非参数检验nonparametrictest
- 格式:ppt
- 大小:278.50 KB
- 文档页数:39
常用的非参数检验(NonparametricTests)总结非参数检验(Nonparametric tests)是统计分析方法的重要组成部分,它与参数检验共同构成统计推断的基本内容。
参数检验是在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法。
但是,在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。
非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。
由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数”检验。
•两独立样本的非参数检验两独立样本的非参数检验是在对总体分布不甚了解的情况下,通过对两组独立样本的分析来推断样本来自的两个总体的分布等是否存在显著差异的方法。
独立样本是指在一个总体中随机抽样对在另一个总体中随机抽样没有影响的情况下所获得的样本。
SPSS中提供了多种两独立样本的非参数检验方法,其中包括曼-惠特尼U检验、K-S检验、W-W游程检验、极端反应检验等。
某工厂用甲乙两种不同的工艺生产同一种产品。
如果希望检验两种工艺下产品的使用是否存在显著差异,可从两种工艺生产出的产品中随机抽样,得到各自的使用寿命数据。
甲工艺:675 682 692 679 669 661 693乙工艺:662 649 672 663 650 651 646 652(1)曼-惠特尼U检验两独立样本的曼-惠特尼U检验可用于对两总体分布的比例判断。
其原假设:两组独立样本来自的两总体分布无显著差异。
曼-惠特尼U 检验通过对两组样本平均秩的研究来实现判断。
秩简单说就是变量值排序的名次,可以将数据按升序排列,每个变量值都会有一个在整个变量值序列中的位置或名次,这个位置或名次就是变量值的秩。
(2)K-S检验K-S检验不仅能够检验单个总体是否服从某一理论分布,还能够检验两总体分布是否存在显著差异。
目录第八章非参数检验 ________________________________________________________________________ 2第一节非参数检验概述 __________________________________________________________________ 3第二节单样本非参数检验 ________________________________________________________________ 3χ拟合优度检验__________________________________________________________________ 3一、2二、单样本K-S检验___________________________________________________________________ 5三、符号检验 _________________________________________________________________________ 6四、游程检验 _________________________________________________________________________ 7χ的独立性检验_________________________________________________________ 8第三节列联表与2第四节等级相关分析 ___________________________________________________________________ 10一、Spearman等级相关系数____________________________________________________________11二、Kendall等级相关系数 _____________________________________________________________ 12英文摘要与关键词 ______________________________________________________________________ 14习题 _________________________________________________________________________________ 15第八章非参数检验通过本章的学习,我们应该知道:1.非参数检验的优缺点2.常用的单样本非参数检验方法3.列联表与卡方的独立性检验4.S pearman和Kendall 等级相关系数的计算第一节 非参数检验概述非参数检验(nonparametric tests )是相对于参数检验而言的。
