【练习测试】直线、射线、线段练习题及答案
- 格式:doc
- 大小:145.00 KB
- 文档页数:5
人教版四年级上册3.1 线段、直线、射线练习卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.一条_____长200米.()A.直线B.射线C.线段D.垂线2.在4时整的时候,钟面上时针与分针组成的角是()度.A.100°B.120°C.150°3.下面说法正确的有()①线段比射线短,射线比直线短。
①把写有1至9各数的九张卡片打乱后反扣在桌上,从中任意摸出一张,卡片上的数小于5算小强赢,否则算小林赢。
这个游戏规则不公平。
①如果被除数末尾有2个0,那么商的末尾至少有1个0。
①四(1)25名男生平均身高151厘米,那么不可能有男生的身高低于151厘米。
A.1句B.2句C.3句二、填空题4.图中有( )个角,( )个直角,( )个锐角,( )个钝角。
5.下面的图形中哪些是线段?在其下面的()里画“○”。
()()()()()()()()6.下图中有______条线段。
7.线段是直直的,有( )个端点,长度( )(填能或不能)度量.三、判断题8.长方形和正方形的四个角都是直角。
( )9.放风筝时的风筝线可以看成是一条直线。
( )10.把半圆等分成180份,每份所对的角就是1°的角._____ (判断对错)11.小刚画了一条6厘米长的直线。
( )12.两个直角就是一个平角。
()13.将圆平均分成360份,将其中1份所对的角作为度量角的单位,它的大小就是1度,记作1°。
根据这一原理人们制作了度量角的工具——量角器。
( ) 14.一条直线长10米.( )15.线段能测量长短,直线和射线不能测量长短。
( )四、作图题16.下面有五个点,每两点之间画一条线段,可以画多少条线段?先画一画,再填一填.( )条17.我会画。
画一条比1分米短1厘米的线段。
18.画一条比3厘米长15毫米的线段,并标出长度。
直线、射线、线段、角(同步练习题三套)直线、射线、线段同步练习题(一)一.选择题1.两根木条,一根长18cm,一根长22cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.2cm或20cm 2.延长线AB到C,使得BC=AB,若线段AC=8,点D为线段AC的中点,则线段BD 的长为()A.2B.3C.4D.53.如图,点C是线段BD之间的点,有下列结论①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③4.下列说法中,正确的是()A.若线段AC=BC,则点C是线段AB的中点B.任何有理数的绝对值都不是负数C.角的大小与角两边的长度有关,边越长角越大D.两点之间,直线最短5.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若在平面内的不同的n个点最多可确定36条直线,则n的值为()A.6B.7C.8D.96.如图,工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖.用数学知识解释其中道理,正确的是()A.两点之间,线段最短B.射线只有一个端点C.两直线相交只有一个交点D.两点确定一条直线7.下列说法中正确的个数为()(1)如果AC=CB,则点C是线段AB的中点;(2)连结两点的线段叫做这两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半;(5)平面内3条直线至少有一个交点.A.1个B.2个C.3个D.4个8.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.经过两点有一条直线,并且只有一条直线B.两条直线相交只有一个交点C.两点之间所有连线中,线段最短D.两点之间线段的长度,叫做这两点之间的距离9.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个10.如图是北京地铁的路线图,小明家住复兴门,打算趁着放假去建国门游玩,看了路线图后,小明打算乘坐①号线地铁去,认为可以节省时间,他这样做的依据是()A.垂线段最短B.两点之间,直线最短C.两点确定一条直线D.两点之间,线段最短二.填空题11.若两条直线相交,有个交点,三条直线两两相交有个交点.12.在直线上任取一点A,截取AB=16cm,再截取AC=40cm,则AB的中点D与AC的中点E之间的距离为cm.13.已知线段AB,在AB的延长线上取一点C,使AC=2BC,若在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的倍.14.已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6cm,则线段MC的长为.15.如图,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是.三.解答题16.已知线段AB,在AB的延长线上取一点C,使BC=3AB,在BA的延长线上取一点D,使DA=2AB,E为DB的中点,且EB=30cm,请画出示意图,并求DC的长.17.课间休息时小明拿着两根木棒玩,小华看到后要小明给他玩,小明说:“较短木棒AB 长40cm,较长木棒CD长60cm,将它们的一端重合,放在同一条直线上,此时两根木棒的中点分别是点E和点F,则点E和点F间的距离是多少?你说对了我就给你玩”聪明的你请帮小华求出此时两根木棒的中点E和F间的距离是多少?18.已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.19.已知点C,D在线段AB上(点C,D不与线段AB的端点重合),AC+DB=AB.(1)若AB=6,请画出示意图并求线段CD的长;(2)试问线段CD上是否存在点E,使得CE=AB,请说明理由.参考答案与试题解析一.选择题1.【解答】解:如图,设较长的木条为AB=22cm,较短的木条为BC=18cm,∵M、N分别为AB、BC的中点,∴BM=11cm,BN=9cm,∴①如图1,BC不在AB上时,MN=BM+BN=11+9=20cm,②如图2,BC在AB上时,MN=BM﹣BN=11﹣9=2cm,综上所述,两根木条的中点间的距离是2cm或20cm;故选:D.2.【解答】解:∵BC=AB,AC=8,∴BC=2,∵D为线段AC的中点,∴DC=4,∴BD=DC﹣BC=4﹣2=2;故选:A.3.【解答】解:①图中共有6条线段,错误;②射线BD和射线DB不是同一条射线,错误;③直线BC和直线BD是同一条直线,正确;④射线AB,AC,AD的端点相同,正确,故选:B.4.【解答】解:A、若线段AC=BC,则点C是线段AB的中点,错误,A、B、C三点不一定共线,故本选项错误;B、任何有理数的绝对值都不是负数,正确,故本选项正确;C、应为:角的大小与角两边的长度无关,故本选项错误;D、应为:两点之间,线段最短,故本选项错误.故选:B.5.【解答】解:∵平面内不同的两点确定1条直线,可表示为:=1;平面内不同的三点最多确定3条直线,可表示为:=3;平面内不同的四点确定6条直线,可表示为:=6;以此类推,可得:平面内不同的n点可确定(n≥2)条直线.由已知可得:=36,解得n=﹣8(舍去)或n=9.故选:D.6.