代数式易错题(Word版 含答案)
- 格式:doc
- 大小:894.00 KB
- 文档页数:12
一、初一数学代数式解答题压轴题精选(难)1.如图,在数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.(1)求a,c的值;(2)若数轴上有一点D满足CD=2AD,则D点表示的数为________;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.①若点A向右运动,点C向左运动,AB=BC,求t的值;②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,直接写出m的值.【答案】(1)解:∵多项式x3﹣3xy29﹣20的常数项是a,次数是c.∴a=-20,c =30(2)-70或(3)解:①如下图所示:当t=0时,AB=21,BC=29. 下面分两类情况来讨论: a.点A,C在相遇前时,点A,B之间每秒缩小1个单位长度,点B,C每秒缩小4个单位长度. 在t=0时,BC -AB=8, 如果AB=BC,那么AB-BC=0,此时t= 秒, b.点A,C在相遇时,AB=BC,点A,C之间每秒缩小5个单位长度,在t=0时,AC=50,秒, c.点A,C在相遇后,BC 大于AC,不符合条件. 综上所述,t= ②当时间为t时,点A表示得数为-20+2t,点B表示得数为1+t,点C表示得数为30+3t,2AB-m×BC=2[(1+t)-(-20+2t)]-m[(30+3t)-(1+t)],=(6-2m)t+(42-29m),当6-2m=0时,上式的值不随时间t的变化而改变,此时m=3.【解析】【解答】解:(2)分三种情况讨论,•当点D在点A的左侧,∵CD=2AD,∴AD=AC=50,点C点表示的数为-20-50=-70,‚当点D在点A,C之间时,∵CD=2AD,∴AD= AC= ,点C点表示的数为-20+ =- ,ƒ当点D在点C的右侧时,AD>CD与条件CD=2AD相矛盾,不符合题意,综上所述,D点表示的数为-70或 ;【分析】(1)根据多项式 x3﹣3xy29﹣20的常数项是a,次数是c.就可得出a、c的值。
一、初一数学代数式解答题压轴题精选(难)1.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.2.解答题:(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,﹣1,﹣1.5,﹣2,+1,﹣1,﹣1,﹣0.5.这10箱苹果的总质量是多少千克?(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9.①这10枝钢笔的最高的售价和最低的售价各是几元?②当小亮卖完钢笔后是盈还是亏?【答案】(1)解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴a+b+x2﹣cdx=x2﹣x∵|x|=1,∴x=±1∴当x=1时,x2﹣x=0;当x=﹣1时,x2﹣x=2(2)解:2+1+0﹣1﹣1.5﹣2+1﹣1﹣1﹣0.5=﹣330×10+(﹣3)=897答:这10箱苹果的总质量是897千克.(3)解:①最高售价为6+9=15元最低售价为6﹣2.1=3.9元②6×10+0.5+0.7﹣1﹣1.5+0.8+1﹣1.5﹣2.1+9+0.8﹣50=16.3元答:小亮卖完钢笔后盈利16.3元.【解析】【分析】(1)根据相反数及倒数的性质即可得出a+b=0,cd=1,再根据绝对值的意义,由|x|=1,得x=±1,然后分别将a+b=0,cd=1,x=1与x=-1代入代数式,即可算出答案;(2)首先列出加法算式,算出10箱苹果,超过的千克数或不足的千克数,然后用10乘以标准质量再加上超过或不足的千克数即可算出答案;(3)用6元的基准价加上超过基准价的最大值即可得出这10枝钢笔的最高的售价,用6元的基准价加上超过基准价的最小值即可得出这10枝钢笔的最低的售价,用这十支钢笔的总售价减去进价和为正数则小亮赚钱,和为负数则小亮亏钱。
一、初一数学代数式解答题压轴题精选(难)1.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15﹪,并可用本金和利润再投资其他商品,到月末又可获利10﹪;如果月末出售可获利30﹪,但要付出仓储费用700元.(1)若商场投资元,分别用含的代数式表示月初出售和月末出售所获得的利润;(2)若商场投资40000元,问选择哪种销售方式获利较多?此时获利多少元?【答案】(1)由题意可得:该商月初出售时的利润为:15%x+(1+15%)×10%x=0.265(元);该商月末出售时的利润为:30%x-700=(0.3x-700)(元);(2)当x=40000时,该商月初出售时的利润为:0.265×40000=10600(元),该商月末出售时的利润为:0.3×40000-700=11300(元),∵11300>10600,∴选择月末出售这种方式,即若商场投资40000元,选择月末销售方式获利较多,此时获利11300元.【解析】【分析】(1)根据题意列代数式表示出月初出售和月末出售两种销售方式获得的利润即可;(2)将x=40000分别代入(1)中的代数式求值,通过比较,即可得解。
2.如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.(1)若AB=6千米,老王开车从A到D共需多少时间?(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)【答案】(1)解:若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:=2.4(小时)(2)解:从A到D所需时间不变,(答案正确不回答不扣分)设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,t===2.4(小时)【解析】【分析】(1)根据题意可以求出AB,BC,CD的长,然后根据路程除以速度等于时间,即可分别算出老王开车行三段的时间,再求出其和即可;(2)从A到D所需时间不变,设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,,然后根据路程除以速度等于时间,即可分别表示出老王开车行三段的时间,再根据异分母分式加法法则求出其和,再整体代入即可得出结论;3.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.(1)补全例题解题过程;(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).【答案】(1)解:101×50(2)解:原式=50×(2a+99b)=100a+4950b.【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.(2)仿照(1)利用加法的交换律和结合律进行计算即可.4.已知A,B在数轴上分别表示的数为m、n.(1)对照数轴完成下表:m 5﹣3﹣4﹣4n 2 0 3﹣2A、B两点间的距离________ 3________________(3)已知A,B在数轴上分别表示的数为x和﹣2,则A、B两点的距离d可表示为d=|x+2|,如果d=3,求x的值.(4)若数轴上表示数m的点位于﹣5和3之间,求|m+5|+|m﹣3|的值.【答案】(1)3;7;2(2)解:d=|m﹣n|,文字描述为:数轴上两点间的距离d等于表示两点数之差的绝对值(3)解:d=|x+2|根据题意得出:d=|x﹣(﹣2)|=|x+2|,如果d=3,那么3=|x+2|,解得x=1或﹣5(4)解:根据题意得出:∵﹣5<m<3,∴|m+5|+|m﹣3|=|5+3|=8【解析】【解答】解:(1)填表如下:m 5﹣3﹣4﹣4n 2 0 3﹣23 372A、B两点间的距离【分析】(1)结合数轴,得出两点间的距离公式,即可求解。