非参数统计分析――Nonparametric Tests菜单详解非参数统计分析――Nonparametric Tests菜单详解平时我们使用的统计推断方法大多为参数统计方法,它们都是在已知总体分布的条件下,对相应分布的总体参数进行估计和检验。
比如单样本u检验就是假定该样本所在总体服从正态分布,然后推断总体的均数是否和已知的总体均数相同。
本节要讨论的统计方法着眼点不是总体参数,而是总体分布情况,即研究目标总体的分布是否与已知理论分布相同,或者各样本所在的分布位置/形状是否相同。
由于这一类方法不涉及总体参数,因而称为非参数统计方法。
SPSS的的Nonparametric Tests菜单中一共提供了8种非参数分析方法,它们可以被分为两大类:1、分布类型检验方法:亦称拟合优度检验方法。
即检验样本所在总体是否服从已知的理论分布。
具体包括:Chi-square test:用卡方检验来检验二项/多项分类变量的几个取值所占百分比是否和我们期望的比例有没有统计学差异。
Binomial Test:用于检测所给的变量是否符合二项分布,变量可以是两分类的,也可以使连续性变量,然后按你给出的分界点一分为二。
Runs Test:用于检验样本序列随机性。
观察某变量的取值是否是围绕着某个数值随机地上下波动,该数值可以是均数、中位数、众数或人为制定。
一般来说,如果该检验P值有统计学意义,则提示有其他变量对该变量的取值有影响,或该变量存在自相关。
One-Sample Kolmogorov-Smirnov Test:采用柯尔莫哥诺夫-斯米尔诺夫检验来分析变量是否符合某种分布,可以检验的分布有正态分布、均匀分布、Poission分布和指数分布。
2、分布位置检验方法:用于检验样本所在总体的分布位置/形状是否相同。
具体包括:Two-Independent-Samples Tests:即成组设计的两独立样本的秩和检验。
Tests for Several Independent Samples:成组设计的多个独立样本的秩和检验,此处不提供两两比较方法。
非参数统计分析――Nonparametric Tests菜单详解非参数统计分析――Nonparametric Tests菜单详解平时我们使用的统计推断方法大多为参数统计方法,它们都是在已知总体分布的条件下,对相应分布的总体参数进行估计和检验。
比如单样本u检验就是假定该样本所在总体服从正态分布,然后推断总体的均数是否和已知的总体均数相同。
本节要讨论的统计方法着眼点不是总体参数,而是总体分布情况,即研究目标总体的分布是否与已知理论分布相同,或者各样本所在的分布位置/形状是否相同。
由于这一类方法不涉及总体参数,因而称为非参数统计方法。
SPSS的的Nonparametric Tests菜单中一共提供了8种非参数分析方法,它们可以被分为两大类:1、分布类型检验方法:亦称拟合优度检验方法。
即检验样本所在总体是否服从已知的理论分布。
具体包括:Chi-square test:用卡方检验来检验二项/多项分类变量的几个取值所占百分比是否和我们期望的比例有没有统计学差异。
Binomial Test:用于检测所给的变量是否符合二项分布,变量可以是两分类的,也可以使连续性变量,然后按你给出的分界点一分为二。
Runs Test:用于检验样本序列随机性。
观察某变量的取值是否是围绕着某个数值随机地上下波动,该数值可以是均数、中位数、众数或人为制定。
一般来说,如果该检验P值有统计学意义,则提示有其他变量对该变量的取值有影响,或该变量存在自相关。
One-Sample Kolmogorov-Smirnov Test:采用柯尔莫哥诺夫-斯米尔诺夫检验来分析变量是否符合某种分布,可以检验的分布有正态分布、均匀分布、Poission分布和指数分布。
2、分布位置检验方法:用于检验样本所在总体的分布位置/形状是否相同。
具体包括:Two-Independent-Samples Tests:即成组设计的两独立样本的秩和检验。
Tests for Several Independent Samples:成组设计的多个独立样本的秩和检验,此处不提供两两比较方法。
非参数检验参数检验方法,尤其是对计量资料,需要对研究的总体作一些比较严格的假定。
例如t检验法要求总体分布是正态分布等。
在实际工作中的许多资料不符合这种要求,因此以上的参数检验方法的使用受到了限制。
近代统计学家发明了对总体分布不必作限制性假定的检验技术,这种技术称为非参数检验(Nonparametric tests)。
非参数检验法是指在总体不服从正态分布或分布情况不明时,用来检验数据资料是否来自相同总体假设的一类检验方法。
