结构力学力矩分配法新
- 格式:pptx
- 大小:413.70 KB
- 文档页数:25
结构力学下多结点力矩分配法引言在结构力学中,力矩分配法是一种常见的分析方法,用于计算多结点约束下的力矩分配。
多结点力矩分配法通过将外加载荷分配给结构中的各个节点,以确定每个节点承载的力矩。
本文将介绍结构力学下的多结点力矩分配法的基本原理和计算方法。
原理多结点力矩分配法的原理基于以下假设:1.结构是一个刚体,可以忽略其变形。
2.结构中的每个节点都可以承受力矩,且力矩的分配是均匀的。
基于这些假设,我们可以将外加载荷分配给结构中的各个节点,并计算每个节点承载的力矩。
力矩的分配是根据节点间的刚性关系来确定的。
计算方法多结点力矩分配法可以通过以下步骤进行计算:1.确定结构的节点个数和节点编号。
2.根据结构的几何形状和边界条件,建立节点间的刚性关系。
3.将外加载荷均匀地分配给每个节点。
可以根据结构的几何形状和边界条件,考虑节点之间的距离和角度来确定各个节点的分配比例。
4.根据节点间的刚性关系,计算每个节点承载的力矩。
可以使用刚体平衡条件来计算力矩的分配。
5.检查计算结果的合理性。
根据结构的几何形状和边界条件,验证计算得到的力矩分配是否符合工程实际。
示例下面以一个简单的桁架结构为例,介绍多结点力矩分配法的计算方法。
假设桁架结构的节点个数为4,节点编号分别为1, 2, 3和4。
外加载荷为M,沿结构的纵向均匀分布。
根据桁架结构的几何形状和边界条件,建立节点间的刚性关系。
假设节点1和节点2之间的刚性系数为k1,节点2和节点3之间的刚性系数为k2,节点3和节点4之间的刚性系数为k3。
将外加载荷均匀地分配给每个节点。
假设节点1承载的力矩为M1,节点2承载的力矩为M2,节点3承载的力矩为M3,节点4承载的力矩为M4,可以得到以下关系:M1 + M2 + M3 + M4 = M根据节点间的刚性关系,可以得到以下关系:k1 * (M2 - M1) = 0k2 * (M3 - M2) = 0k3 * (M4 - M3) = 0通过这些关系,我们可以求解出每个节点承载的力矩。
《结构力学》习题集- 33 -第六章 超静定结构的计算——力矩分配法一、本章基本内容:1、基本概念:转动刚度、分配系数、传递系数、侧移刚度;(1)力矩分配法是以位移法为基础的一种渐进解法;(2)转动刚度与杆件的线刚度和远端支承情况有关;(3)杆件远端的支承情况不同,相应的传递系数也不同;(4)分配系数的值小于等于1,并且1=∑ik μ;(5)力矩分配法只适用于计算无结点线位移的结构。
2、固端力矩、结点不平衡力矩的计算;3、用力矩分配法计算多跨梁和无侧移刚架的一般步骤:(1)计算汇交于各结点的每一杆端的分配系数并确定传递系数;(2)求出各杆件的固端弯矩;(3)求出结点不平衡力矩,将其反号乘上各杆件的分配系数得到相应的分配弯矩。
然后,再将分配弯矩乘以传递系数,求出远端的传递弯矩。
按此步骤循环计算,直到不平衡力矩小到可以忽略不计为止。
(4)将每一杆端的固端弯矩、历次的分配弯矩和传递弯矩相加,求出最后杆端弯矩。
(5)校核最后杆端弯矩,作内力图。
二、习题:(一)、判断题(不作为考试题型):1、力矩分配法中的分配系数、传递系数与外来因素(荷载、温度变化等)有关。
2、若图示各杆件线刚度i 相同,则各杆A 端的转动刚度S 分别为:4 i , 3 i , i 。
AA A3、图示结构EI =常数,用力矩分配法计算时分配系数4 A μ= 4 / 11。
1l ll第六章 力矩分配法- 34 -4、图示结构用力矩分配法计算时分配系数μAB =12/,μAD =18/。
BCA D E =1i =1i =1i =1i5、用力矩分配法计算图示结构,各杆l 相同,EI =常数。
其分配系数μBA =0.8,μBC =0.2,μBD =0。
A B CD6、在力矩分配法中反复进行力矩分配及传递,结点不平衡力矩愈来愈小,主要是因为分配系数及传递系数< 1。
7、若用力矩分配法计算图示刚架,则结点A 的不平衡力矩为 −−M Pl 316。
结构力学——力矩分配法结构力学是研究物体在外力作用下的变形和破坏行为的学科。
其中,力矩分配法是一种求解结构梁的内力和变形的常用方法之一、本文将介绍力矩分配法的基本理论和应用。
首先,对于结构力学的研究,我们需要了解一些基本概念。
力矩是由力的作用点与旋转轴之间的距离和力的大小决定的。
在结构力学中,我们通常考虑作用在梁上的力和力矩。
梁是一种常见的结构元件,可以将其看作是在两个固定点之间作用的力的集合。
在力矩分配法中,我们将梁分割成若干个小段,然后逐段计算每个小段的内力和变形。
假设有一根长度为L,截面形状均匀的梁,并且在两个固定点之间施加了一系列分布力。
我们可以将梁分割成n个小段,每个小段的长度为Δx=L/n。
接下来,我们需要计算每个小段的内力和变形。
首先,我们可以根据材料力学的基本原理得出梁的拉伸、压缩和弯曲的力学方程。
然后,我们可以根据小段的切线方向和切线上的任意一点来推导出该小段的内力和弯曲方程。
最后,我们将内力分量在小段两端的力矩分配系数和位置矩分配系数进行合成,从而得出该小段的内力和弯曲方程。
在力矩分配法中,一个重要的概念是力矩分配系数。
力矩分配系数是一个无量纲的参数,用来表示力和力矩在小段两端分配的比例。
在计算力矩分配系数时,我们可以根据梁的几何形状和分布力的位置,利用力矩的基本原理进行推导。
力矩分配系数是力矩分配法的核心,它可以帮助我们计算出每个小段的内力和变形。
在实际应用中,力矩分配法通常用于求解多跨梁的内力和变形。