【解答】解:工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖,则其中的道理是:两点确定一条直线.故选:D.7.【解答】解:(1)如果AC=CB,则点C是线段AB垂直平分线上的点,原来的说法错误;(2)连结两点的线段的长度叫做这两点间的距离,原来的说法错误;(3)两点之间所有连线中,线段最短是正确的;(4)射线与直线都是无限长的,原来的说法错误;(5)平面内互相平行的3条直线没有交点,原来的说法错误.故选:A.8.【解答】解:某同学用剪刀沿直线将一片平整的荷叶剪掉一部分(如图),发现剩下的荷叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是:两点之间所有连线中,线段最短,故选:C.9.【解答】解:①不带“﹣”号的数不一定是正数,错误;②如果a是正数,那么﹣a一定是负数,正确;③射线AB和射线BA不是同一条射线,错误;④直线MN和直线NM是同一条直线,正确;故选:B.10.【解答】解:由图可知,乘坐①号地铁走的是直线,所以节省时间的依据是两点之间线段最短.故选:D.二.填空题(共5小题)11.【解答】解:两条直线相交,有1个交点,三条直线两两相交有1或3个交点.故答案为:1,1或3.12.【解答】解:①如图1,当B在线段AC上时,∵AB=16cm,AC=40cm,D为AB中点,E为AC中点,∴AD=AB=8cm,AE=AC=20cm,∴DE=AE﹣AD=20cm﹣8cm=12cm;②如图2,当B不在线段AC上时,此时DE=AE+AD=28cm;故答案为:12或28.13.【解答】解:如下图所示:设AB=1,则DA=2,AC=2,∴可得:DB=3,AC=2,∴可得线段AC是线段DB的倍.故答案为:.14.【解答】解:∵B,C两点把线段AD分成2:4:3三部分,∴设AB=2x,BC=4x,CD=3x,∵CD=6cm,即3x=6cm,解得x=2cm,∴AD=2x+4x+3x=9x=9×2=18cm,∵M是AD的中点,∴MD=AD=×18=9cm,∴MC=MD﹣CD=9﹣6=3cm.故答案为:3cm.15.【解答】解:根据线段的性质:两点之间线段最短可得,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是两点之间线段最短.故答案为:两点之间线段最短.三.解答题(共4小题)16.【解答】解:如图:∵E为DB的中点,EB=30cm,∴BD=2EB=60cm,又∵DA=2AB,∴AB=BD=20cm,AD=BD=40cm,∴BC=3AB=60cm,∴DC=BD+BC=120cm.17.【解答】解:如图1,当AB在CD的左侧且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点)∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=BE+CF=20+30=50cm(或EF=BE+BF=20+30=50cm);如图2.当AB在CD上且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点),∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=CF﹣BE=30﹣20=10cm(或EF=BF﹣BE=30﹣20=10cm).∴此时两根木棒的中点E和F间的距离是50cm或10cm.18.【解答】解:(1)当m=4时,BC=4,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM,=6﹣5=1;(2)∵AB=6,BC=m,∴AC=6+m,∵M为AC中点,∴,①当D在线段BC上,M在D的左边时,CD=n,MD=MC﹣CD==;②当D在线段BC上,M在D的右边边时,CD=n,MD=DC﹣MC=n﹣=;③当D在l上且在点C的右侧时,CD=n,MD=MC+CD=+n=.19.【解答】解:(1)如图所示:∵AC+DB=AB,AB=6,∴AC+DB=2,∴CD=AB﹣(AC+DB)=6﹣2=4;(2)线段CD上存在点E,使得CE=AB,理由是:∵AC+DB=AB角同步练习试题一、选择题(本大题共12小题,共36分)1.如图,下面四种表示角的方法,其中正确的是()。
2020年人教版七年级上册同步练习:4.2《直线、射线、线段》一.选择题1.“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短2.如图,从A到B有三条路径,最短的路径是③,理由是()A.两点确定一条直线B.两点之间,线段最短C.过一点有无数条直线D.因为直线比曲线和折线短3.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行4.如图,线段AB=DE,点C为线段AE的中点,下列式子不正确的是()A.BC=CD B.CD=AE﹣AB C.CD=AD﹣CE D.CD=DE5.如图,一根长为10厘米的木棒,棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,能量的长度共有()A.7个B.6个C.5个D.4个6.平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条7.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线(2)射线AC和射线AD是同一条射线(3)AB+BD>AD(4)三条直线两两相交时,一定有三个交点.A.1个B.2个C.3个D.4个8.直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.109.如图,下列说法正确的是()A.点O在射线AB上B.点B是直线AB的一个端点C.射线OB和射线AB是同一条射线D.点A在线段OB上10.由唐山开往石家庄的G6738次列车,途中有5个停车站,这次列车的不同票价最多有()A.21种B.10种C.42种D.20种11.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC 的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm12.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm 二.填空题13.把一段弯曲的河流改直,可以缩短航程,其理由是.14.如图,是从甲地到乙地的四条道路,其中最短的路线是,理由是.15.如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为cm.16.如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段条.17.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有(只填写序号)18.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为.19.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=cm.三.解答题20.