由于它的假定前堤比参数检验方法少的多,而且在收集资料方面也十分简单,例如可以用“等级”或“符号”来评定观察的结果等,故这类方法在实际中有着广泛的应用。
第一节两相关样本的显著性检验1.1 符号检验法在配对实验中,将每对(或同一)实验单位(或先后)给予两种不同的处理,比较两种处理的效果有无差异或比较一组实验单位处理先后有无不同。
凡配对计量资料不服从正态分布要求时,可选用符号检验法(Sign test)。
例题1 有x,y 12对数据,它们的数值及相差符号由表1给出。
表1 本例的数据资料序号 1 2 3 4 5 6 7 8 9 10 11 12X 3 1 6 3 2 1 4 7 3 8 4 5Y 2 4 4 7 2 2 2 5 3 6 2 2 问这两个序列数值的差异是否具有显著性(α=0.05)?1.2 符号秩和检验法符号检验中只考虑配对数据x i-y i的符号,计算十分简便,但因没有考虑到x i-y i 差值的大小,因此对资料的利用不够充分,检验的灵敏度也不够好。
符号秩和检验法是上述方法的改进,由于关注到了差值的大小,故效果较好。
凡配对计量或计数的资料,可选用符号秩和检验法(Wilcoxon法)。
例题2 为研究长跑运动对增强普通高校学生的心功能效果,对某学院15名男生进行实验,经过5个月的长跑锻炼后观察其晨脉变化情况。
锻炼前后的晨脉数据如下。
问锻炼前后晨脉间的差异有无显著性(α=0.05)?表2 长跑锻炼前后的晨脉数、差值及其秩次序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 前70 76 56 63 63 56 58 60 65 65 75 66 56 59 70 后46 54 60 64 48 55 54 45 51 48 56 48 64 50 54 差值22 22 -4 -1 15 1 4 15 14 17 19 18 -8 9 16 秩次14.5 14.5 –3.5 –1.5 8.5 1.5 3.5 8.5 7 11 13 12 -5 6 101.3 用spss对两相关样本进行非参数检验spss软件包的Nonparametric Tests过程为两相关样本通常提供了3种非参数检验方法,它们是:Sign 检验,用于对两相关样本的总体做符号检验。
第十二章 非参数检验――Nonparametric Tests菜单详解(医学统计之星:张文彤)§12.1 概论作为二十一世纪统计理论的三大发展方向之一,非参数统计是统计分析的重要组成部分。
可是与之很不相称的是他针对一般性统计分析的理论发展远远不及参数检验完善,因而比较完善的可供使用的方法也不多。
比如多组均数间的两两比较,虽然已有好几种方法可资利用,但由于在理论上仍存在争议,几种权威的统计软件(如SAS和SPSS)均没有提供这方面的方法。
虽然这些洋统计软件没有提供两两比较的非参数方法,但国产的统计软件大都是提供了的(国情不同嘛),因此建议大家:如果真的要做这方面的非参数分析,不如直接用PEMS、SPLMWIN、NOSA等国产软件,免得用SPSS等只能做一半。
在SPSS中,几乎所有的非参数分析方法都被放入了Nonparametric Tests菜单中,具体来讲有以下几种:∙Chi-square test:用卡方检验来检验变量的几个取值所占百分比是否和我们期望的比例没有统计学差异。
比如我们在人群中抽取了一个样本,可以用该方法来分析四种血型所占的比例是否相同(都是25%),或者是否符合我们所给出的一个比例(如分别为10%、30%、40%和20%,我随便写的)。
请注意该检验和我们一般所用的卡方不太一样,我们一般左的卡方要用crosstable菜单来完成,而不是这里。
∙Binomial Test:用于检测所给的变量是否符合二项分布,变量可以是两分类的,也可以使连续性变量,然后按你给出的分界点一刀两断。
∙Runs Test:用于检验某变量的取值是否是围绕着某个数值随机地上下波动,该数值可以是均数、中位数、众数或人为制定。
一般来说,如果该检验P值有统计学意义,则提示有其他变量对该变量的取值有影响,或该变量存在自相关。
∙One-Sample Kolmogorov-Smirnov Test:采用柯尔莫诺夫-斯米尔诺夫检验来分析变量是否符合某种分布,可以检验的分布有正态分布、均匀分布、Poission分布和指数分布。
非参数检验非参数检验(non-parametric test )又称为分布自由检验,一种与总体分布状况无关的检验方法,它不依赖于总体分布的形式,应用时可以不考虑被研究的对象为何种分布以及分布是否已知。
非参数检验主要是利用样本数据之间的大小比较及大小顺序,对两个或多个样本所属总体是否相同进行检验,而不对总体分布的参数如平均数、标准差等进行统计推断。