我们可以将多跨梁分割成若干个小段,并根据力矩分配法计算出每个小段的内力和变形。
然后,我们可以将各个小段的内力和变形进行叠加,得出整个多跨梁的内力和变形。
需要注意的是,力矩分配法具有一定的局限性。
首先,它只适用于存在弯曲变形的梁,对于其他类型的结构,如框架和板,需要采用其他的分析方法。
其次,力矩分配法仅适用于分布力作用在梁的直线部分上,对于弯曲部分或非均匀分布力的情况,需要采用其他的方法进行分析。
1. 位移法:⎩⎨⎧=+∆+∆=+∆+∆0021221211212111P P F k k F k k 2. 力矩分配法:分配系数∑=AAjAi S S μ(S 为转动刚度),∑=1μ3. 矩阵位移法(后处理法):(1)桁架:[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--------=αααααααααααααααααααααααα22222222)(sin cos sin sin cos sin cos sin cos cos sin cos sin cos sin sin cos sin cos sin cos cos sin cos l EA k e[]{}{}F k =∆, 其中{}()T 4321,,,∆∆∆∆=∆(2)连续梁:[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+++=--n nn nn n i i i i i i i i i i i i i i i i K 420244200000000244200002442000024113322221111(n 为跨数),[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++121121n n M M M K θθθ 4. 自振:(1)自振周期:gg W m k m T st ∆====πδπδππ2222 ,stgW gm m k ∆====δδω1(其中,T 为自振周期;ω为自振频率;δ为柔度系数;k 为刚度系数;W 为自重;st ∆=δW)注:k =产生单位位移所需施加的力;δ=单位力作用下产生的位移(2)柔度法:()()()⎥⎦⎤⎢⎣⎡--+±+=2121122211222211122211121421m m m m m m δδδδδδδδλ,111λω=,221λω=(21ωω≤),(3)刚度法:()⎥⎥⎦⎤⎢⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛+±⎪⎪⎭⎫ ⎝⎛+=212112*********112221112421m m k k k k m k m k m k m k ω, (3)主振型:12122222111212211m m m m Y Y δωδωδδ-=--=(4)最大位移:()[]22max 11ωθ-=sty t yδF y st =(简谐荷载()t F tP θsin =)载常数:(1)两端固定,中间加集中荷载P ,2,2,8,8P Q P Q Pl M Pl M B A B A-=+=+=-= (2)两端固定,中间加均布荷载q ,2,2,12112122ql Q ql Q ql M ql M B A B A -=+=+=-=, (3)A 端(左端)固定,右端铰支,中间加集中荷载P ,P Q P Q M Pl M B A B A 165,1611,0,163-=+==-= (4)A 端(左端)固定,右端铰支,加均布荷载q ,ql Q ql Q M ql M B A B A 83,85,0,812-=+==-=。
力矩分配法步骤一、力矩分配法概述力矩分配法是一种常用的结构力学计算方法,通过将外力作用于结构的力矩分配到各个构件上,进而求解结构的内力和变形。
本文将介绍力矩分配法的基本步骤,以帮助读者理解并运用该方法。
二、确定支座反力在应用力矩分配法之前,首先需要确定结构的支座反力。
通过平衡条件和约束条件,可以求解出支座反力的大小和方向。
三、选择适当的截面根据结构的几何形状和材料力学性质,选择适当的截面进行内力计算。
一般情况下,选择在结构中能够产生最大弯矩或剪力的截面进行计算。
四、计算截面的惯性矩根据所选截面的几何形状,计算出截面的惯性矩。
惯性矩是描述截面抗弯刚度大小的物理量,计算时需要考虑截面形状和材料的分布。
五、计算截面的受力矩根据外力作用点与截面的相对位置关系,计算出截面上的受力矩。
受力矩的计算需要考虑外力的大小和方向,以及结构的几何形状。
六、应用力矩分配公式根据力矩分配法的基本原理,将截面上的受力矩按比例分配到各个构件上。
分配的比例通常根据截面的惯性矩和构件的刚度来确定。
七、计算构件的内力根据分配到各个构件上的受力矩和构件的刚度,计算出各个构件的内力。
一般情况下,根据受力矩的大小和方向可以确定构件的弯矩和剪力。
八、计算构件的变形根据构件的内力和材料的力学性质,计算出构件的变形。
变形的计算可以采用弹性力学的基本理论,考虑构件的材料性质和几何约束条件。
九、检验计算结果对于复杂的结构系统,需要对计算结果进行检验。
可以通过平衡条件、力的平行四边形法则和位移相容性等原理来检验计算结果的准确性。
十、总结力矩分配法是一种常用的结构分析方法,可以用于求解结构的内力和变形。
通过确定支座反力、选择适当的截面、计算截面的惯性矩、计算截面的受力矩、应用力矩分配公式、计算构件的内力、计算构件的变形和检验计算结果等步骤,可以较为准确地分析结构的力学性能。
但需要注意,在应用力矩分配法时要考虑结构的实际情况和假设条件,以得到合理的计算结果。