如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)画线段AC、BD交于E点;(2)作射线BC;(3)取一点P,使点P既在直线AB上又在直线CD上.21.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.22.如图,已知B是线段AC的中点,D是线段CE的中点,若AB=4,CE=AC,求线段BD的长.23.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.24.如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.25.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置;(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM ﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.参考答案一.选择题1.解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.2.解:如图,最短路径是③的理由是两点之间线段最短,故B正确,故选:B.3.解:某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:A.4.解:因为点C为线段AE的中点,且线段AB=DE,则BC=CD,故本选项正确;B中CD=AC﹣AB=BC=CD,故本选项正确;C中CD=AD﹣BC﹣AB=CD,故本选项正确;D中CD≠DE则在已知里所没有的,故本选项错误;故选:D.5.解:∵图中共有3+2+1=6条线段,∴能量出6个长度,分别是:2厘米、3厘米、5厘米、7厘米、8厘米、10厘米.故选:B.6.解:如图,经过其中任意两点画直线可以画3条直线或1条直线,故选:D.7.解:(1)直线BA和直线AB是同一条直线,直线没有端点,此说法正确;(2)射线AC和射线AD是同一条射线,都是以A为端点,同一方向的射线,正确;(3)AB+BD>AD,三角形两边之和大于第三边,所以此说法正确;(4)三条直线两两相交时,一定有三个交点,错误,可能有1个交点的情况.所以共有3个正确.故选:C.8.解:根据题意画图:由图可知有AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共10条.故选:D.9.解:A、点O不在射线AB上,点O在射线BA上,故此选项错误;B、点B是线段AB的一个端点,故此选项错误;C、射线OB和射线AB不是同一条射线,故此选项错误;D、点A在线段OB上,故此选项正确.故选:D.10.解:根据题意知这次列车的不同票价最多有6+5+4+3+2+1=21(种),故选:A.11.解:如图1,由M是AB的中点,N是BC的中点,得MB=AB=4cm,BN=BC=1cm,由线段的和差,得MN=MB+BN=4+1=5cm;如图2,由M是AB的中点,N是BC的中点,得MB=AB=4cm,BN=BC=1cm,由线段的和差,得MN=MB﹣BN=4﹣1=3cm;故选:B.12.解:如图,设较长的木条为AB=24cm,较短的木条为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM﹣BN=12﹣10=2cm,综上所述,两根木条的中点间的距离是2cm或22cm;故选:C.二.填空题13.解:把一段弯曲的河流改直,可以缩短航程,其理由是两点之间,线段最短,故答案为:两点之间,线段最短.14.解:由图可得,最短的路线为从甲经A到乙,因为两点之间,线段最短.故答案为:从甲经A到乙,两点之间,线段最短.15.解:∵C为AB的中点,AB=8cm,∴BC=AB=×8=4(cm),∵BD=3cm,∴CD=BC﹣BD=4﹣3=1(cm),则CD的长为1cm;故答案为:1.16.解:线段AC,BE,CE,BD,AD上各有另两个点,每条上有6条线段;所以共有6×5=30条线段.17.解:由图可得,①点B在直线BC上,正确;②直线AB不经过点C,错误;③直线AB,BC,CA两两相交,正确;④点B是直线AB,BC的交点,正确;故答案为:①③④.18.解:设AC、BC的中点分别为E、F,∵AC=6cm,BC=2cm,∴CE=AC=3cm,CF=BC=1cm,如图1,点B不在线段AC上时,EF=CE+CF=3+1=4(cm),如图2,点B在线段AC上时,EF=CE﹣CF=3﹣1=2(cm),综上所述,AC和BC中点间的距离为4cm或2cm.故答案为:4cm或2cm.19.解:CD=DB﹣BC=7﹣4=3cm,AC=2CD=2×3=6cm.故答案为:6.三.解答题20.解:(1)如图所示:;(2)如图所示,(3)如图所示,.21.解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.22.解:∵点B、D分别是AC、CE的中点,∴BC=AB=AC,CD=DE=CE,∴BD=BC+CD=(AC+CE),∵AB=4,∴AC=8,∵CE=AC,∴CE=6,∴BD=BC+CD=(AC+CE)=(8+6)=7.23.解:(1)若以B为原点,则C表示1,A表示﹣2,∴p=1+0﹣2=﹣1;若以C为原点,则A表示﹣3,B表示﹣1,∴p=﹣3﹣1+0=﹣4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示﹣28,B表示﹣29,A 表示﹣31,∴p=﹣31﹣29﹣28=﹣88.24.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.25.解:(1)根据C、D的运动速度知:BD=2PC ∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=PQ=AB所以=1;(3)②.理由:当CD=AB时,点C停止运动,此时CP=5,AB=30①如图,当M,N在点P的同侧时MN=PN﹣PM=PD﹣(PD﹣MD)=MD﹣PD=CD﹣PD=(CD﹣PD)=CP =②如图,当M,N在点P的异侧时MN=PM+PN=MD﹣PD+PD=MD﹣PD=CD﹣PD=(CD﹣PD)=CP=∴==当点C停止运动,D点继续运动时,MN的值不变,所以,=.。
4.2线段、射线、直线一、选择题(每小题4分,共12分)1.如图,林林的爸爸只用两枚钉子就把一根木条固定在墙上,下列语句能解释这个原理的是()A.木条是直的B.两点确定一条直线C.过一点可以画无数条直线D.一个点不能确定一条直线2.下列语句正确的是()A.画直线AB=10cmB.确定O为直线l的中点C.画射线OB=3cmD.延长线段AB到点C,使得BC=AB3.三条互不重合的直线的交点个数可能是()A.0,1,3 B.2,3 C.0,1,2,3 D.0,1,2二、填空题(每小题4分,共12分)4.如图,写出其中能用P,A,B,C中的两个字母表示的不同射线.5.如图,将射线OA反向延长得射线,线段CD向延长得直线CD.6.京石高铁运行途中停靠的车站依次是:北京西站、涿州东站、固城东站、保定东站、定州东站、石家庄机场站、新石家庄站,那么要为这列火车制作的火车票有种.三、解答题(共26分)7.(8分)数一数,图中共有多少条线段?并分别写出这些线段.8.(8分)A,B,C,D四点如图所示,读下列语句,按要求作出图形(不写画法): (1)连接AD,并延长线段DA.