三年级奥数:和差分倍问题二_题型归纳
- 格式:docx
- 大小:10.33 KB
- 文档页数:1
小学三年级奥数知识点1.和差倍问题和差问题和倍问题差倍问题几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数公式②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型基本公式在直线或者不封闭的曲线上植树,两端都植树棵数=段数+1在直线或者不封闭的曲线上植树,两端都不植树棵距×段数=总长棵数=段数-1在直线或者不封闭的曲线上植树,只有一端植树棵距×段数=总长棵数=段数封闭曲线上植树棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
和、差、倍问题一、和差问题【含义】已知两个数量的和与它们的差,求两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷2;小数=(和-差)÷2【解题思路】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
【例1】甲乙两班共学生98 人,甲班比乙班多6 人,求两班各有多少人?【练一练】长方形的长和宽之和为18 厘米,长比宽多2 厘米,求长方形的面积?【练一练】小明2天读完一本75页的故事书,第一天比第二天少读5页,小明这两天各读书多少页?【练一练】甲乙两车原来共装苹果97 筐,从甲车取下14 筐放到乙车上,结果甲车比乙车还多 3 筐,两车原来各装苹果多少筐?【练一练】小米期末考试中语文、数学和英语的平均成绩是95分,数学比语文多得了6分,英语比语文多得了9分。
小明这三门功课各得了多少分?二、和倍问题【含义】已知两个数的与这两个数的倍数关系,要求这两个数各是多少,这类应用题叫做和倍问题。
【数量关系】总和÷(倍数+1)=较小的数;总和-较小的数=较大的数;较小的数×倍数=较大的数【解题思路】简单的题目直接利用公式,复杂的题目变通后利用公式。
【例2】果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?【练一练】东西两个仓库共存粮480 吨,东库存粮数是西库存粮数的2 倍,求两库各存粮多少吨?【练一练】甲站原有车52 辆,乙站原有车32 辆,若每天从甲站开往乙站28 辆,从乙站开往甲站24 辆,几天后乙站车辆数是甲站的2 倍?【练一练】甲、乙、丙三数之和是360,又知甲为乙的3倍,丙为乙的2倍。
甲、乙、丙各是多少?【练一练】被除数和除数的和为120,商是7.被除数和除数各是多少?三、差倍问题【含义】已知两个数的差及两个数的倍数关系,要求这两个数各是多少,这类应用题叫做差倍问题。
【数量关系】两个数的差÷(倍数-1)=较小的数;较小的数×倍数=较大的数【解题思路】要找出差所对应的倍数,先求出1倍数,再求出几倍数。
小学奥数和差倍问题例题及解析【例题】1、比赛用的足球是由黑、白两色皮子缝制的,其中黑色皮子为正五边形,白色皮子为正六边形,并且黑色正五边形与白色正六边形的边长相等。
缝制的方法是:每块黑色皮子的5条边分别与5块白色皮子的边缝在一起;每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其它白色皮子的边缝在一起。
如果一个足球表面上共有12块黑色正五边形皮子,那么,这个足球应有白色正六边形皮子多少块?2、5个空瓶可以换1瓶汽水,某班同学喝了161瓶汽水,其中有一些是用喝剩下来的空瓶换的,那么他们至少要买汽水多少瓶?3、现有三堆苹果,其中第一堆苹果个数比第二堆多,第二堆苹果个数比第三堆多。
如果从每堆苹果中各取出一个,那么在剩下的苹果中,第一堆个数是第二堆的三倍。
如果从每堆苹果中各取出同样多个,使得第一堆还剩34个,则第二堆所剩下的苹果数是第三堆的2倍。
问原来三堆苹果数之和的值是多少?【解析】1、先算黑皮子共有多少条边:12×5=60条。
这60条边都是与白皮子缝合在一起的,对于白皮子来说:每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其它白色皮子的边缝在一起,所以白皮子所有边的一半是与黑皮子缝合在一起的,那么白皮子就应该一共有60×2=120条边,120÷6=20,所以共有20块白皮子。