一、初一数学代数式解答题压轴题精选(难)1.某超市在十一长假期间对顾客实行优惠,规定如下:________元:小明妈妈一次性购300元的衣服,她实际付款________元:如果他们两人合作付款,则能少付________元. (2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款________元(用含x的式子表示,写最简结果)(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(200<a<300),两次购物小芳奶奶实际付款多少元?(用含a的式子表示)(4)如何能更省钱,请给出一些建议.【答案】(1)190;280;10(2)(0.8x+60)(3)解:100+0.9(a-100)+100+0.9×(500-100)+0.8(900-a-500)=(0.1a+790)元. 答:两次购物小芳奶奶实际付款(0.1a+790)元。
(4)解:一次性购物能更省钱。
【解析】【解答】(1)解:小明的爷爷一次性购200元的保健食品,他实际付款100+0.9×(200-100)=190元:小明妈妈一次性购300元的衣服,她实际付款100+0.9×(300-100)=280元:如果他们两人合作付款,则能少付190+280-[100+0.9×(200+300-100)]=10元.故答案为:190;280;10( 2 )解:小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款100+360+0.8(x-500)=(0.8x+60)元.故答案为:(0.8x+60)【分析】(1)根据优惠办法"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠"可球得实际付款;(2)由"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠,超过500元的,超过500元部分给予八折优惠"可列出代数式;(3)分别求出两次购物小芳奶奶实际付款的钱数,相加即可求解;(4)通过计算可知一次性购物能更省钱.2.请观察图形,并探究和解决下列问题:(1)在第n个图形中,每一横行共有________个正方形,每一竖列共有________个正方形;(2)在铺设第n个图形时,共有________个正方形;(3)某工人需用黑白两种木板按图铺设地面,如果每块黑板成本为8元,每块白木板成本6元,铺设当n=5的图形时,共需花多少钱购买木板?【答案】(1)(n+3);(n+2)(2)(n+2)(n+3)(3)解:当n=5时,有白木板5×(5+1)=30块,黑木板7×8-30=26块,共需花费26×8+30×6=388(元).【解析】【解答】⑴第n个图形的木板的每行有(n+3)个,每列有n+2个,故答案为:(n+3)、(n+2);⑵所用木板的总块数(n+2)(n+3),故答案为:(n+2)(n+3);【分析】本题主要考查的是探索图形规律,并根据所找到的规律求值;根据所给图形找出正方形个数的规律是解决问题的关键.3.某服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价60元.厂方在开展促销活动期间,向客户提供两种优惠方案:① 买一件夹克送一件T恤;② 夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x >30).(1)若该客户按方案①购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);若该客户按方案②购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.【答案】(1)3000;;2400;(2)解:当x=40时,方案①3000+60(40-30)=3600元方案②2400+48×40=4320元因为3600<4320,所以按方案①合算(3)解:先买30套夹克,此时T恤共有30件,剩下的10件的T恤用方案②购买,此时10件的T恤费用为:10×60×0.8=480,∴此时共花费了:3000+480=3480<3600 所以按方案①买30套夹克和T恤,再按方案②买10件夹克和T恤更省钱【解析】【解答】解:(1)方案①:夹克的费用:30×100=3000元,T恤的费用为:60(x-30)元;方案②:夹克的费用:30×100×0.8=2400元,T恤的费用为:60×0.8x=48x元;故答案为:(1)3000,60(x-30),2400,48x;【分析】(1)夹克每件定价100元,T恤每件定价60元根据向客户提供两种优惠方案,分别列式计算可求解。
七年级数学代数式求值易错题总结(含答案)一、选择题(本大题共2小题,共6.0分)1.代数式x2+ax+7−(bx2−2x−1)的值与x的取值无关,则a+b的值为()A. −1B. 1C. −2D. 2【答案】A【解析】略2.按如图所示的程序计算,若开始输入的x值为22,我们发现第1次输出结果为11,第2次输出结果为14,….请你探索第2020次输出的结果为()A. 1B. 2C. 4D. 8【答案】C【解析】略二、填空题(本大题共6小题,共18.0分)3.平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=.【答案】4【解析】【分析】本题考查与直线、线段、射线有关知识,平面内三条直线两两相交,最多有3个交点,最少有1个交点,则即可求得a+b的值.【解答】解:∵平面内三条直线两两相交,最多有3个交点,最少有1个交点,∴a+b=4.故答案为4.4.已知当x=2时,ax5+bx5+cx5+5=9,则当x=−2时,ax5+bx5+cx5+5的值是_____.【答案】1【解析】略5.设代数式A=2x+a2+1,代数式B=ax−22,a为常数.观察当x取不同值时,对应A的值,并列表如下(部分):当x=1时,B=________;若A=B,则x=________.【答案】1;4.【解析】【分析】本题考查代数式的值以及解一元一次方程,关键是求出a的值.先根据表格求出a的值,再将a的值代入求出B的值,将a的值分别代入A、B中得出含有x的方程,解含有x的一元一次方程即可.【解答】解:当x=1,A=4,∴2×1+a2+1=4,解得a=4,∴B=4×1−22=1,∵A=B,∴2x+42+1=4x−22,解得x=4,故答案是1;4.6.有三个互不相等的有理数,既可表示为−1,a+b,a的形式,又可表示为0,−ba,b的形式,则b2021a2020的值为.【答案】−1【解析】略7.若等式13+6(3x−4y)=7(4y−3x)成立,则代数式4y−3x的值为______.【答案】1【解析】解:∵13+6(3x−4y)=7(4y−3x)∴13−6(4y−3x)=7(4y−3x)∴13(4y−3x)=13,∴4y−3x=1,故答案为1.将13+6(3x−4y)=7(4y−3x)变形13−6(4y−3x)=7(4y−3x),移项得13(4y−3x)=13,求出4y−3x=1.本题考查了代数式的值,正确提取负号进行式子变形是解题的关键.8.已知3x−2y+1=0,则代数式9x−6y−2的值为__________.【答案】−5【解析】略三、解答题(本大题共3小题,共24.0分)9.2019年双“十一”期间,天猫商场某书店制定了促销方案:若一次性购书超过300元,其中300元按九五折优惠,超过300元的部分按八折优惠.