(2)连接BC,并反向延长线段BC.(3)连接AC,BD,它们相交于点O.(4)DA延长线与BC反向延长线交于点P.【拓展延伸】9.(10分)动手画一画,再数一数.(1)过一点A能画几条直线?(2)过两点A,B能画几条直线?(3)已知平面上共有三个点A,B,C,过其中任意两点画直线,可画几条?(4)已知平面上共有n个点(n为不小于3的整数),其中任意三个点都不在同一直线上,那么连接任意两点,可画多少条直线?答案解析1.【解析】选B.根据两点确定一条直线,故选B.2.【解析】选D.A,直线无限长;B,直线不能度量,没有中点;C,射线可向一方无限延长;D,延长线段AB到点C,使得BC=AB,正确.3.【解析】选C.分四种情况:1.三条直线平行,有0个交点;2.三条直线相交于同一点,有1个交点;3.一条直线截两条平行线有2个交点;4.三条直线两两相交有3个交点.4.【解析】图形中能用P,A,B,C中的两个字母表示的不同射线有:射线PA 、射线PB 、射线PC 、射线AB 、射线BC 、射线BA 、射线CB .答案:射线PA 、射线PB 、射线PC 、射线AB 、射线BC 、射线BA 、射线CB5.【解析】将射线OA 反向延长得射线OB,线段CD 向两方延长得直线CD .答案:OB 两方6.【解析】画一条直线,在直线上依次取A,B,C,D,E,F,G 七个点,它们依次表示北京西站、涿州东站、固城东站、保定东站、定州东站、石家庄机场站、新石家庄站.点A 分别与B,C,D,E,F,G 形成6条线段;点B 分别与C,D,E,F,G 形成5条线段;点C 分别与D,E,F,G 形成4条线段;点D 分别与E,F,G 形成3条线段;点E 分别与F,G 形成2条线段;点F 与G 形成1条线段,所以直线上共有线段的条数是6+5+4+3+2+1=21,考虑往返情况,所以应制作火车票21×2=42(种).答案:42【知识拓展】若一条直线上有n 个点,那么以这n 个点中的任意两点为端点的线段共有(n-1)+(n-2)+…+2+1=21n (n-1)(条). 7.【解析】由图形得:共有10条线段,分别为:线段AB 、线段BC 、线段CD 、线段DA 、线段AC 、线段AO 、线段CO 、线段BD 、线段BO 、线段DO .8.【解析】如图所示.9.【解析】(1)过一点A 能画无数条直线.(2)过两点A,B 只能画一条直线.(3)①若三点共线则可画一条,②若三点不共线则可画三条.故可画1条或3条.(4)根据过两点的直线有1条,过不在同一直线上的三点的直线有3条,过任意三点都不在一条直线上的四点的直线有6条,按此规律由特殊到一般可得过任意三个点都不在同一直线上的n 个点共能画21n (n-1)条直线.。
初中数学直线射线线段综合练习题一、单选题1.下列说法正确的是( )A.画射线3cm OA =B.线段AB 和线段BA 不是同一条线段C.点A 和直线l 的位置关系有两种D.三条直线相交一定有3个交点 2.从重庆站乘火车到北京站,沿途经过5个车站方可到达北京站,那么在重庆与北京两站之间需要安排不同的车票___________种.3.若平面内有点,,A B C ,过其中任意两点画直线,则最多可以画的条数是( )A.3B.4C.5D.64.如图,点O 与射线AB 的位置关系是( )A.点O 一定在射线AB 上B.点O 一定不在射线AB 上C.点O 可能在射线AB 上,也可能不在射线AB 上D.射线AB 可能会经过点O5.下列图示中,直线表示方法正确的有( )A.①②③④B.①②C.②④D.①④6.已知线段10cm AB =,点C 是直线AB 上一点,4cm BC =,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A.7 cmB.3 cmC.7cm 或3cmD.5 cm7.如图,,C B 是线段AD 上的两点,若,2AB CD BC AC ==,那么AC 与CD 的关系为( )A.2CD AC =B.3CD AC =C.4CD AC =D.不能确定二、解答题8.如图,P 是线段AB 上任意一点,12cm,,AB C D =两点分别从,P B 同时向A 点运动,且C 点的运动速度为2cm/s,D 点的运动速度为3cm/s ,运动的时间为s t .(1)若8cm AP =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2s,1cm t CD ==,试探索AP 的值.9.如图,,B C 两点把线段AD 分成2:5:3三部分,M 为AD 的中点,6cm BM =,求CM 和AD 的长.10.如图,点C 是线段AB 上一点,点,,M N P 分别是线段,,AC BC AB 的中点.(1)若12cm AB =,求线段MN 的长度;(2)若3cm,1cm AC CP ==,求线段PN 的长度.11.如图,在一条不完整的数轴上从左到右有,,A B C 三点,其中2,1AB BC ==.设点,,A B C 所对应的数的和是p .(1)若以B 为原点,写出点,A C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .12.如图,已知线段6AD =cm ,线段4AC BD ==cm,EF 分别是线段,AB CD 的中点,求线段EF 的长.13.如图,已知点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点.(1)若20,8AB BC ==,求MN 的长;(2)若,8AB a BC ==,求MN 的长;(3)若,AB a BC b ==,求MN 的长;(4)从(1)(2)(3)的结果中能得到什么结论?14.已知线段10cm AB =,直线AB 上有一点,6cm,C BC M =为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.15.如图,平面上有,,,A B C D 四个村庄,为了丰富人们的生活,政府准备投资修建一个文化活动中心H ,使它到四个村庄的距离之和最小,你认为文化活动中心应建在哪里?并说明理由.16.如图(1),直线AB 上有一点P ,点,M N 分别为线段,PA PB 的中点,14AB =.(1)若点P 在线段AB 上,且8PA =,求线段MN 的长度;(2)若点P 在直线AB 上运动,设,PA x PB y ==,请分别计算下面情况时MN 的长度; ①当P 在,A B 之间(含A 或B );②当P 在A 左边;③当P 在B 右边.你发现了什么规律?(3)如图(2),若点C 为线段AB 的中点,点P 在线段AB 的延长线上,下列结论:①PA PB PC-的值不变;②PA PB PC +的值不变.请选择一个正确的结论并求其值. 三、填空题17.给出下列说法:①两条不同的直线可能有无数个公共点;②两条不同的射线可能有无数个公共点;③两条不同的线段可能有无数个公共点;④一条直线和一条线段可能有无数个公共点.其中正确说法的序号为___________.18.平面内有3条直线,它们的交点个数是_________.19.如图,画的是一条直线和两个点的位置关系,现有4种叙述:①直线AB 在点C 上;②点C 在直线AB 上;③点O 不经过直线AB ;④直线a 经过点C .其中叙述正确的有(填序号):__________.参考答案1.答案:C解析:射线没有长度,故A 错误;线段AB 和线段BA 是同条线段,故B 错误;点A 和直线l 的位置关系有两种:点A 在直线上或在直线外,故C 正确;三条直线相交可能有1个或2个或3个交点,故D 错误.2.