2、大致上可以这样想:先买161瓶汽水,喝完以后用这161个空瓶还可以换回32瓶(161÷5=32…1)汽水,然后再把这32瓶汽水退掉,这样一算,就发现实际上只需要买161-32=129瓶汽水。
可以检验一下:先买129瓶,喝完后用其中125个空瓶(还剩4个空瓶)去换25瓶汽水,喝完后用25个空瓶可以换5瓶汽水,再喝完后用5个空瓶去换1瓶汽水,最后用这个空瓶和最开始剩下的4个空瓶去再换一瓶汽水,这样总共喝了:129+25+5+1+1=161瓶汽水。
3、从第一个条件开始:从每堆苹果中各取出一个,在剩下的苹果中,第一堆个数是第二堆的三倍,这时假设第二堆是1份苹果,那么第一堆就是3份苹果,差2份苹果。
【秒懂奥数】3年级和倍,差倍,和差问题详解挑战级数:★★1.小明和小亮玩“石头、剪刀、布”的游戏.两人用同样多的石子做记录,输一次,就给对方一颗石子.他们做了许多次游戏,每次都决出胜负,其中小明胜了3次,小亮增加了9颗石子.那么他们共做了多少次游戏?[分析与解]小亮增加了9颗石子,则小亮比小明多胜9次,小明胜了3次,那么小亮胜了3+9=12次,又因为每次都决出胜负,所以共做了3+12=15次游戏.挑战级数:★★2.用杯子往一个空瓶里倒水,如果倒进6杯水,连瓶共重680克,如果倒进9杯水,连瓶共重920克,求空瓶的重量?[分析与解]第二次多倒入3杯水,瓶子连同水的重量增加了920-680=240克,那么1杯水重240÷3=80克,则6杯水重80×6=480克,所以瓶子重680-480=200克.挑战级数:★★3.某学生到工厂搞勤工俭学,按合同规定,干满30天,工厂将付给他一套工作服和70元钱.但他工作了20天,由于学校另有安排,他便中止了合同,工厂只付给他一套工作服和20元钱.那么,这套工作服值多少元?[分析与解]这名学生少工作10天,工资少了70-20=50元,那么30天的工资应为50×(30÷10)=150元,而实际只是给他一套工作服和70元钱,所以工作服值150-70=80元.挑战级数:★★★4.甲、乙、丙3人同乘长途汽车,3人所带行李都超过免费重量,要另付行李费.甲付2角,乙付4角,丙付6角.3人行李共重150千克,如果一个人带这些行李超过的重量就要付行李费2元4角,问每人可免费带行李多少千克?[分析与解]3人分开携带自己的行李,共花了2+4+6=12角钱,如果一个人携带这些行李则多花24-12=12角钱,这是因为一人携带比三人携带少了2倍的免费行李重量,所以免费的行李重量相当与12÷2=6角钱.把甲超出的行李重量看成1份,那么免费重量为3份,乙超出的行李重量为2份,丙超出的行李重量为3份.有三人行李共1+2+3+3×3=15份,为150千克,所以1份为150÷15=10千克,那么每人可带的免费行李重10×3=30千克.挑战级数:★★5.两组学生参加义务劳动,甲组学生人数是乙组的3倍,而乙组的学生人数比甲组的3倍少40人,求参加义务劳动的学生共有多少人?[分析与解]甲组人数是3倍乙组人数,即3倍乙组人数9倍甲组的人数少40×3=120人,那么8倍甲组的人数等于120人,所以甲组有120÷8=15人,则乙组有15÷3=5人,那么参加义务劳动的学生共有15+5=20人.挑战级数:★★6.某工厂接到制造6000个A种零件和2000个B种零件的订货单.该厂共有210名工人,每人制造5个A种零件和制造3个B种零件所用时间相等.现把全厂工人分成甲、乙两组分别制造A,B两种零件,并同时投入生产,那么当甲、乙两组各分配多少人时,完成订货单所用时间最少?[分析与解]如果生产同样多的A、B两种零件,生产A种零件的人数为3份,生产B 种零件的人数为5份.现在A种零件是B种零件的3倍,所以生产A种零件的人数为9份,生产B 种零件的人数为5份.共有210名工人,那么生产A组零件的甲组应为210÷(9+5)×9=135人,则生产B组零件的乙组应为210-135=75人.此时A、B零件按订单同时完成,所用时间最少.挑战级数:★★7.仓库存有一批钢材,由两个汽车队负责运往工地.已知甲队单独运要20天,乙队每天可运20吨.现在由甲、乙两队同时运输,干了6天之后,甲队汽车坏了一辆,每天少运4吨,结果又运6天才全部运完.那么这批钢材共有多少吨?[分析与解]我们可以把甲队坏的车换到乙队,让甲队的效率不变,则乙队每天少运4吨,即16吨.甲队工作了6+6=12天,剩下的工作都是由乙队来完成的,那么乙队完成的工作相当与甲队20-12=8天完成的工作.