(1)设一次性购买的书箱原价是a元,当a超过300时,实际付款为______元;(用含a的代数式表示,并化简)(2)若小明购书时一次性付款365元,则所购书籍的原价是多少元?(3)小冬在促销期间先后两次下单购买书箱,两次所购书籍的原价之和为600元(第一次所购书籍的原价高于第二次),两次实际共付款555元,则小冬两次购物所购书籍的原价分别是多少元?【答案】(0.8a+45)【解析】解:(1)由题意知,300×0.95+0.8(a−300)=0.8a+45故答案是:(0.8a+45);(2)设所购书籍的原价是x元,由题意知,x>300.故0.8x+45=365.解得x=400答:若小明购书时一次性付款365元,则所购书籍的原价是400元;(3)∵第一次所购书籍的原价高于第二次,∴第一次所购书籍的原价超过300元,第二次所购书籍的原价低于300元.设第一次所购书籍的原价是b元,则第二次所购书籍的原价是(600−b)元,由题意知,0.8b+45+0.95(600−b)=555解得b=450,则600−b=150.答:第一次所购书籍的原价是450元,则第二次所购书籍的原价是150元.(1)付费由两部分组成:(300×0.95)元+0.8(a−300)元;(2)设所购书籍的原价是x元,根据销售优惠方案列出方程并解答;(2)由第一次所购书籍的原价高于第二次,可得出第一次所购物品的原价超过300元且第二次所购物品的原价低于300元,设小冬第一次所购书籍的原价是b元,则第二次所购物品的原价是(600−b)元,根据促销方案列出关于z的一元一次方程,解之即可得出结论.考查了一元一次方程的应用,解题的关键是读懂题意,找到关键描述语,得到等量关系,列出方程.10.(1)求整式3a2−12a与整式−a2+12a−1的差;(2)先化简,再求值:3(x2−2xy)−(3x2−y)+12(5xy−2y+14),其中x=12,y=−4;(3)已知一个四位数M的千位数字是a、百位数字是b、十位数字是4、个位数字是c,另有一个三位数N的百位数字是(b+1)、十位数字是a、个位数字是(c−2),请说明在所有符合要求的数中,M与N的差与b、c的取值无关,并直接写出M−N 的最小值.【答案】解:(1)(3a2−12a)−(−a2+12a−1)=3a2−12a+a2−12a+1=4a2−a+1,∴整式3a2−12a与整式−a2+12a−1的差为4a2−a+1;(2)原式=3x2−6xy−3x2+y+52xy−y+7=−72xy+7,当x =12,y =−4时,原式=−72×12×(−4)+7=7+7=14;(3)∵M =1000a +100b +40+c ,N =100(b +1)+10a +(c −2),∴M −N =(1000a +100b +40+c)−[100(b +1)+10a +(c −2)]=1000a +100b +40+c −100b −100−10a −c +2=990a −58,∴M 与N 的差与b ,c 的取值无关,当a =1时,M −N 的最小值为932.【解析】本题考查了整式的加减,列代数式相关知识,熟练掌握整式的加减是解题的关键.(1)本题考查了整式的加减,掌握整式的加减运算法则是解题的关键.根据题意可得整式3a 2−12a 与整式−a 2+12a −1的差为(3a 2−12a)−(−a 2+12a −1),然后求解即可;(2)本题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.原式去括号合并得到最简结果,代入x 与y 的值计算即可求出值;(3)本题考查了整式的加减以及列代数式,解决本题的关键是进行整式的加法计算.根据数的表示方法:千位数字×1000+百位数字×100+十位数字×10+个位数字,表示出M 与N ,作差即可.11. 图1为奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为m ,其它四个数分别记为a ,b ,c ,d(如图2);图3为按某一规律排成的另一数表,用十字框任意框出5个数,记框内中间这个数为n ,其它四个数分别记为e ,f ,g ,ℎ(如图4).(1)请用含m的代数式表示b.(2)请用含n的代数式表示e.(3)若a+b+c+d=km,e+f+g+ℎ=pn,求k+3p的值.【答案】解:(1)由图1和图2得:b=m−18;(2)当n>0时,e=2−n;当n<0时,e=−2−n;(3)∵a=m−2,b=m−18,c=m+2,d=m+18,∵a+b+c+d=km,∴m−2+m−18+m+2+m+18=km,4m=km,k=4,当n>0时,e=2−n,f=18−n,g=−n−2,ℎ=−n−18,∵e+f+g+ℎ=pn,∴2−n+18−n−n−2−n−18=−4n,则此时p=−4,当n<0时,e=−n−2,f=−n−18,g=2−n,ℎ=18−n,∵e+f+g+ℎ=pn,∴−n−2−n−18−n+2−n+18=−4n,则此时p=−4,∴p=−4,∴k+3p=4+3×(−4)=−8.【解析】本题考查数式规律问题,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.(1)上下相邻的数相差18,可得结论;(2)分n>0和n<0两种情况讨论;(3)先根据前面的结论求得k和p的值,代入k+3p可得值.。
第四章代数式一、代数式及代数式的值1.下列代数式书写正确的是()A.a48 B.x÷y C.a(x+y) D.abc2.a是一个三位数,b是一个一位数,把a放在b的右边组成一个四位数,这个四位数是()A.ba B.100b+a C.1000b+a D.10b+a3.为参加“爱我校园”摄影赛,小明同学将参与植树活动的照片放大为长acm,宽acm的形状,又精心在四周加上了宽2cm的木框,则这幅摄影作品占的面积是()cm2.A.a2﹣a+4 B.a2﹣7a+16 C.a2+a+4D.a2+7a+164.李先生要用按揭贷款的方式购买一套商品房,由于银行提高了贷款利率,他想尽量减少贷款额,就将自己的全部积蓄a元交付了所需购房款的60%,其余部分向银行贷款,则李先生应向银行贷款_________元.5.有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为()A.60n厘米B.50n厘米C.(50n+10)厘米D.(60n﹣10)厘米6.今年某种药品的单价比去年便宜了10%,如果今年的单价是a元,则去年的单价是()A.(1+10%)a元 B.(1﹣10%)a元C.元 D.元7.若一个二位数为x;一个一位数字为y;把一位数字为y放到二位数为x的前面,组成一个三位数,则这个三位数可表示为_________.8.如果a是最小的正整数,b是绝对值最小的数,c与a2互为相反数,那么(a+b)2009﹣c2009=_________.9.(1)当x=2,y=﹣1时,﹣9y+6 x2+3(y)=_________;(2)已知A=3b2﹣2a2,B=ab﹣2b2﹣a2.当a=2,b=﹣时,A﹣2B=_________;(3)已知3b2=2a﹣7,代数式9b2﹣6a+4=_________.10.当x=6,y=﹣1时,代数式的值是()A.﹣5 B.﹣2 C. D.11.某长方形广场的长为a米,宽为b米,中间有一个圆形花坛,半径为c米.(1)用整式表示图中阴影部分的面积为_________m2;(2)若长方形的长a为100米,b为50米,圆形半径c为10米,则阴影部分的面积为_________m2.(π取3.14)12.如果我们用“♀”、“♂”来定义新运算:对于任意实数a,b,都有a♀b=a,a♂b=b,例如3♀2=3,3♂2=2.则(瑞♀安)♀(中♂学)=_________.13.设a*b=2a﹣3b﹣1,那么①2*(﹣3)=_________;②a*(﹣3)*(﹣4)=_________.二、整式1.已知代数式,其中整式有()A.5个B.4个C.3个D.2个2.