答案:42解析:因为共有(52)+个车站,把它们看作直线上的7个点,则直线上线段的条数为7(71)212⨯-=(条),而每条线段对应两种不同的车票,故需要安排不同的车票共42种. 3.答案:A解析:平面内有点,,A B C ,过其中任意两点画直线,最多可以画的直线条数是3.4.答案:B解析:射线AB 是有方向的,是从“A ”到“B ”的方向,图中的射线AB 是向右无限延伸的,向左到端点A 终止,故点O 一定不在射线AB 上.5.答案:D解析:用两个点表示直线时,这两个点必须是大写字母,故②③错误,①正确;用一个字母表示直线时,这个字母必须是小写的,且不能在直线上标点,④正确.6.答案:D解析:当点C 在线段AB 上时,则1115cm 222MN AC BC AB =+==;当点C 在线段AB 的延长线上时,则11725(cm)22MN AC BC =-=-=.综合上述情况,线段MN 的长度是5cm . 7.答案:B解析:因为AB CD =,所以AC BC BC BD +=+,即AC BD =.又因为2BC AC =,所以2BC BD =.所以33CD BD AC ==.8.答案:(1)①由题意可知:212(cm),313(cm)CP DB =⨯==⨯=.因为8cm,12cm AP AB ==,所以1284(cm)PB AB AP =-=-=.所以2433(cm)CD CP PB DB =+-=+--.②因为8cm,12cm AP AB ==,所以1284(cm),(82)(cm)PB AC AP CP t =-==-=-.所以(43)(cm)DP PB DB t =-=-.所以243(4)(cm)CD CP DP t t t =+=+-=-.因为822(4)t t -=-,所以2AC CD =.(2)当2s t =时,224(cm),326(cm)CP DB =⨯==⨯=.当点D 在C 的右边时,如图所示:由于1cm CD =,所以167(cm)CB CD DB =+=+=.所以1275(cm)AC AB CB =-=-=,所以549(cm)AP AC CP =+=+=.当点D 在C 的左边时,如图所示;1266(cm)AD AB DB =-=-=.所以61411(cm)AP AD CD CP =++=++=.综上所述,9cm AP =或11cm .解析:9.答案:【解】设2cm,5cm,3cm AB x BC x CD x ===.所以10cm AD AB BC CD =++=.因为M 是AD 的中点, 所以15cm 2AM MD AD x ===. 所以523cm BM AM AB x x x =-=-=.因为6cm BM =,所以36,2x x ==.故532224(cm)CM MD CD x x x =-=-==⨯=.1010220(cm)AD x ==⨯-.解析:10.答案:(1)因为,M N 分别是,AC BC 的中点,所以11,22MC AC CN BC ==. 所以1111()6cm 2222MN MC CN AC BC AC BC AB =+=+=+==. (2)因为3cm,1cm AC CP ==,所以4cm AP AC CP =+=.因为P 是线段AB 的中点,所以28cm AB AP ==.所以5cm CB AB AC =-=.因为N 是线段CB 的中点,1 2.5cm 2CN CB ==. 所以 1.5cm PN CN CP =-=.解析:(1)根据,M N 分别是线段,AC BC 的中点及AB 的长度,可求出MN .(2)先求出AP ,再利用P 是AB 的中点,求出AB .进而利用BC AB AC =-求出BC .根据N 为BC 的中点又可求出12CN BC =.最后利用PN CN CP =-求出结果. 11.答案:解:(1)若以B 为原点,则C 表示1,A 表示-2,所以1021p =+-=-.若以C 为原点,则A 表示-3,B 表示一I ,所以3104p =--+=-.(2)若原点O 在图中数轴上点C 的右边,28CO =,则C 表示-28,B 表示-29,A 表示-31, 所以31292888p =---=-.解析:12.答案:解:因为2AB AD BD =-=cm,2CD AD AC =-=cm , 所以112EB AB ==cm ,112CF CD == cm 所以6222BC AD AB CD =--=--=(cm ),所以1214EF EB BC CF =++=++= (cm).解析:13.答案:(1)因为20,8AB BC ==,所以28AC AB BC =+=,因为点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点, 所以1114,422MC AC NC BC ====, 所以14410MN MC NC =-=-=.(2)根据(1)得111()222MN AC BC AB a =-==. (3)根据(1)得111()222MN AC BC AB a =-==.(4)从(1)(2)(3)的结果中能得到线段MN的长度始终等于线段AB的一半,与C点的位置无关.解析:14.答案:【解】第一种情况:若为图(1)情形,因为M为AB的中点,所以5cmMB MA==.因为N为BC的中点,所以3cmNB NC==.所以2cmMN MB NB=-=.第二种情况:若为图(2)情形,因为M为AB的中点,所以5cmMB MA==.因为N为BC的中点,所以3cmNB NC==.所以8cmMN MB BN=+=.解析:15.答案:【解】文化活动中心应建在,AC BD连线的交点处.理由如下:若把文化活动中心建在,AC BD连线的交点处,则中心到四个村庄的距离之和等于,AC BD两条线段的长度之和,而两点之间,线段最短,故这个位置符合要求.解析:16.答案:(1)因为8PA=,所以6BP AB PA=-=.因为点M是AP中点,所以142PM AP==.又因为点N是PB中点,所以132PN PB==.所以7MN PM PN=+=.(2)①当点P在,A B之间时,17222x yMN AB=+==;②当点P在BA的延长线上,11()72222y xMN PN PM y x AB =-=-=-==;③当点P在AB的延长线上时,11()72222x yMN PM PN x y AB =-=-=-==.规律:不管P在什么位置,MN的长度不变,都为7. (3)选择②.设PB x =.由题意,知7AC BC ==, ①1477PA PB AB PC x x -==++(在变化); ②21427PA PB x PC x ++==+(定值). 解析:(1)根据线段中点的定义及线段的和差,可求得结果.(2)根据线段中点的定义可求得,MP NP ,再根据线段的和差,可求得结果.(3)根据线段的和差可得,PA PB PA PC +-,进而可得所求的结论.17.答案:②③④解析:①错误,因为两条不同的直线不能重合,若两直线有两个或两个以上公共点,这两直线就是同一条直线;而两条不同的射线、两条不同的线段、一条直线和一条线段都可以有部分重合,因此它们都可以有无数个公共点,故②③④正确.18.答案:0或1或2或3解析:如图,若平面内有3条直线,则它们的交点个数有如下四种情况:19.答案:②④解析:只能说点在(或不在)直线上,而不能说直线在(或不在)点上,故①错;只能说直线经过(或不经过)点,而不能说点经过(或不经过)直线,故③错,②④正确.。