乙队完成了6×20+6×16=216吨,则甲队正常的一天运216÷8=27吨,于是这批钢材共有27×20=540吨.挑战级数:★★8.李师傅某天生产了一批零件,他把它们分成了甲、乙两堆.如果从甲堆零件中拿15个放到乙堆中,则两堆零件的个数相等;如果从乙堆零件中拿15个放到甲堆中,则甲堆零件的个数是乙堆的3倍.那么,甲堆原来有零件多少个?李师傅这天共生产零件多少个?[分析与解]显然,甲堆原有的零件比乙堆多30个,而甲队原有的零件又是乙队零件的3倍少15×(3+1)=60个,所以2倍乙堆零件减去60为30.即乙堆原有零件为(60+30)÷2=45个,那么甲堆原有零件45+30=75个,李师傅这天共生产零件45+75=120个.挑战级数:★★★9.箱子里有红、白两种玻璃球,红球数是白球数的3倍多2只.每次从箱里取出7只白球、15只红球,如果经过若干次以后,箱子里剩下3只白球、53只红球,那么,箱子里原有红球数比白球数多多少只?[分析与解]设共取球x次,则取走红球15x,白球5x只.有(15x+53)=3(7x+3)+2,解得x=7.所以原有红球15x+53=158,白球7x+3=52.所以红球比白球多106只.解法二:①剩下的红球数53只减去2只是51只,它恰好是3的倍数,并且有:51-3×3=42只,这说明剩下的红球数减2后是剩下的白球数的3倍多42只;②如果每次取出的红球数都是白球数的3倍,那么每次应该取出3×7=21只;③实际每次取出的红球数比假设的少:21-15=6只;④每次少取6只,总共比假设少取42只,那么取了42÷6=7次;⑤箱子里原有红球比白球多:7×(15-7)+(53-3)=106只.挑战级数:★★★10.有红、白球若干个.若每次拿出1个红球和1个白球,则拿到没有红球时,还剩下50个白球;若每次拿走1个红球和3个白球,则拿到没有白球时,红球还剩下50个.那么这堆红球、白球共有多少个?[分析与解]若每次拿出1个红球和1个白球,则没有红球时,还剩下50个白球即说明白球比红球多50个;若每次拿出1个红球和3个白球,则没有白球时,还剩下50个红球,那么红球还可以拿50次,则白球比红球的3倍少3×50=150个.则红球=(150+50)÷(3-1)=100个,白球=100+50=100×3-150=150个.这堆红球、白球共有100+150=250个.挑战级数:★★★11.某人以分期付款的方式买一台电视机.买时第一个月付款750元,以后每月付150元;或前一半时间付300元,后一半时间付100元.两种付款方式的付款总数及时间都相同.这台电视机的价格是多少元?[分析与解]显然有第二种付款方式相当于每月付(300+100)÷2=200元,则等同变化后第一种付款方式较第二种付款方式的第一个月多支出了750-200=550元.但以后,每月少支出200-150=50元,所以第一种付款方式中付了550÷50=11个月的150元.那么付款的总时间为11+1=12个月,所以这台电视机的价格为200×12=2400元.解法二:设有x个月,那么第一种付钱方式所付的总钱数:750+150×(x-1)元;第二种付钱方式所付的总钱数:(300+100)×x÷2.由于电视机价格不变.所以有:750+150×(x-1)=(300+100)×x÷2解得:600+150x=200x,x=12,电视机的价格为:600+150×12=2400元.挑战级数:★★12.甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人.问甲班和丁班共多少人?[分析与解]有甲、乙、丙、丁4个班的人数之和为83+88=171人,除去乙、丙两班,剩下的即为甲、丁两班,所以甲、丁两班有171-86=85人.挑战级数:★★★13.小木、小林、小森3人去看电影.如果用小木带的钱去买3张电影票,还差5角5分;如果用小林带的钱去买3张电影票,还差6角9分;如果用3个人带去的钱去买3张电影票,就多3角.已知小森带了3角7分,那么买一张电影票要用多少钱?[分析与解]如果用小木的钱买3张票,那么差55分;如果用小林带的钱买3张票,那么差69分;如果用三个人带的钱买3张票,那么多30;小森带了37分,所以小木和小林带的钱买6张票差为55+69=114分,而买3张还差37-30=7分.所以一张电影票的价钱为(114-7)÷(6-3)=117÷3=39分.挑战级数:★★14.