在代数式x﹣y,3a,a2﹣y+,,xyz,,中有()A.5个整式B.4个单项式,3个多项式C.6个整式,4个单项式D.6个整式,单项式与多项式个数相同3.下列各式:,,﹣25,中单项式的个数有()A.4个B.3个C.2个D.1个4.单项式﹣26πab的次数是_________,系数是_________.5.单项式﹣34a2b5的系数是_________,次数是_________;单项式﹣的系数是_________,次数是_________.6.是_________次单项式.7.﹣的系数是_________,次数是_________.8.多项式﹣2a2b+3x2﹣π5的项数和次数分别为()A.3,2 B.3,5 C.3,3 D.2,39.m,n都是正整数,多项式x m+y n+3m+n的次数是()A.2m+2n B.m或n C.m+n D.m,n中的较大数10.多项式2x2﹣3×105xy2+y的次数是()A.1次B.2次C.3次D.8次11.一个五次多项式,它的任何一项的次数()A.都小于5 B.都等于5 C.都不大于5 D.都不小于512.若m,n为自然数,则多项式x m﹣y n﹣4m+n的次数应当是()A.m B.n C.m+n D.m,n中较大的数13.若A和B都是4次多项式,则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式14.若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A.三次多项式B.四次多项式或单项式C.七次多项式D.四次七项式三、合并同类项1.下列各式中是同类项的是()A.3x2y2和﹣3xy2B.和C.5xyz和8yz D.ab2和2.已知﹣25a2m b和7b3﹣n a4是同类项,则m+n的值是_________.3.下列各组中的两项是同类项的是()A.﹣m2和3m B.﹣m2n和﹣mn2C.8xy2和D.0.5a和0.5b4.已知9x4和3n x n是同类项,则n的值是()A.2 B.4 C.2或4 D.无法确定5.3x n y4与﹣x3y m是同类项,则2m﹣n=_________.6.若﹣x2y4n与﹣x2m y16是同类项,则m+n=_________.四、整式的加减1.x、y、z在数轴上的位置如图所示,则化简|x﹣y|+|z﹣y|的结果是()A.x﹣z B.z﹣x C.x+z﹣2y D.以上都不对2.已知﹣1<y<3,化简|y+1|+|y﹣3|=()A.4 B.﹣4 C.2y﹣2 D.﹣23.已知x>0,xy<0,则|x﹣y+4|﹣|y﹣x﹣6|的值是()A.﹣2 B.2 C.﹣x+y﹣10 D.不能确定4.A、B都是4次多项式,则A+B一定是()A.8次多项式B.次数不低于4的多项式C.4次多项式D.次数不高于4的多项式或单项式5.若A和B都是五次多项式,则A+B一定是()A.十次多项式B.五次多项式C.数次不高于5的整式D.次数不低于5次的多项式6.M,N分别代表四次多项式,则M+N是()A.八次多项式B.四次多项式C.次数不低于四次的整式 D.次数不高于四次的整式7.多项式a2﹣a+5减去3a2﹣4,结果是()A.﹣2a2﹣a+9 B.﹣2a2﹣a+1C.2a2﹣a+9 D.﹣2a2+a+98.两个三次多项式相加,结果一定是()A.三次多项式B.六次多项式C.零次多项式D.不超过三次的整式.9.与x2﹣y2相差x2+y2的代数式为()A.﹣2y2B.2x2C.2y2或﹣2y2D.以上都错10.若m是一个六次多项式,n也是一个六次多项式,则m﹣n一定是()A.十二次多项式B.六次多项式C.次数不高于六次的整式 D.次数不低于六次的整式11.下列计算正确的是()A.B.﹣18=8C.(﹣1)÷(﹣1)×(﹣1)=﹣3 D.n﹣(n﹣1)=112.下列各式计算正确的是()A.5x+x=5x2B.3ab2﹣8b2a=﹣5ab2C.5m2n﹣3mn2=2mn D.﹣2a+7b=5ab13.两个三次多项式的和的次数是()A.六次 B.三次 C.不低于三次D.不高于三次14.如果M是一个3次多项式,N是3次多项式,则M+N一定是()A.6次多项式B.次数不高于3次整式C.3次多项式D.次数不低于3次的多项式15.三个连续整数的积是0,则这三个整数的和是()A.﹣3 B.0 C.3 D.﹣3或0或316.已知x+y+2(﹣x﹣y+1)=3(1﹣y﹣x)﹣4(y+x﹣1),则x+y等于()A.﹣B.C.﹣D.17.已知a<b,那么a﹣b和它的相反数的差的绝对值是()A.b﹣a B.2b﹣2a C.﹣2a D.2b填空题18.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=_________.19.(﹣4)+(﹣3)﹣(﹣2)﹣(+1)省略括号的形式是_________.20.计算m+n﹣(m﹣n)的结果为_________.21.有一道题目是一个多项式减去x2+14x﹣6,小强误当成了加法计算,结果得到2x2﹣x+3,则原来的多项式是_________.22.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有m个座位,则a、n和m之间的关系为m=_________23.若a<0,则|1﹣a|+|2a﹣1|+|a﹣3|=_________.解答题24.化简(2m2+2m﹣1)﹣(5﹣m2+2m)25.先化简再求值.①②若a﹣b=5,ab=﹣5,求(2a+3b﹣2ab)﹣(a+4b+ab)﹣(3ab﹣2a+2b)的值26.若(a+2)2+|b+1|=0,求5ab2﹣{2a2b﹣[3ab2﹣(4ab2﹣2a2b)]}的值27.已知|a﹣2|+(b+1)2=0,求3a2b+ab2﹣3a2b+5ab+ab2﹣4ab+a2b=的值五、专题训练(找规律题型)选择题1.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,其中a0a1a2均为0或1,传输信息为h0a0a1a2h1,其中h0=a0+a1,h1=h0+a2.运算规则为:0+0=0,0+1=1,1+0=1,1+1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.10111 C.01100 D.000112.在一列数1,2,3,4,…,200中,数字“0”出现的次数是()A.30个B.31个C.32个D.33个3.把在各个面上写有同样顺序的数字1~6的五个正方体木块排成一排(如图所示),那么与数字6相对的面上写的数字是()A.2 B.3 C.5 D.以上都不对4.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的长度构造一组正方形(如下图),再分别依次从左到右取2个,3个,4个,5个正方形拼成如下长方形并记为①,②,③,④,相应长方形的周长如下表所示:若按此规律继续作长方形,则序号为⑧的长方形周长是()A.288 B.178 C.28 D.1105.如图,△ABC中,D为BC的中点,E为AC上任意一点,BE交AD于O.某同学在研究这一问题时,发现了如下事实:①当==时,有==;②当==时,有=;③当==时,有=;…;则当=时,=()A.B.C.D.填空题6.古希腊数学家把数1,3,6,10,15,21…叫做三角形数,它有一定的规律性,若把第一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为a n,计算a2﹣a1,a3﹣a2,a4﹣a3,…,由此推算,a100﹣a99=_________,a100=_________.7.表2是从表1中截取的一部分,则a=_________.8.瑞士的一位中学教师巴尔末从光谱数据,…中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门.