人教版版四年级上册数学线段直线射线练习题(附答案)一、单选题1.一条()长300米.A. 射线B. 直线C. 线段2.经过平面上的任意两点,可以画()条直线。
A. 1B. 2C. 无数D. 不确定3.把线段的一端无限延长,就得到一条()。
A. 垂线B. 射线C. 线段D. 直线4.下面图形中有条线段.()A. 3B. 6C. 10D. 155.下图中共有()线段。
A. 4条B. 5条C. 6条D. 8条二、判断题6.直线比射线长,射线比线段长.()7.一条直线长25厘米。
()8.一条直线长10分米.()9.线段有两个端点,是直线的一部分。
()三、填空题10.三角形由________条线段围成,长方形由________条线段围成。
11.在横线上填“经过”或“不经过”。
线段AB经过点C吗?________12.正方形是由________条线段围成的,三角形是由________条线段围成的.13.下图是由________条线段组成的,有________个直角。
14.手电筒发出的光是一条________。
四、解答题15.用两种不同的方法数出框中一共有()条线段,并在图中画出你数线段的方法。
16.画一条比4厘米短5毫米的线段,并给这条线段标上长度。
五、作图题17.过AB两点画一条直线,并量出线段AB的长度。
线段AB长()毫米。
答案一、单选题1. C2. A3. B4. C5. C二、判断题6. 错误7. 错误8. 错误9. 正确三、填空题10. 3;4 11. 不经过12. 4;3 13. 9;614. 射线四、解答题15. 解:,5+4+3+2+1=15(条)答:数出框中一共有15条线段。
16.五、作图题17.量得线段AB的长度是2厘米,即线段AB长20毫米。
4.2直线、射线、线段小测验007(满分60)姓名:分数:一、客观题(每题3分,共33分)1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画直线.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有个交点,最少有个交点.6.平面上有任意三点,过其中两点画直线,共可以画条直线.7.如图1,图中共有条线段,它们是.如图2,图中共有条射线,指出其中的两条.8.要在墙上固定一根木条,至少要个钉子,根据的原理是.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.二、解答题(共27分)12.(8分)点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.13.(9分)(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.14.(10分)如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.参考答案与试题解析1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个【分析】根据题意画出图形,根据中点的特点即可得出结论.【解答】解:如图所示:①∵AP=BP,∴点P是线段AB的中点,故本小题正确;②点P可能在AB的延长线上时不成立,故本小题错误;③P可能在BA的延长线上时不成立,故本小题错误;④∵AP+PB=AB,∴点P在线段AB上,不能说明点P是中点,故本小题错误.故选:A.【点评】本题考查的是两点间的距离,熟知中点的特点是解答此题的关键.2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定【分析】根据比较线段的长短进行解答即可.【解答】解:由图可知,A′B′<AB;故选:C.【点评】本题主要考查了比较线段的长短,解题的关键是正确比较线段的长短.3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种【分析】根据题意确定出数学模型,五点确定出线段条数,计算即可得到结果.【解答】解:根据题意得:从济南西站到枣庄站这段线路的火车票价格最多有==10种,故选:C.【点评】此题考查了直线、射线、线段、从实际问题中抽象出数学模型是解本题的关键.4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画1条或4条或6条直线.【分析】分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:①四点在同一直线上时,只可画1条;②当三点在同一直线上,另一点不在这条直线上,可画4条;③当没有三点共线时,可画6条;故答案为:1条或4条或6条.【点评】本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有10个交点,最少有1个交点.【分析】直线交点最多时,根据公式,把直线条数代入公式求解即可,直线相交于同一个点时最少,是1个交点.【解答】解:最多时=10,相交于同一个点时最少,有1个交点.【点评】中学阶段记住公式在解题时会很方便,熟记公式是解题的关键.6.平面上有任意三点,过其中两点画直线,共可以画1或3条直线.【分析】先画图,由图可直接解答.【解答】解:如图所示:三点在一条直线上时可画一条,不在一条直线上时可画三条.【点评】本题考查了过平面上两点有且只有一条直线,体现了数形结合的思想.7.如图1,图中共有3条线段,它们是线段AC、线段AB、线段BC.如图2,图中共有4条射线,指出其中的两条射线AB、射线BA.【分析】直线上有三个点,过其中任意两个可以作为线段的端点作一条线段,即可以得出有三条;直线上有两点,过每一个点都可以得到两条射线,即过两个点可以找到4条射线.【解答】解:(1)根据线段的定义,可以找到3条,分别为:线段AC、线段AB、线段BC.(2)射线有一个端点,在直线上过每个点都可以得到2条射线,即如图所示,过两个点可以找到4条,其中包括:射线AB和射线BA.故图中共有4条射线,指出两条为:射线AB、射线BA.【点评】本题考查了线段和射线的性质,结合图形可以很明白的得出结论,注意数形结合的思想.8.要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.【分析】根据两点确定一条直线解答.【解答】解:要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.故答案为:两;两点确定一条直线.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是两点之间线段最短.【分析】根据两点之间线段最短解答.【解答】解:把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是:两点之间线段最短.故答案为:两点之间线段最短.【点评】本题考查了线段的性质,熟记两点之间线段最短是解题的关键.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是8cm或2cm.【分析】分点B在线段AC上和点C在线段AB上两种情况,计算即可.【解答】解:当点B在线段AC上时,AC=AB+BC=8cm,当点C在线段AB上时,AC=AB﹣BC=2cm,故答案为:8cm或2cm.【点评】本题考查的是两点间的距离的计算,灵活运用分情况讨论思想是解题的关键.