正弦交流电路中的正弦电压和电流等物理量
- 格式:ppt
- 大小:940.00 KB
- 文档页数:49
交流电“四值”的理解与应用交变电流的大小和方向都随时间作周期性变化,所以要准确描述交变电流的产生的效果,需要用到“最大值、有效值、瞬时值、平均值”四个物理量。
交流电的“最大值、有效值、瞬时值、平均值”常称为交流电的“四值”。
这四个类似但又有区别的物理量,容易造成混乱,理解好“四值”对于学习交流电有极大的帮助。
一、准确把握概念1. 瞬时值:交流电流、电压、电动势在某一时刻所对应的值称为它们的瞬时值。
瞬时值随时间的变化而变化。
不同时刻,瞬时值的大小和方向均不同。
交流电的瞬时值取决于它的周期、幅值和初相位。
以正弦交流电为例(从中性面开始计时)。
则有:其瞬时值为:e=E m sinωt i=I m sinωt u=U m sinωt2.最大值:交变电流的最大值是指交变电流在一个周期内所能达到的最大值,它可以用来表示交变电流的强弱或电压的高低。
以正弦交流电为例。
则有:E m =nB ωS ,此时电路中的电流强度及用电器两端的电压都具有最大值,即I m =r R E m +, U m =I m R 。
3.有效值:交变电流的有效值是根据电流的热效应来定义的,让交变电流和恒定电流通过相同阻值的电阻,如果在相同的时间内产生的热量相等,我们就把这一恒定电流的数值叫做这一交变电流的有效值。
4.平均值:交变电流的平均值是指在某一段时间内产生的交变电流对时间的平均值。
对于某一段时间或某一过程,其平均感应电动势: I t N E 平均电流→∆∆∙=φ=U rR E 平均电压→+=I R ∙二、正弦交流电的“四值”之间的关系1、正弦交流电的有效值与最大值的关系: U=m mU U 707.02=,I=m mI I 707.02=注:I U 是电流、电压的有效值,I m 、U m 是电流、电压的最大值2、正弦交流电的平均值与最大值和有效值的关系:m m P I I I 637.02==π,m m P U U U 637.02==π,I I P 90.0=,U U P 90.0=注:I p 、U p 是电流、电压的平均值三、“四值”的应用例1、有一正弦式交流电源,电压有效值U=120V ,频率为f=50Hz 向一霓虹灯供电,若霓虹灯的激发电压和熄灭电压均为U 0=602V ,试估算在一个周期内,霓虹灯发光时间有多长?为什么人眼不能感到这种忽明忽暗的现象?解析:如图1所示,画出一个周期内交流电的U-t 图象,其中阴影部分对应的时间t 1表示霓虹灯不能发光的时间,根据对称性,一个周期内霓虹灯不能发光的时间为4t 1,据u=U m sinωt 求得t 1=(1/600)s 再由对称性一个周期内能发光的时间:t=T-4t 1=(1/75)s 很明显霓虹灯在工作过程中是忽明忽暗的,而熄灭的时间间隔只有(1/300)s ,(如图1中t 2时刻到t 3时刻)由于人的眼睛具有视觉暂留现象,而这个视觉暂留时间约(1/16)s 为远大于(1/300)s ,因此经过灯光刺激的人眼不会因为短暂的熄灭而有所感觉。
电路知识:正弦交流电路与其分析方法“相量法”(上)“相量是什么?它和向量、矢量有什么区别?”,相信不少电工朋友都有着这样的疑问。
正如标题所示,相量是用于正弦交流电路分析的,换言之,离开正弦交流电路,相量将毫无意义。
而它与向量、矢量的区别,在看完本文后,你将能给出自己的答案。
掌握相量法,我们就可以快速并简单地对正弦交流电路进行分析、计算并理解其各种特性,包括电压电流、阻抗、有功功率以及无功功率等。
基于相量法的便捷性,本文将给大家详细讲解相量的含义以及运算,让大家学以致用,在交流电路分析中得心应手。
相量用于表示正弦交流电路中的各种正弦量,如电压、电流、磁通等。
所谓正弦量,是指电路中按正弦规律变化的各种物理量。
所以在理解相量前,我们有必要指定什么是正弦交流电路以及正弦量。
NO. 1正弦交流电路与正弦量电路有交流和直流之分,如下图1-1所示为不同形式的交流量和直流量波形图。
图1-1图(1)所示为恒定直流量的波形,例如电池的电压,在一定情况下就保持为恒定值。