请你根据这个规律写出第9个数_________.9.有一列数:1,2,3,4,5,6,…,当按顺序从第2个数数到第6个数时,共数了_________个数;当按顺序从第m个数数到第n个数(n>m)时,共数了_________个数.10.我们把形如的四位数称为“对称数”,如1991、2002等.在1000~10000之间有_________个“对称数”.11.在十进制的十位数中,被9整除并且各位数字都是0或5的数有_________个.12.下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依次规律,拼搭第8个图案需小木棒______根.13.如下图所示,由一些点组成形如三角形的图形,每条边(包括两个顶点)有n(n>1)个点,每个图形总的点数是S,当n=50时,S=_________.14.请你将一根细长的绳子,沿中间对折,再沿对折后的绳子中间再对折,这样连续对折5次,最后用剪刀沿对折5次后的绳子的中间将绳子剪断,此时绳子将被剪成_________段.15.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为_________.16.如图所示,黑珠、白珠共126个,穿成一串,这串珠子中最后一个珠子是_________颜色的,这种颜色的珠子共有_________个.17.观察规律:如图,PM1⊥M1M2,PM2⊥M2M3,PM3⊥M3M4,…,且PM1=M1M2=M2M3=M3M4=…=M n﹣1M n=1,那么PM n的长是_________(n为正整数).18.探索规律:右边是用棋子摆成的“H”字,按这样的规律摆下去,摆成第10个“H”字需要_________个棋子.19.现有各边长度均为1cm的小正方体若干个,按下图规律摆放,则第5个图形的表面积是_________ cm2.20.正五边形广场ABCDE的周长为2000米.甲,乙两人分别从A,C两点同时出发,沿A→B→C→D→E→A→…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过_________分钟,甲、乙两人第一次行走在同一条边上.解答题21.(试比较20062007与20072006的大小.为了解决这个问题,写出它的一般形式,即比较n n+1和(n+1)n 的大小(为正整数),从分析n=1、2、3、…这些简单问题入手,从中发现规律,经过归纳、猜想出结论:(1)在横线上填写“<”、“>”、“=”号:12_________21,23_________32,34_________43,45_________54,56_________65,…(2)从上面的结果经过归纳,可以猜想出n n+1和(n+1)n的大小关系是:当n≤_________时,n n+1_________(n+1)n;当n>_________时,n n+1_________(n+1)n;(3)根据上面猜想得出的结论试比较下列两个数的大小:20062007与20072006.22.从1开始,连续的自然数相加,它们的和的倒数情况如下表:(1)根据表中规律,求=_________.(2)根据表中规律,则=_________.(3)求+++的值.23.从1开始,连续的奇数相加,它们和的情况如下表:(1)如果n=11时,那么S的值为_________;(2)猜想:用n的代数式表示S的公式为S=1+3+5+7+…+2n﹣1=_________;(3)根据上题的规律计算1001+1003+1005+…+2007+2009.。
初中数学专项练习题:代数式(一)姓名:__________ 班级:__________学号:__________ 一、单选题1.定义新运算:a⊙b={a−1(a≤b)−ab(a>b且b≠0),则函数y=3⊙x的图象可能是()A. B. C. D.2.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是()A. 183B. 157C. 133D. 913.已知a、b、c满足3a+2b−4c=6,2a+b−3c=1,若a、b、c都为非负数,设y=3a+b−2c,求y的取值范围()A. y≥−3B. y≥3C. 3≤y≤24D. y≥04.如图,用棋子摆出一组三角形,按此规律推断:当三角形每边有n枚棋子时,每个三角形棋子总数为S,该三角形的棋子总数S与n的关系是()A. S=3n−2B. S=3n−3C. S=2n−2D. S=2n−35.如图,将五个边长都为1cm的正方形按如图所示摆放,其中点A、B、C、D分别是正方形对角线的交点、如果有n个这样大小的正方形这样摆放,则阴影面积的总和是()A.n−14B. n 4C. n 2D. 12n6.用一排6盏灯的亮与不亮来表示数,已知如图分别表示了数1~5,则●O O●●O 表示的数是( )A. 23B. 24C. 25D. 267.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点P k (x k , y k)处,其中x 1=1,y 1=2,当k≥2时,x k =x k ﹣1+1﹣5([k−15]﹣[k−25]),y k =y k ﹣1+[k−15]﹣[k−25],[a]表示非负实数a 的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2017棵树种植点的坐标为( ) A. (5,2017) B. (6,2016) C. (1,404) D. (2,404)8.定义一种变换f :对于一个由有限个数组成的序列品,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S ,例如序列S :(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若某一序列S 0 , 经变换得到新序列S 1 , 由序列S 1继续进行变换得到S 2 , 最终得到序列S n-1;(n≥2)与序列S n 相同,则下面的序列可作为S n 的是( )A. (1,2,1,2,2)B. (2,2,2,3,3)C. (1,1,2,2,3)D. (3,2,3,3,2) 9.若x =2时,代数式ax 4+bx 2+5的值是3,则当x =﹣2时,代数式ax 4+bx 2+7的值为( ) A. ﹣3 B. 3 C. 5 D. 710.对非负实数n“四舍五入”到个位的值记为 〈x 〉 ,即:当n 为非负整数时,如果 n −12≤x <n +12 ,则 〈x 〉=n .反之,当n 为非负整数时,如果 〈x 〉=n 时,则 n −12≤x <n +12 ,如 〈0〉=〈0.48〉=0 , 〈0.64〉=〈1.493〉=1 , 〈2〉=2 , 〈3.5〉=〈4.12〉=4 ,…若关于x 的不等式组 {2x +1≥−3x −〈a〉<0 的整数解恰有3个,则a 的范围()A. 1.5≤a <2.5B. 0.5<a≤1.5C. 1.5<a≤2.5D. 0.5≤a <1.5二、填空题11.如图,分别过点P i (i ,0)(i=1、2、…、n )作x 轴的垂线,交 y =12x 2 的图象于点A i , 交直线 y =−12x 于点B i . 则 1A1B 1+1A2B 2+...+1An B n=________.12.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2 ,作正方形A2B2C2C1··按这样的规律进行下去,第2018个正方形的面积为________.13.利用二维码可以进行身份识别.某校建立了一个身份识别系统,图1是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20.