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有5个.【分析】点P与A,B,C,D四点中的至少两个点距离相等时,也就是点P恰好是其中一条线段中点,而图中共有六条线段,所以出现报警的次数最多六次.【解答】解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.【点评】本题考查了两点间的距离,利用总体思想去思考线段的总条数是解决问题最巧妙的办法,可以减去不必要的讨论与分类.12.点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.【分析】①根据线段中点的性质,可得AB的长,根据比例分配,可得BP的长,根据线段的和差,可得答案;②分两种情况:M有P点左边和右边,分别根据线段和差进行计算便可.【解答】解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,∵AP:PB=5:2.∴BP=cm,∴OP=OB﹣BP=14﹣8=6(cm);②如图1,当M点在P点的左边时,AM=AB﹣(PM+BP)=28﹣(4+8)=16(cm),如图2,当M点在P点的右边时,AM=AB﹣BM=AB﹣(BP﹣PM)=28﹣(8﹣4)=24(cm).综上,AM=16cm或24cm.【点评】本题考查了两点间的距离,利用了比例的性质,线段中点的性质,线段的和差.13.(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.【分析】(1)①直接根据关于x的方程(n﹣4)x=6﹣n无解求出m的值即可;②根据题意画出图形,分别用BP,AP表示出PM与PN的值,进而可得出结论;(2)根据题意画出图形,由各线段之间的关系可得出结论.【解答】解:(1)①方程(n﹣4)x=6﹣n,∵关于x的方程(n﹣4)x=6﹣n无解,∴n﹣4=0,即n=4,∴线段AB的长为4;②如图1,∵点M为线段PB的中点,点N为线段AP的中点,AB=n,∴PM=BP,PN=AP,∴MN=MP+NP=AB=n;∴线段MN的长与点P在线段AB上的位置无关;(2)如图2,∵点C为线段AB的中点,∴AC=AB,∴P A+PB=PC﹣AC+PC+BC=2PC,∴=2,∴的值不变.【点评】本题考查的是两点间的距离,根据题意画出图形,利用数形结合求解是解答此题的关键.14.如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.【分析】(1)①根据AB=2t即可得出结论;②先求出BD的长,再根据C是线段BD的中点即可得出CD的长;(2)分类讨论;(3)直接根据中点公式即可得出结论.【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当t=2时,AB=2×3=6cm;②∵AD=15cm,AB=6cm,∴BD=15﹣6=9cm,∵C是线段BD的中点,∴CD=BD=×9=4.5cm;(2)∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当0≤t≤5时,AB=3t;当5<t≤10时,AB=15﹣(3t﹣15)=30﹣3t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×15=7.5cm.【点评】本题考查了两点间的距离,根据已知得出各线段之间的等量关系是解题关键.。
六年级线段、射线、直线(0.64)一、单选题(共16题;共32分)1.宣传委员制作黑板报时想要在黑板上画出一条笔直的参照线,由于尺子不够长,她想出了一个办法如图,这种画法的数学依据是()A. 两点确定一条直线B. 两点之间,线段最短C. 线段的中点的定义D. 两点的距离的定义【答案】A【考点】直线的性质:两点确定一条直线2.根据下图,下列说法中不正确的是()A. 图①中直线l经过点AB. 图②中直线a,b相交于点AC. 图③中点C在线段AB上D. 图④中射线CD与线段AB有公共点【答案】C【考点】直线、射线、线段3.以下说法中正确是()A. 延长射线ABB. 延长直线ABC. 画直线AB 直线等于1cmD. 延长线段AB 到C 【答案】 D【考点】直线、射线、线段4.“植树时只要确定两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是A. 两点之间,线段最短B. 两点确定一条直线C. 直线可以向两边延长D. 两点之间线段的长度,叫做这两点之间的距离【答案】B【考点】直线的性质:两点确定一条直线5.要在墙上固定一根木条,小红说只需要两根钉子,这其中用到的数学道理是()A. 两点之间,线段最短B. 两点确定一条直线C. 线段只有一个中点D. 两条直线相交,只有一个交点【答案】B【考点】直线的性质:两点确定一条直线6.木工师傅在锯木板时,往往先在木板两端用墨盒弹一根墨线然后再锯,这样做的数学道理是()A. 两点确定一条直线B. 两点之间线段最短C. 连接两点间的线段的长度,叫做这两点的距离D. 从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线【答案】A【考点】直线的性质:两点确定一条直线7.如果你想将一根细木条固定在墙上,至少需要几个钉子()A. 一个B. 两个C. 三个D. 无数个【答案】B【考点】直线的性质:两点确定一条直线8.下列语句准确规范的是( )A. 延长射线AO到点B(A是端点)B. 延长直线ABC. 直线a,b相交于一点mD. 直线AB,CD相交于点M【答案】 D【考点】直线、射线、线段9.下列各直线的表示法中,正确的是()A. 直线AB. 直线ABC. 直线abD. 直线aB【答案】B【考点】直线、射线、线段10.京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.A. 6B. 12C. 15D. 30【答案】 D【考点】直线、射线、线段11.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A. 4cmB. 2cmC. 4cm或2cmD. 小于或等于4cm,且大于或等于2cm【答案】 D【考点】直线、射线、线段12.平面内的9条直线任两条都相交,交点数最多有m个,最少有n个,则m+n等于()A. 36B. 37C. 38D. 39【答案】B【考点】直线、射线、线段,直线的性质:两点确定一条直线13.有三个点A,B,C,过其中每两个点画直线,可以画出直线()A. 1条B. 2条C. 1条或3条D. 无法确定【答案】C【考点】直线、射线、线段14.如图,在直线l上依次有A,B,C三点,则图中线段共有()A. 4 条B. 3 条C. 2 条D. 1 条【答案】B【考点】直线、射线、线段15.图中直线PQ、射线AB、线段MN能相交的是()A. B. C. D.【答案】 D【考点】直线、射线、线段16.如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是( ).A. M点在线段AB上B. M点在直线AB上C. M点在直线AB外D. M点可能在直线AB上,也可能在直线AB外【答案】 D【考点】直线、射线、线段二、填空题(共12题;共16分)17.建筑工人砌墙时,经常在两个墙角的位置分别插一根木桩,然后在两个木桩之间拉一条线,建筑工人沿着拉紧的这条直线砌墙,这个事实说明的原理是________.