有3个箱子,如果两箱两箱地称它们的重量,分别是83千克、85千克和86千克.问:其中最轻的箱子重多少千克?[分析与解]这3个箱子的总重量的2倍为83+85+86=254千克,则3个箱子共重254÷2=127千克.当其中的两个箱子的重量和最大时,剩下的第三个箱子最轻,所以最轻的箱子重127-86=41千克.挑战级数:★★★15.三个连续的自然数,后面两个数的积与前面两个数的积之差是114,那么这三个数中最小的数是多少?[分析与解]如果设中间的那个数为1份,有后面两个数的积与前面两个数的积相差2份,为114.所以,中间那个数,即1份为114÷2=57,所以最小的那个数为57-1=56。
第27讲:差倍问题(2)专题简析:有些“差倍问题”比较复杂,不能直接利用公式进行解答,这时需要小朋友仔细审题,尤其注意一些隐含条件,同时要借助线段图帮助我们理解题意,从而找到解题的方法。
较复杂的差倍应用题数量关系比较隐蔽。
先以题意画出线段图,数量关系就会比较清晰地展现出来,然后借助线段图找出两个数的差以及差所对应的倍数,再利用公式进行解答。
【例题1】有两袋玉米,大袋玉米比小袋玉米多56千克,如果将小袋的玉米吃掉4千克,这时大袋玉米的质量是小袋玉米质量的4倍。
两袋玉米原来的质量各是多少千克?【习题一】1、有两个玩具,第一盒比第二盒多60个玩具,如果从第二盒中取出3个玩具,这时第一盒玩具的个数是第二盒玩具个数的8倍。
两盒玩具原来各有多少个?2、一个书架上放着一些书,第二层比第一层多12本书。
如果从第一层中拿走6本书,这时第二层书的本数是第一层书的本数的4倍。
第一、二层原来各有多少本书?3、甲、乙两桶各装有油若干千克,甲桶装的油比乙桶装的油少20千克。
如果从甲桶倒出5千克油放入乙桶,这时乙桶油的质量是甲桶油质量的4倍。
甲、乙两桶原来各装油多少千克?【例题2】甲、乙两人去书店买书,甲带的钱数是乙带的钱数的3倍。
甲买了一套180元的《百科全书》、乙买了一套30元的《故事大王》后,两个人余下的钱数一样多。
甲原来有多少钱?【习题二】1、甲的钱数是乙的钱数的4倍,甲买了30元的书包、乙买了一支6元的钢笔后,两人余下的钱数一样多。
甲原来有多少钱?2、丹丹的钱数是小敏钱数的5倍,丹丹买了一套115元的衣服、小敏买了一双15元的鞋子后,两人余下的钱数一样多。
丹丹原来有多少钱?3、云云的钱数是小月钱数的4倍,云云买了一套19元的水彩笔、小月买了一块1元的橡皮后,两人剩的钱数一样多,云云原来有多少钱?【例题3】商店里运来一批白糖和红糖,红糖的质量是白糖质量的3倍,卖出红糖380千克、白糖110千克后,红糖的质量和白糖的质量就相等了。
小学三年级数学——和差问题、和倍问题、差倍问题详解,快收藏!和差问题(已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
)其实,解和差问题,还有一段顺口溜:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
和差问题的解题公式:大数=(和+差)÷2小数=(和-差)÷2例1、甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。
例2、长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
解长=(18+2)÷2=10(厘米)宽=(18-2)÷2=8(厘米)长方形的面积=10×8=80(平方厘米)答:长方形的面积为80平方厘米。
和倍问题(已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
)总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数为了帮助我们理解题意,弄清两种量彼此间的关系,常采用画线段图的方法来表示两种量间的这种关系,以便于找到解题的途径。
例1、果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解(1)杏树有多少棵?248÷(3+1)=62(棵)(2)桃树有多少棵?62×3=186(棵)答:杏树有62棵,桃树有186棵。
例2、东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?解(1)西库存粮数=480÷(1.4+1)=200(吨)(2)东库存粮数=480-200=280(吨)答:东库存粮280吨,西库存粮200吨。