而图(2)就是本文的主角,正弦交流量,即正弦量。
比较图1-1中的几种波形,可以发现,所谓直流量,不仅仅是指恒定直流量,还包括大小变化的各种时变量,如图(3)、图(6)的锯齿波,它们大小随时间变化,但方向保持不变,所以它们是直流量。
而交流,区别于直流,是指电路中的电压、电流等物理量方向发生变化,但大小不一定变化,例如图(4)的矩形波,该电流方向作周期变化,但其大小保持不变。
含有正弦电源且电路中各部分产生的电压、电流均按正弦规律变化的电路,就是正弦交流电路。
所谓正弦规律变化,正如图1-1中的图(2)所示。
在这里要说明一点,“正弦规律”不一定指正弦函数,其实余弦函数也是按正弦规律变化的,因为余弦函数可以由正弦函数左移90°得到。
所以上文提到的“正弦规律”指的是一种变化规律,而不是指正弦函数。
例如图1-2所示的电流和电压,都属于正弦量。
但在同一个电路中,一旦确定所用的函数,那么所有正弦量都应该用同一种函数表示,例如确定用sine正弦函数,就不能出现consine余弦函数,即使有,也应该根据三角函数换算转化为sine函数表示,这也是为了便于它们进行相位的比较。
交流电的基本物理量
交流电的基本物理量包括以下几个方面:
1. 电压(Voltage):也被称为电势差,是衡量电能转化和传输能力的物理量。
在交流电中,电压是随时间变化的正弦波形式。
2. 电流(Current):代表电荷在电路中的流动,是一种由带电粒子运动而产生的现象。
在交流电中,电流也是随时间变化的正弦波形式。
3. 频率(Frequency):表示单位时间内交流电信号变化的次数。
常用单位是赫兹(Hz),即每秒变化的周期数。
4. 周期(Period):是指一个完整的周期所需要的时间,它与频率成反比关系。
周期可以通过频率的倒数来计算。
5. 相位(Phase):描述交流电信号波形在时间上相对于参考信号的位置。
相位通常用角度来表示,单位为度或弧度。
这些基本物理量在交流电中起着重要的作用,了解它们
可以帮助我们理解电路的行为和性质,并进行相关的电路分析和设计。
第二章正弦交流电路2.1.1 正弦量的三要素及表示方法(1)正弦交流电路:如果在线性电路中施加正弦激励(正弦交流电压源或正弦交流电流源),则电路中的所有响应在电路达到稳态时,也都是与激励同频率的正弦量,这样的电路称为正弦交流电路。
(2)正弦交流电压或正弦交流电流等物理量统称为正弦量,它们的特征表现在变化的快慢、大小及初值3个方面,分别由频率(或周期)、幅值(或有效值)和初相位来确定。
所以称频率、幅值(或有效值)和初相位为正弦量的三要素。
(3)因为正弦量具有3个要素,它们完全可以表达对应的正弦量的特点和共性。
所以,只要能够反映出正弦的三要素,就可以找到多种表示正弦量的方法,其常见的表示方法如下。
①三角函数表示法和正弦波形图示法,比如正弦电压u=U m sin(ωt+φ),其正弦波形如图2.1所示,但是正弦量的这两种表示方法都不利于计算。
②旋转矢量表示法,由于复平面上一个逆时针方向旋转的复数能够反映出正弦量的3个要素,因此可用来表示正弦量。
③相量及相量图表示法,由于正弦交流电路中的激励和响应均为同频率的正弦量,故可在已知频率的情况下,只研究幅值和初相位的问题。
这样,不仅可以用旋转矢量表示正弦量,而且也能把正弦量表示成复数(该复数与一个正弦量对应,称为相量)。
图2.1所示正弦电压的幅值相量和有效值相量分别为2.1.2 电路基本定律的相量形式将正弦量用相量表示有利于简化电路的分析和计算,其中电路分析的基本定律在频域中也是成立的,即为表2.1的电路基本定律的相量形式。
当用相量来表示正弦电压与电流,用复阻抗来表示电阻、电感和电容时,正弦交流电路的分析与计算也就类似于直流电路,复阻抗的串并联等效、支路电流法、叠加定理和戴维宁定理等分析方法均可应用。
为了研究复杂正弦交流电路中激励与响应之间的关系,以及研究电路中能量的转换与功率问题,就必须首先掌握单一参数(电阻、电感、电容)元件在正弦交流电路中的特性(见表2.2),以作为分析复杂正弦交流电路的基础。