参数检验与非参数检验的区别及优缺点课堂
- 格式:ppt
- 大小:1.75 MB
- 文档页数:44
参数检验和非参数检验参数检验和非参数检验是统计学中两种常用的假设检验方法。
参数检验假设总体服从其中一种特定的概率分布,而非参数检验则不对总体的概率分布进行特定的假设。
本文将分析和比较这两种假设检验方法,并讨论它们的优缺点和适用范围。
参数检验的基本思想是假设总体的概率分布属于一些已知的参数化分布族,例如正态分布或泊松分布。
然后根据样本数据计算出统计量的观察值,并基于它们进行假设检验。
常见的参数检验方法有t检验、F检验和卡方检验等。
以t检验为例,它适用于研究两个样本均值之间是否存在显著差异的情况。
假设我们有两组样本数据,分别服从正态分布。
可以使用t检验来计算两组样本均值的差异是否显著。
t检验基于样本均值和标准差来估计总体均值的差异,并通过计算t值和查表或计算p值来判断差异是否显著。
参数检验的优点是它们对总体概率分布的假设比较明确,计算方法相对简单,适用于数据符合特定分布的情况。
此外,参数检验通常具有较好的效率和统计性质。
然而,参数检验也有一些限制和缺点。
首先,参数检验通常对数据的分布假设要求较高,如果数据不符合指定的分布假设,则结果可能不可靠。
另外,参数检验对样本大小的要求较高,需要较大的样本才能获得可靠的检验结果。
此外,参数检验对异常值和离群值比较敏感,这可能会导致统计结论的错误。
与参数检验相比,非参数检验更加灵活,不需要对总体的概率分布做出特定的假设。
它适用于更广泛的数据类型和样本分布。
常见的非参数检验方法有Wilcoxon符号秩检验、Mann-Whitney U检验和Kruskal-Wallis检验等。
以Wilcoxon符号秩检验为例,它适用于比较两个相关样本的差异。
这个检验不要求样本数据满足正态分布的假设,它基于样本差值的秩次来判断差异是否显著。
非参数检验的优点在于其适用范围广泛,不需要对总体分布做出特定假设,对数据平均性和对称性的要求较低,对异常值和离群值的鲁棒性较好。
此外,非参数检验对样本大小的要求较低,可以在较小的样本情况下获得可靠的结果。
参数检验与非参数检验的区别与应用统计学中的参数检验和非参数检验是两种常用的假设检验方法。
本文将详细介绍参数检验和非参数检验的区别以及它们在实际应用中的具体场景。
一、参数检验参数检验是建立在对总体分布形态有所假定的基础上,通过对样本数据进行统计推断,来对总体参数进行假设检验。
它通常要求总体分布服从特定的概率分布,如正态分布。
参数检验的常见方法有:1. 单样本t检验:用于检验样本均值是否与已知总体均值有显著差异。
2. 独立样本t检验:用于比较两个独立样本的均值是否存在显著差异。
3. 配对样本t检验:用于比较同一组样本在不同条件下的均值是否存在显著差异。
4. 方差分析:用于比较多个样本组之间的均值是否存在显著差异。
参数检验的优势在于其具有较高的效率和灵敏度,适用于对总体分布形态有所了解的情况。
但它也有一些限制,如对分布形态的假设可能不成立,以及对样本量和数据类型的要求较高。
二、非参数检验非参数检验是对总体分布形态没有具体假设的情况下,通过对样本数据进行统计推断,来对总体参数进行假设检验。
非参数检验不少于参数检验的分析方法,常见的包括:1. Wilcoxon符号秩检验:用于比较两个相关样本的差异是否存在显著差异。
2. Mann-Whitney U检验:用于比较两个独立样本的中位数是否存在显著差异。
3. Kruskal-Wallis检验:用于比较多个样本组的中位数是否存在显著差异。
非参数检验的优势在于对总体分布形态没有具体要求,适用于对总体分布了解较少或不了解的情况。
它相对于参数检验来说更具广泛的适用性,但由于其推断效果较差,需要更大的样本量才能达到相同的检验效果。
三、参数检验与非参数检验的区别1. 假设要求:参数检验对总体分布形态有假设要求,如正态分布假设,而非参数检验对总体分布形态没有具体要求。
2. 统计量选择:参数检验基于已知概率分布,可以选择特定的统计量如t值、F值等;而非参数检验使用秩次统计量,如秩和、秩和秩二样序差等。
第十一章 非参数检验前面有关章节讨论的参数检验都要求总体服从一定的分布,对总体参数的检验是建立在这种分布基础上的。
例如,两样本平均数比较的t 检验和多个样本平均数比较的F 检验,都要求总体服从正态分布,推断两个或多个总体平均数是否相等。
本章引入另一类检验——非参数检验(non-parametric test )。
非参数检验是一种与总体分布状况无关的检验方法,它不依赖于总体分布的形式,应用时可以不考虑被研究的对象为何种分布以及分布是否已知。
非参数检验主要是利用样本数据之间的大小比较及大小顺序,对两个或多个样本所属总体是否相同进行检验,而不对总体分布的参数如平均数、标准差等进行统计推断。
当样本观测值的总体分布类型未知或知之甚少,无法肯定其性质,特别是观测值明显偏离正态分布,不具备参数检验的应用条件时,常用非参数检验。
非参数检验具有计算简便、直观,易于掌握,检验速度较快等优点。
非参数检验法从实质上讲,只是检验总体分布的位置(中位数)是否相同,所以对于总体分布已知的样本也可以采用非参数检验法,但是由于它不能充分利用样本内所有的数量信息,检验的效率一般要低于参数检验方法。
例如,非配对资料的秩和检验,其效率为t 检验的86.4%,就是说以相同概率判断出差异显著,t 检验所需的样本个数要少13.6%。
非参数检验内容很多,本章只介绍常用的符号检验(sign test ),秩和检验(rank-sum test )和等级相关分析(rank correlation analysis )三种。