如图1中的第一行数字从左到右依次为0,1,0,1,序号即为0×23+1×22+0×21+1×20=5,表示该生为5班学生.若想在图2中表示4班学生的识别图案,请问应该把标号为①、②、③、④的正方形中的________(只填序号)涂成黑色.14.一列方程如下排列:x 4+x−12=1的解是x=2,x 6+x−22=1的解是x=3,x 8+x−32=1的解是x=4.……根据观察所得到的规律,请你写出其中解是x=2019的方程是________.15.有一列按规律排列的代数式:b,2b﹣a,3b﹣2a,4b﹣3a,5b﹣4a,…,相邻两个代数式的差都是同一个整式,若第4个代数式的值为8,则前7个代数式的和的值为________.三、计算题16.已知|m|=4,|n|=6,且|m+n|=m+n,求m−n的值.17.观察下列有规律的数:12,16,112,120,130,142…根据规律可知(1)第7个数是________,第n个数是________(n为正整数);(2)1132是第________个数;(3)计算12+16+112+120+130+142+...+12016×2017.四、解答题18.【阅读理解】我们知道1+2+3+…+n= n(n+1)2,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2 ,这样,该三角形数阵中共有n(n+1)2个圆圈,所有圆圈中数的和为1+2+3+…+n2.(1)【规律探究】将三角形数阵经两次旋转可得如图2 所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为________,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)=________,因此12+22+32+…+n2=________。
一、初一数学代数式解答题压轴题精选(难)1.(1)一个两位正整数,a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被整除,这两个两位数的差一定能被整除.(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;①直接判断123是不是“友好数”?②直接写出共有个“和平数”;③通过列方程的方法求出既是“和平数”又是“友好数”的数.【答案】(1)解:这个两位数用多项式表示为10a+b,(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),∵11(a+b)÷11=a+b(整数),∴这个两位数的和一定能被数11整除;(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),∵9(a﹣b)÷9=a﹣b(整数),∴这两个两位数的差一定能被数9整除,故答案为:11,9(2)解:①123不是“友好数”.理由如下:∵12+21+13+31+23+32=132≠123,∴123不是“友好数”;②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;十位数字是6的“和平数”有165,264,462,561,一个4个;十位数字是5的“和平数”有154,253,352,451,一个4个;十位数字是4的“和平数”有143,341,一个2个;十位数字是3的“和平数”有132,231,一个2个;所以,“和平数”一共有8+(6+4+2)×2=32个.故答案为32;③设三位数既是“和平数”又是“友好数”,∵三位数是“和平数”,∴y=x+z.∵是“友好数”,∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,∴22x+22y+22z=100x+10y+z,∴12y=78x﹣21z.把y=x+z代入,得12x+12z=78x﹣21z,∴33z=66x,∴z=2x,由②可知,既是“和平数”又是“友好数”的数是396,264,132.【解析】【分析】(1)分别求出两数的和与两数的差即可求解;(2)①根据“友好数”的定义即可判断求解;②根据“和平数”的定义列举出所有的“和平数”即可求解;③设三位数既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x−21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.2.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0~50部分(含50)50以上~150部分(含150,不含50)150以上~250部分(含250,不含150)250以上部分(不含250)价格(元)零售价的95%零售价的85%零售价的75%零售价的70%________元;(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要________元,在B 家批发需要________元(用含x的代数式表示);(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【答案】(1)4968;4890(2)54x;45x+1200(3)解:当x=170时,54x=54×170=9180,45x+1200=45×170+1200=8850,因为9180>8850,所以他选择在B家批发更优惠【解析】【解答】解:(1)A:90×60×92%=4968(元),B:50×60×95%+40×60×85%=4890(元)。
代数式易错题汇编及答案一、选择题1.已知:()()22x 1x 32x px q +-=++,则p ,q 的值分别为( )A .5,3B .5,−3C .−5,3D .−5, −3【答案】D【解析】【分析】此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p 、q 的值.【详解】由于()()2x 1x 3+-=2x 2-6x+x-3=2 x 2-5x-3=22x px q ++, 则p=-5,q=-3,故答案选D.【点睛】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.2.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.3.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 项,93=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.4.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.5.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40【答案】B【解析】 试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B .考点:规律型:图形变化类.6.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .0(51)1-=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. ()0511-=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.7.