1.1两组样本数据的检验 1.1.1 配对样本数据符号检验法设(1X ,1Y ),(2X ,2Y ),…, (n X ,n Y )是取自二维总体(X,Y)的配对样本,容量为n,其观测值为(x 1, y 1),(x 2, y 2),…,(x n , y n ),当两个分布函数未知时,可用符号检验法检验这两个总体的分布是否有显著的差异。
其原理是:如果两个总体的分布相同,便应该有5.0}{}{=<=>Y X P Y X P令⎪⎩⎪⎨⎧<>=i i ii iY X Y X Z 若若,0,1,n i ,,2,1 =,则各个iZ 相互独立且都服从B(1,0.5)分布,∑iiZ 服从)5.0,(n B 分布。
因此可求出使α5.0)5.0(}{0≤=≤∑∑=ck nkn ii C c Z Pα5.0)5.0(}{≤=-≥∑∑-=n cn k nkn ii C c n Z P都成立的同一个最大的c 值αc ,这里的α为显著性水平。
设0H :两个总体的分布相同,则检验此假设0H 的放弃域为αc zii≤∑或αc n z ii -≥∑。
进一步,根据i Z (i =1,2,…,n)的定义,以上检验的放弃域又可表示为iiY X-的观测值i i y x -中符号为正的个数不超过αc 或不少于n -αc , αc 的值可查符号检验用表。
下表表1-1为符号检验用表的一部分.表1-1 部分符号检验用表α\ n 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0.01 0 0 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 0.05 0 0 1 1 1 2 2 2 3 3 4 4 4 5 5 5 6 6 7 0.10111223334455566777例如,当n=11,α=0.05,0.5α=0.025时,计算∑∑==≤ck nk n ii C c Z P 0)5.0(}{得到c=0,P=0.00049;c=1,P=0.00586;c=2,P=0.03271;c=3,P=0.11328; c=4,P=0.27441;c=5,P=0.5; c=6,P=0.72559;c=7,P=0.88672; c=8,P=0.96729;c=9,P=0.99414;c=10,P=0.99951;c=11,P=1; 因此,10-,1==ααc n c符号检验法的步骤如下:①提出假设H 0:两个总体的分布相同; ②计算i iy x -并数出各个差值中符号为正的个数n + 及符号为负的个数n -;③根据α由符号检验用表中查出相应于n(除去i i y x -为0的个数)的a c ; ④当min(n +,n -)≤c α时放弃H 0,否则接受H 0。
非参数检验介绍1 关于非参数的一些常识•经典统计的多数检验都假定了总体的背景分布。
•但在总体未知时,如果假定的总体和真实总体不符,那么就不适宜用通常的检验。
•这时如果利用传统的假定分布已知的检验,就会产生错误甚至灾难。
•无需假定总体分布的具体形式,仅仅依赖于数据观测值的相对大小(秩)或零假设下等可能的概率等和数据本身的具体总体分布无关的性质进行的检验都称为非参数检验(nonparametric testing)。
1 关于非参数的一些常识•这些非参数检验在总体分布未知时有很大的优越性。
它总是比传统检验安全。
•在总体分布形式已知时,非参数检验不如传统方法效率高。
这是因为非参数方法利用的信息要少些。
往往在传统方法可以拒绝零假设的情况,非参数检验无法拒绝。
•但非参数统计在总体未知时效率要比传统方法要高,有时要高很多。
是否用非参数统计方法,要根据对总体分布的了解程度来确定。
•这里介绍一些非参数检验。
•关于非参数方法的确切定义并不很明确。
我们就其最广泛的意义来理解。
•在计算中,诸如列联表分析中的许多问题都有精确方法,Monte Carlo 抽样方法和用于大样本的渐近方法等选择。
精确方法比较费时间,后两种要粗糙一些,但要快些。
秩(rank )•非参数检验中秩是最常使用的概念。
什么是一个数据的秩呢?一般来说,秩就是该数据按照升幂排列之后,每个观测值的位置。
例如我们有下面数据X i 159183178513719R i75918426310这下面一行(记为R i )就是上面一行数据X i 的秩。
秩(rank )•利用秩的大小进行推断就避免了不知道背景分布的困难。
这也是非参数检验的优点。
•多数非参数检验明显地或隐含地利用了秩的性质;但也有一些非参数方法没有涉及秩的性质。
2 单样本检验2.1单样本中位数(α-分位数)符号检验•我们知道某点为中位数(α-分位数)意味着一个数小于该点的概率应该为0.5(α).•因此,一个观测值小于该点(或与该点之差的符号为负号)的概率为0.5(α)。