例3、甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?解:160÷(3+1)=40本…乙40×3=120本… 甲答:甲班120本,已班40本。
三年级奥数题(二)和差倍问题大白兔和小灰兔共采摘了蘑菇160个。
后来大白兔把它的蘑菇给了其它白兔20个,而小灰兔自己又采了10个。
这时,大白兔的蘑菇是小灰兔的5倍。
问:原来大白兔和小灰兔各采了多少个蘑菇?绳子用一根绳子测井深。
把绳子折三折再去量,井外余3尺;把绳子折四折去量,则距井口1尺。
求绳长和井深。
带符号"搬家"计算325+46-125+54巧算1一只蜘蛛八条腿,一只蜻蜒有六条腿、二对翅膀,蝉有六条腿和一对翅膀。
现有这三种小昆虫共18只,共有118条腿和20对翅膀,问每种小昆虫各有几只?巧算2①100+(10+20+30)②100-(10+20+3O)③100-(30-10)巧算3①506-397②323-189③467+997④987-178-222-390巧算4①4723-(723+189)②2356-159-256巧算5① 36+87+64 ②99+136+101 ③1361+972+639+28巧算6① 300-73-27 ②1000-90-80-20-10拆数补数①188+873 ②548+996 ③9898+203兔和鸡鸡兔共有脚200只,若将鸡换成兔,兔换成鸡,则共有脚160只,求鸡、兔各有几只?整除问题有3个连续自然数,最小数能被5整除,中间的数能被4整除,最大数能被3整除。
则符合上述条件的最小的三位自然数是哪三个?求值x.、y表示两个数,规定新运算"★"及"△"如下:x★y=mx+ny,x△y=kxy,其中m、n、k均为非零自然数,已知1★2 5,(2★3)△4 64,求(1△2)★3的值.和倍问题两个数的和是2016,其中一个加数的个位是0,如果把这个0去掉,就正好等于另一个加数的两倍.这两个加数各是多少?三年级奥数题(二)答案和差倍问题解答:(160-20+10)÷(5+1)=25(个)25-10=15(个)160-15=145(个)【小结】这道题是和倍应用题,因为有"和"、有"倍数"。
小学奥数和倍、差倍、和差问题经典例题及练习题和倍问题专题简析:已知两个数的和与两个数间的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做和倍问题。
要想顺利地解答和倍应用题,最好的方法就是根据题意,画出线段图,使数量关系一目了然,从而正确列式解答。
解答和倍应用题,关键是要找出两数的和以及与其对应的倍数和,从而先求出1倍数,再求出几倍数。
数量关系可以这样表示:两数和÷(倍数+1)=小数(1倍数)小数×倍数=大数(几倍数)两数和-小数=大数例题1 学校将360本图书分给二、三两个年级,已知三年级所分得的本数是二年级的2倍,问二、三两个年级各分得多少本图书?思路导航:将二年级所得图书的本数看作1倍数,则三年级所得本数是这样的2倍。
如图所示:二年级共360本三年级由图可知,二、三年级所得图书本数的和360本相当于二年级的(1+2)倍,则二年级所得图书本数的360÷(1+2)=120本,三年级为120×2=240本。
练习一1,小红和小明共有压岁钱800元,小红的钱数是小明的3倍。
小红和小明各有压岁钱多少元?2,学校将360本图书分给二、三年级,已知三年级所得本数比二年级的2倍还多60本。
二、三年级各得图书多少本?3,甲桶有油25千克,乙桶有油17千克,乙桶倒入多少千克油给甲桶后,甲桶油是乙桶的5倍?例题2 小宁有圆珠笔芯30枝,小青有圆珠笔芯15枝,问小青给小宁多少枝后,小宁的圆珠笔芯枝数是小青的8倍?思路导航:我们把变化后小青的圆珠笔芯枝数看作1倍数,那么小宁与小青圆珠笔芯的枝数和相当于变化后小青枝数的9倍,所以变化后小青的枝数为(30+15)÷(1+8)=5枝,再用15-5=10枝,则表示小青给小宁的枝数。
练习二1,红红有邮票80张,佳佳有邮票60张,要使红红的邮票张数是佳佳的4倍,那么佳佳必须给红红多少张邮票?2,甲水池有水69吨,乙水池有水36吨,如果甲水池中的水以每分钟2吨的速度流入乙水池,那么多少分钟后,乙水池的水是甲水池的2倍?3,甲书架有图书18本,乙书架有图书8本,班图书管理员又买来图书16本,怎样分配才能使甲书架图书的本数是乙书架的2倍?例题3 被除数与除数的和为320,商是7,被除数和除数各是多少?思路导航:由商是7可知,被除数是除数的7倍,把除数看作1份数,被除数就有这样的7份,一共7+1=8份。