观察下列图形:( )它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为( ) A .20B .21C .22D .23【答案】C【解析】【分析】设第n 个图形共有a n (n 为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n =3n +1(n 为正整数)”,再代入n =7即可得出结论.【详解】解:设第n 个图形共有a n (n 为正整数)个五角星,∵a 1=4=3×1+1,a 2=7=3×2+1,a 3=10=3×3+1,a 4=13=3×4+1,…,∴a n =3n +1(n 为正整数),∴a 7=3×7+1=22.故选:C .【点睛】本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n =3n +1(n 为正整数)”是解题的关键.8.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b 【答案】C【解析】【分析】根据完全平方公式的形式(a±b )2=a 2±2ab+b 2可得出缺失平方项.【详解】根据完全平方的形式可得,缺失的平方项为9b 2故选C .【点睛】本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.9.计算3x 2﹣x 2的结果是( )A .2B .2x 2C .2xD .4x 2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x 2﹣x 2=(3-1)x 2=2x 2,故选B .【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.10.若35m =,34n =,则23m n -等于( )A .254B .6C .21D .20【答案】A【解析】【分析】根据幂的运算法则转化式子,代入数值计算即可.【详解】解:∵35m =,34n =, ∴222233(3)3253544-==÷÷÷==m n m n m n , 故选:A .【点睛】本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.11.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.12.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .224a a a += 【答案】B【解析】【分析】根据积的乘方运算法则和同底数幂的运算法则分别计算即可解答.【详解】解:A. 235a a a ⋅=,故A 错误;B. 222()ab a b =,正确;C. ()326a a =,故C 错误;D. 2222a a a +=,故D 错误.故答案为B .【点睛】本题主要考查了积的乘方和同底数幂的运算运算法则,掌握并灵活运用相关运算法则是解答本题的关键.13.若3,2x y xy +==, 则()()5235x xy y +--的值为( ) A .12B .11C .10D .9 【答案】B【解析】【分析】项将多项式去括号化简,再将3,2x y xy +==代入计算.【详解】 ()()5235x xy y +--=235()xy x y -++,∵3,2x y xy +==,∴原式=2-6+15=11,故选:B.【点睛】此题考查整式的化简求值,正确去括号、合并同类项是解题的关键.14.若代数式()212323aa x y xy -+-是五次二项式,则a 的值为( ) A .2B .2±C .3D .3± 【答案】A【解析】【分析】根据多项式的次数与项数的定义解答.【详解】∵()212323a a x y xy -+-是五次二项式,∴2125a -+=,且20a +≠,解得a=2,故选:A.【点睛】此题考查多项式的次数与项数的定义,熟记定义是解题的关键.15.按如图所示的运算程序,能使输出y 的值为1的是( )A.a=3,b=2 B.a=﹣3,b=﹣1 C.a=1,b=3 D.a=4,b=2【答案】A【解析】【分析】根据题意,每个选项进行计算,即可判断.【详解】解:A、当a=3,b=2时,y=12a-=132-=1,符合题意;B、当a=﹣3,b=﹣1时,y=b2﹣3=1﹣3=﹣2,不符合题意;C、当a=1,b=3时,y=b2﹣3=9﹣3=6,不符合题意;D、当a=4,b=2时,y=12a-=142-=12,不符合题意.故选:A.【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.16.计算1.252 017×2?01945⎛⎫⎪⎝⎭的值是( )A.45B.1625C.1 D.-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2=(1.25×45)2012×(45)2=16 25.故选B.【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.17.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.3【答案】D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=3.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.18.若x+y=,x﹣y=3﹣的值为()A.B.1 C.6 D.3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=,x﹣y=3﹣,==1.故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.19.若(x+4)(x﹣1)=x2+px+q,则()A.p=﹣3,q=﹣4 B.p=5,q=4C.p=﹣5,q=4 D.p=3,q=﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x+4)(x﹣1)=x2+3x﹣4∴p=3,q=﹣4故选:D.【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.20.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1 B.1 C.﹣2 D.2【答案】A【解析】【分析】先将(x+1)(x+n)展开得出一个关于x的多项式,再将它与x2+mx-2作比较,即可分别求得m,n的值.【详解】解:∵(x+1)(x+n)=x2+(1+n)x+n,∴x2+(1+n)x+n=x2+mx-2,∴12n m n+=⎧⎨=-⎩,∴m=-1,n=-2.故选A.【点睛】本题考查了多项式乘多项式的法则以及类比法在解题中的运用.。
一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。
”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。
(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。
(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。
(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。
