972年。
1956年他成为⿇省理⼯学院(MIT)客座教授,并于1958年成为终⽣教授,1978年成为名誉教授。
Shannon于2001年2⽉26⽇去世,享年84岁。
信息论是研究信息传输和信息处理系统中的⼀般规律的科学。
在信息论产⽣之前,⼈们对于信息系统的理解是⽐较肤浅的,⼀般把携带信息的消息看成是瞬态性的周期性的信号。
后来,⼈们把近代统计⼒学中的重要概念,把Markov随机过程理论以及⼴义谐波分析等数学⽅法应⽤于信息系统的研究中,才看出通信系统内的信息实质上是⼀种具有概率性的随机过程,从⽽得出了⼀些概括性很⾼的结论,建⽴了信息论这个学科。
信息论的研究对象是⼴义的信息传输和信息处理系统,从最普通的电报、电话、传真、雷达、声纳,⼀直到各种⽣物的感知系统,都可以⽤同样的信息论观点加以描述,都可以概括成这样的或那样的随机过程加以深⼊的研究。
从信息论的⾓度看来,⽤⾃然语⾔来交际的过程,也就是从语⾔的发送者通过通信媒介传输到语⾔的接收者的过程。
图⽰如下(图2-9)语⾔的发送者(即信源)随着时间的顺序顺次地发出⼀个⼀个的语⾔符号,语⾔的接收这也随着时间的顺序顺次地接收到⼀个⼀个的语⾔符号。
各语言信息熵
信息熵是衡量一种语言或信息系统中信息量的一种度量指标。
它描述了信息的不确定性或随机性。
信息熵越高,表示信息系统中包含的信息量越大,反之则越小。
不同语言的信息熵是由该语言的语法和词汇特点决定的。
一般来说,语言中的词汇量越大,语法规则越丰富,信息熵就会相对较高。
以下是一些常见语言的信息熵:
1. 英语:英语是一种广泛使用的语言,具有丰富的词汇和复杂的语法结构。
因此,英语的信息熵相对较高。
2. 汉语:汉语是世界上使用人数最多的语言之一,具有庞大的词汇量和独特的语法结构。
汉语的信息熵也相对较高。
3. 西班牙语:西班牙语是全球第二大使用人数较多的语言,其词汇量和语法结构与英语和汉语相比较为简单,因此信息熵较低。
4. 阿拉伯语:阿拉伯语是阿拉伯国家的官方语言,具有复杂的语法和丰富的词汇量,因此信息熵相对较高。
需要注意的是,不同语言中的不同方言和口语变种也会导致信息熵的差异。
此外,信息熵还可以用于其他领域,如通信、信号处理和数据压缩等。
列维斯特劳斯熵类学一、熵与列维斯特劳斯理论概述在物理学和信息论中,熵是一个用于描述系统混乱度或不确定性的重要概念。
然而,在人类社会和文化的领域中,这一概念同样具有深远的意义。
人类学家克劳德·列维-斯特劳斯(Claude Levi-Strauss)将熵的概念引入到社会和文化的研究中,提出了所谓的“熵类学”(entropy in anthropology)的概念。
这一理论旨在揭示社会结构和文化现象中的复杂性和动态性,为人类学研究开辟了新的视角。
二、熵的数学定义与计算在数学和物理学中,熵(entropy)是一个用来描述系统内部无序程度或混乱度的量。
在封闭系统中,熵总是趋向于增加,即系统会从有序状态向无序状态演化。
这种演化的过程是不可逆的,符合热力学的第二定律。
在信息论中熵被用来衡量信息的随机性和不确定性,即信息的混乱度。
三、列维斯特劳斯的理论体系及其起源克劳德·列维-斯特劳斯作为二十世纪最有影响力的人类学家之一,提出了结构主义人类学理论。
他主张通过分析文化和社会现象中的符号和结构来理解人类行为和思维。
在这一理论框架下,列维-斯特劳斯引入了熵的概念,以描述社会和文化现象中的复杂性和动态性。
他认为,社会结构和文化现象可以被视为一种复杂的符号系统,其演化和发展过程类似于物理学中的熵增加过程。
四、熵与人类社会结构在社会结构的研究中,列维-斯特劳斯认为社会结构可以被视为一种符号系统,其复杂性和动态性可以用熵的概念来描述。
在社会结构的演化过程中,各种因素相互作用,使得系统的无序程度增加,类似于物理学中的熵增加过程。
这种无序程度的增加也意味着系统的不确定性和随机性的增加,从而使得社会结构的演化变得复杂和难以预测。
五、熵与文化演化在文化的研究中,列维-斯特劳斯认为文化可以被视为一种符号系统,其复杂性和动态性同样可以用熵的概念来描述。
文化的演化和发展过程类似于物理学中的熵增加过程,各种文化元素相互作用和影响,使得文化的无序程度增加,同时产生了新的文化现象和元素。