第一节 符号检验一、配对资料的符号检验(一)配对资料符号检验的意义 配对资料符号检验是根据样本各对数据之差的正负符号多少来检验两个总体分布位置的异同,而不去考虑差值的大小。
每对数据之差为正值用“+”表示,负值用“-”表示。
可以设想如果两个总体分布位置相同,则正或负出现的次数应该相等。
若不完全相等,至少不应相差过大,否则超过一定的临界值就认为两个样本所来自的两个总体差异显著,分布的位置不同。
非参数检验相比于参数检验的缺点
1. 较低的功效:在样本容量较小或者总体分布相对简单的
情况下,非参数检验的功效通常会比参数检验低。
这意味着非参数检验可能会更难发现存在的显著差异。
2. 需要更多的数据:为了能够产生可靠的结果,非参数检验可能需要比参数检验更多的样本数据。
3. 难以确定效应大小:与参数检验相比,非参数检验往往难以确定效应的大小。
当我们使用参数检验时,我们可以根据参数的估计值计算效应大小。
但是,在非参数检验中,我们通常需要使用基于排名或任意单位的统计量,这使得效应大小的确定更加困难。
4. 不适用于某些问题:一些问题可能需要特定类型的参数
检验。
例如,当我们需要测量两个总体均值之间的差异时,T检验或方差分析通常比非参数检验更适合。
5. 理解和解释结果可能更困难:与参数检验相比,非参数检验可能更难理解和解释其结果。
这是因为非参数检验通常使用一些非常抽象的统计量,这些统计量难以解释其实际意义。
在这种情况下,解释结果可能需要更深入的统计知识和分析
技能。
参数检验与非参数检验一、参数检验与非参数检验的区别(1)参数检验:一般是数据的总体分布已知的情况下,对数据分布的参数是否落在相应范围内进行检验。
是对参数平均值、方差进行的统计检验,是推断统计的重要组成部分。
适用条件:当总体分布已知(如总体为正态分布),根据样本数据对总体分布的统计参数进行推断。
此时,总体的分布形式是给定的或是假定的,只是其中一些参数的取值或范围未知,分析的主要目的是估计参数的取值,或对其进行某种统计检验。
这类问题往往用参数检验来进行统计推断。
它不仅仅能够对总体的特征参数进行推断,还能够实现两个或多个总体的参数进行比较。
(2)非参数检验:一般是在不知道数据总体分布的前提下,检验数据的分布情况。
适用条件:在数据分析过程中,由于种种原因,往往无法对总体分布形态作简单假定,此时参数检验不再适用。
非参数检验正是基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。
二、参数检验方法及适用条件三、非参数检验方法及适用条件四、使用方法当分析某个因素对变量的影响差异时,即检验该因素分类的若干个样本差异:(1)如果因素为两个,使用独立样本T-检验,来分析两个总体平均数相等的显著性;结果判定:先看方差齐性F检验结果,再看均值相等性的t检验结果,即a.如果方差齐性显著性>0.05,则表明方差齐性显著,再看第一行的检验统计值t及显著性p(p<0.05表示差异明显);b.如果方差齐性显著性<=0.05,则表明方差显著不齐,再看第二行的检验统计值t及显著性p(p<0.05表示差异明显);(2)如果因素为多个,使用单因素方差检验(即F检验),来分析该因素的影响差异。
结果判定:方差齐性显著则看ANOVA的检验统计值F及其显著性p。
一.单因素方差分析(one-way ANOVA),用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。
完全随机设计(completely random design)不考虑个体差异的影响,仅涉及一个处理因素,但可以有两个或多个水平,所以亦称单因素实验设计。
在实验研究中按随机化原则将受试对象随机分配到一个处理因素的多个水平中去,然后观察各组的试验效应;在观察研究(调查)中按某个研究因素的不同水平分组,比较该因素的效应。
二.T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。
t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。
它与Z检验、卡方检验并列。
t检验t检验分为单总体检验和双总体检验。
单总体t检验时检验一个样本平均数与一个已知的总体平均数的差异是否显著。
当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布。
单总体t检验统计量为:双总体t检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。
双总体t 检验又分为两种情况,一是独立样本t检验,一是配对样本t检验。
独立样本t检验统计量为:S1 和 S2 为两样本方差;n1 和n2 为两样本容量。
(上面的公式是1/n1 + 1/n2 不是减!)配对样本t检验统计量为:t检验的适用条件(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准差;(3) 样本来自正态或近似正态总体。
t检验步骤以单总体t检验为例说明:问题:难产儿出生体重n=35, X拔=3.42,S =0.40,一般婴儿出生体重μ0=3.30(大规模调查获得),问相同否?解:1.建立假设、确定检验水准αH0:μ = μ0 (无效假设,null hypothesis)H1:μ ≠ μ0(备择假设,alternative hypothesis,)双侧检验,检验水准:α=0.052.计算检验统计量3.查相应界值表,确定P值,下结论查附表1,t0.05 / 2.34 = 2.032,t < t0.05 / 2.34,P >0.05,按α=0.05水准,不拒绝H0,两者的差别无统计学意义例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。