3.如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.(1)若AB=6千米,老王开车从A到D共需多少时间?(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)【答案】(1)解:若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:=2.4(小时)(2)解:从A到D所需时间不变,(答案正确不回答不扣分)设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,t===2.4(小时)【解析】【分析】(1)根据题意可以求出AB,BC,CD的长,然后根据路程除以速度等于时间,即可分别算出老王开车行三段的时间,再求出其和即可;(2)从A到D所需时间不变,设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,,然后根据路程除以速度等于时间,即可分别表示出老王开车行三段的时间,再根据异分母分式加法法则求出其和,再整体代入即可得出结论;4.某超市在十一长假期间对顾客实行优惠,规定如下:一次性购物优惠办法少于100元不予优惠超过100元但低于500元超过100元部分给予九折优惠超过500元超过500元部分给予八折优惠________元:小明妈妈一次性购300元的衣服,她实际付款________元:如果他们两人合作付款,则能少付________元. (2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款________元(用含x的式子表示,写最简结果)(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(200<a<300),两次购物小芳奶奶实际付款多少元?(用含a的式子表示)(4)如何能更省钱,请给出一些建议.【答案】(1)190;280;10(2)(0.8x+60)(3)解:100+0.9(a-100)+100+0.9×(500-100)+0.8(900-a-500)=(0.1a+790)元. 答:两次购物小芳奶奶实际付款(0.1a+790)元。
(4)解:一次性购物能更省钱。
【解析】【解答】(1)解:小明的爷爷一次性购200元的保健食品,他实际付款100+0.9×(200-100)=190元:小明妈妈一次性购300元的衣服,她实际付款100+0.9×(300-100)=280元:如果他们两人合作付款,则能少付190+280-[100+0.9×(200+300-100)]=10元.故答案为:190;280;10( 2 )解:小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款100+360+0.8(x-500)=(0.8x+60)元.故答案为:(0.8x+60)【分析】(1)根据优惠办法"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠"可球得实际付款;(2)由"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠,超过500元的,超过500元部分给予八折优惠"可列出代数式;(3)分别求出两次购物小芳奶奶实际付款的钱数,相加即可求解;(4)通过计算可知一次性购物能更省钱.5.解答题:(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,﹣1,﹣1.5,﹣2,+1,﹣1,﹣1,﹣0.5.这10箱苹果的总质量是多少千克?(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9.①这10枝钢笔的最高的售价和最低的售价各是几元?②当小亮卖完钢笔后是盈还是亏?【答案】(1)解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴a+b+x2﹣cdx=x2﹣x∵|x|=1,∴x=±1∴当x=1时,x2﹣x=0;当x=﹣1时,x2﹣x=2(2)解:2+1+0﹣1﹣1.5﹣2+1﹣1﹣1﹣0.5=﹣330×10+(﹣3)=897答:这10箱苹果的总质量是897千克.(3)解:①最高售价为6+9=15元最低售价为6﹣2.1=3.9元②6×10+0.5+0.7﹣1﹣1.5+0.8+1﹣1.5﹣2.1+9+0.8﹣50=16.3元答:小亮卖完钢笔后盈利16.3元.【解析】【分析】(1)根据相反数及倒数的性质即可得出a+b=0,cd=1,再根据绝对值的意义,由|x|=1,得x=±1,然后分别将a+b=0,cd=1,x=1与x=-1代入代数式,即可算出答案;(2)首先列出加法算式,算出10箱苹果,超过的千克数或不足的千克数,然后用10乘以标准质量再加上超过或不足的千克数即可算出答案;(3)用6元的基准价加上超过基准价的最大值即可得出这10枝钢笔的最高的售价,用6元的基准价加上超过基准价的最小值即可得出这10枝钢笔的最低的售价,用这十支钢笔的总售价减去进价和为正数则小亮赚钱,和为负数则小亮亏钱。
6.如图,正方形ABCD与正方形BEFG,且A,B,E在一直线上,已知AB=a,BE=b(b<a).(1)用a、b的代数式表示△ADE的面积.(2)用a、b的代数式表示△DCG的面积.(3)用a、b的代数式表示阴影部分的面积.【答案】(1)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,A,B,E在一直线上,∴AB=AD=a,∠A=90°,∠EBG=∠ABC=90°,AE=AB+BE=a+b,∴S△ADE= AD·AE=(2)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,∴AB=DC=BC=a,∠C=90°,BG=BE=b,∴CG=BC-BG=a-b,∴S △DCG= DC·CG=(3)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,∴S正方形ABCD+S正方形BEFG= .又∵S△ADE= ,S△DCG= ,S△EFG= EF·FG= ,∴S阴影= -S△ADE-S△GEF-S△CDG== .【解析】【分析】(1)根据题意可得△ADE的两直角边AD、AE,再由三角形的面积公式求出即可;(2)先求出CG=BC-BG=a-b,再根据三角形的面积公式求出即可;(3)分别求出△ADE、△EFG、△DCG的面积和两个正方形的面积,即可得出阴影部分的面积.7.已知:a是﹣1,且a、b、c满足(c﹣6)2+|2a+b|=0,请回答问题:(1)请直接写出b、c的值:b=________,c=________(2)在数轴上,a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,①当点P在AB间运动(不包括A、B),试求出P点与A、B、C三点的距离之和.②当点P从A点出发,向右运动,请根据运动的不同情况,化简式子:|x+1|﹣|x﹣2|+2|x﹣6|(请写出化简过程)【答案】(1)2;6(2)解:①∵PA=x﹣(﹣1)=x+1,PB=2﹣x,PC=6﹣x,∴PA+PB+PC=x+1+2﹣x+6﹣x=9﹣x;|x+1|﹣|x﹣2|+2|x﹣6|②当﹣1≤x<2时,原式=x+1+x﹣2﹣2(x﹣6)=11;当2≤x<6时,原式=x+1﹣(x﹣2)﹣2(x﹣6)=﹣2x+15;当x≥6时,原式=x+1﹣(x﹣2)+2(x﹣6)=2x﹣9【解析】【解答】解:(1)∵(c﹣6)2+|2a+b|=0,∴c=6,2a+b=0,即b=﹣2a,又∵a=﹣1,∴b=2,故答案为:2,6;【分析】(1)根据非负数的性质可得;(2)①根据两点间距离公式列出算式,化简可得;②分别根据﹣1≤x<2、2≤x<6、x≥6结合绝对值性质,去绝对值符号后化简可得.8.用如图所示的甲、乙、丙木板做一个长、宽、高分别为a厘米,b厘米,h厘米的长方体有盖木箱(a>b),其中甲刚好能做成箱底和一个长侧面,乙刚好能做成一个长侧面和一个短侧面,丙刚好能做成箱盖和一个短侧面。