三年级奥数:和倍问题,和差问题,差倍问题,周期问题,时间问题和倍问题,就是已知几个数的和与这几个数之间的倍数关系,求这几个数各是多少的应用题。
解和倍问题的关键是要找准“和”与“倍”,并能借助线段图来解决问题。
解和倍问题的一般思路是:(1)读题,找出最小的一个数,把它看成1倍量;(2)画图,用线段图表示出数与数之间的倍数关系;(3)比较,观察图形准确判断“和”里面一共是几倍或几倍多几(几倍少几),即判断“和”相当于几个1倍量,并求出1倍量;(4)代入,根据1倍量与几个数之间的倍数关系求出其他的数。
已知两个数的倍数关系,把较小的数看成1份,较大的数就是较小数的几倍,较大的数就是几份。
下面我们来看例题1。
例题1解决这类和倍问题时,首先根据倍数关系画出线段图,以较小量为一段,先画出较小的的量,然后找到和相当于多少份,求出一份数。
一份的数知道了,其他的问题也就好解决了。
例题2我们知道,平均数(每份数)=总数÷总份数。
师傅和徒弟的总份数根据题意可以看成是和徒弟加工个数一样的4份。
当两个量的和与倍数关系不对应时,先求出与倍数关系对应的和,再画线段图求出两个量。
例题3求三个量的和倍问题时,先比较三个数的大小,再找出1倍量,画出线段图,然后通过“剪尾巴”或“填坑”找到三个数的和相当于多少份,求出1份数。
通过以上的例子,详细大家已经对和倍问题有了一定的了解,下面我就给大家出一些相关的练习1、甲乙两人共有150张画片,甲的张数比乙的2倍多30张。
两人各有多少张画片?2、四、五年级共有165人,四年级学生比五年级学生人数的2倍少6人。
四五年级各有学生多少人?3、小丽有红、黄、白三种颜色的珠子54粒,红珠子是黄珠子的2倍,白珠子是黄珠子的3倍。
三种颜色的珠子各有多少粒?和差问题与和倍问题、差倍问题一起统称“和差倍问题”,是小学阶段尤其是中年级常见的典型应用题。
和差问题的特点是已知几个数的和与这几个数的差,求这几个数各是多少的应用题。
应用题板块-和差倍问题(小学奥数三年级)和差倍问题是小学奥数应用题的基础类型,只要读懂题意,正确画出两个数的关系即可解答出来。
今天分享的和差倍问题,推导了基本的计算公式,帮助同学加深记忆。
【一、题型要领】1. 和差问题【基本概念】已知两个数的和与这两个数的差,求这两个数分别是多少如下图,两个数甲和乙,有以下关系(1)甲 + 乙 = 两数和(2)甲 - 乙 = 两数差【基本公式】根据(1)(2)可推导甲乙的值(1)+(2)得,2 * 甲 = 两数和 + 两数差,甲 = (两数和 + 两数差)÷ 2(1)-(2)得,2 * 乙 = 两数和 - 两数差,乙 = (两数和 - 两数差)÷ 22. 和倍问题【基本概念】已知两个数的和,和他们的倍数关系,求这两个数分别是多少如下图,两个数甲和乙,有以下关系(1)甲 + 乙 = 两数和(2)甲 = 乙 * 倍数【基本公式】根据(1)(2)可推导甲乙的值(1)- (2)得,两数和 - 乙 = 乙 * 倍数,乙 = 两数和÷ (倍数 + 1)甲 = 乙 * 倍数 = A ÷(倍数 + 1)* 倍数3. 差倍问题【基本概念】已知两个数的差,和他们的倍数关系,求这两个数分别是多少如下图,两个数甲和乙,有以下关系(1)甲 - 乙 = 两数差(2)甲 = 乙 * 倍数【基本公式】根据(1)(2)可推导甲乙的值(1)- (2)得,两数差 + 乙 = 乙 * 倍数,乙 = 两数差÷ (倍数 - 1)甲 = 乙 * 倍数 = 两数差÷ (倍数 - 1)* 倍数【二、重点例题】例题1【题目】甲、乙两筐共装苹果75千克,从甲筐取出5千克苹果放入乙筐里,甲筐苹果还比乙筐多7千克。
甲、乙两筐原各有苹果多少千克?【分析】分析甲乙两筐苹果的重量关系,可知甲 + 乙 = 75,甲 - 乙 = 5 * 2 + 7 = 17,由此可以通过和差公式计算出甲、乙原有苹果的重量【解】甲 + 乙 = 75(千克),甲 - 乙 = 5 * 2 + 7 = 17(千克)甲:(75 + 17)÷ 2 = 46(千克)乙:75 - 46 = 29(千克)【答】甲筐苹果原有46千克,乙筐苹果原有29千克。