【答案】两点确定一条直线【考点】直线的性质:两点确定一条直线18.如图,点A、B、C、D在同一条直线上,则图中共有线段________条;直线有________条;射线有________条.【答案】6;1;8【考点】直线、射线、线段19.要在墙上钉稳一根横木条,至少要钉2个钉子,这样做的道理是________.【答案】两点确定一条直线【考点】直线的性质:两点确定一条直线20.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为________.【答案】两点确定一条直线【考点】直线的性质:两点确定一条直线21.直线上有n个点,我们进行如下操作:在每相邻两点间插入2个点.经过2次这样的操作后,直线上共有________个点.(用含n的代数式表示)【答案】9n-8【考点】直线、射线、线段22.在一条线段上取n个点,这n个点连同线段的两个端点一共有(n+2)个点,若以这(n+2)个点中任意两点为端点的线段共有45条,则n=________.【答案】8【考点】直线、射线、线段23.如图,点C,D分别为线段AB(端点A,B除外)上的两个不同的动点,点D始终在点C右侧,图中所有线段的和等于30 cm,且AB=3CD,则CD=________cm.【答案】3【考点】直线、射线、线段24.如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为________cm.【答案】20【考点】直线、射线、线段25.已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,点M是线段AC的中点,线段AM的长是________.【答案】6cm或2cm【考点】直线、射线、线段26.如图所示,线段AB=4cm,BC=7cm,则AC=________cm.【答案】11【考点】直线、射线、线段27.如图,点A,B,C在直线l上,则图中共有________条线段,有________条射线.【答案】3;6【考点】直线、射线、线段28.如图所示,共有线段________条,共有射线________条.【答案】6;5【考点】直线、射线、线段三、解答题(共2题;共10分)29.如图,点C 在线段AB 上,AC=8 cm ,CB=6 cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC+CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由; (3)若C 在线段AB 的延长线上,且满足AC ﹣BC=bcm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【答案】(1)7; (2)12a; (3)12b;(4)只要满足点C 在线段AB 所在直线上,点M 、N 分别是AC 、BC 的中点.那么MN 就等于AB 的一半.【考点】直线、射线、线段30.如图,已知线段AB ,请用尺规按照下列要求作图:①延长线段AB 到C ,使得BC=2AB ;②连接PC ;③作射线AP .如果AB=2cm ,求AC 的值【答案】解:如图所示:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=6cm.【考点】直线、射线、线段四、作图题(共20题;共170分)31.如图,已知四点A 、B 、C 、D,用圆规和无刻度的直尺,按下列要求与步骤画出图形:(1)画直线AB ;(2)画射线DC;(3)延长线段DA至点E,使AE=AB(保留作图痕迹)。
、选择题1、数轴上表示整数的点称为整点,某数轴的单位长度是 1 厘米,若在这个数轴上随意画一条长 15 厘米的线段 AB ,则 AB 盖住的整数点的个数共有( )个 A .13 或14 个 B.14 或 15个 C.15 或 16个3、如下图是某风景区的旅游路线示意图,其中 , , 为风景点, 为两条路的交叉点,图中数据为相应两点的路程(单位:千米).一学生从 处出发,以 千米/时的速 度步行观览景色,每个景点的逗留时间约为 小时.1)当他沿着路线游览回到 处时,共用了 小时,求 的长;(2)若此学生打算从 处出发,步行度与在景点的逗留时间保持不变,且在最 时间内游览完三个景点返回 处,请你为设计一条步行路线,并说明这样设计的理由.(不考虑其他因素)4、如图,从 A 到 B 最短的路线是 ()5、已知线段 AB=10cm ,直线 AB 上有点 C ,且 BC=4cm , M 是线段 AC 的中点,则 AM= cm 。
6、平面内有三个点 ,过任意两点画一条直线 , 则可以画直线的条数是 ( )A.2 条B.3 条C.4 条D.1 条或 3 条7、在直线 上顺次取 A 、B 、C 三点,使得 AB=5㎝, BC=3㎝,如果 O 是线段 AC 的中点, 那么线段 OB 的长度是( )A 、0.5 ㎝ B 、1 ㎝ C 、1.5 ㎝ D 、 2㎝D.16 或 17 个A. A —G — E — B C. A —D — G —B. A — C —E —B D. A —F —E —B8、点是直线外一点,为直线上三点,, 则点到直线的距离是()A、 B 、小于C、不大于D、9、如图所示, 把一根绳子对折成线段AB, 知AP= PB, 若剪断后的各段绳子中最子的原长为()11、下列说法不正确的是()A.若点C在线段的延长线上,则B.若点C在线段上,则C.若,则点一定在线段外D.若三点不在一直线上,则、填空题12、若线段AB=10㎝,在直线AB上有一点C,且BC=4㎝,M是线段AC的中点,则AM= ㎝.13、在边长都是 1 的正方形方格纸上画有如图所示的折线,它们的各段依次标着①,②,③,④,⋯的序号. 那么序号为24的线段长度是.14、.在直线上取A、B、C三点,使得AB = 9厘米,中点,则线段OA的长为厘米.15、往返于甲、乙两地的火车中途要停靠三个站,则有种不同的票价(来回票价一样),需准备种车票.17、如图,从学校 A 到书店 B 最近的路线是①号路线,其道理用几何知识解释应是从P 处把绳子剪断, 已A. 30 cm60 cm 或120B. 60 cmC. 120 cmD.BC = 4 厘米,如果O是线段AC的19、要在墙上固定一根木条,至少需要根钉子,理由是:.20、①如图(1)直线l 上有 2 个点,则图中有 2 条可用图中字母表示的射线,有 1 条线段②如图(2)直线l 上有 3 个点,则图中有条可用图中字母表示的射线,有条线段③直线上有n 个点,则图中有条射线,有条线段。
直线、射线、线段测试题一、选择题1. 下列说法错误的是()A. 平面内过一点有且只有一条直线与已知直线垂直B. 两点之间的所有连线中,线段最短C.经过两点有且只有一条直线D. 过一点有且只有一条直线与已知直线平行2.平面上的三条直线最多可将平面分成()部分A .3 B.6 C .7D.93.如果A BC三点在同一直线上,且线段AB=4CM,BC=2CM,那么AC两点之间的距离为()A .2CM B.6CM C .2 或6CM D .无法确定4.下列说法正确的是()A.延长直线AB到C;B.延长射线OA到C;C.平角是一条直线;D.延长线段AB到C5.如果你想将一根细木条固定在墙上,至少需要几个钉子()A.一个B.两个C.三个D.无数个6.点P在线段EF上,现有四个等式①PE=PF;②PE=12EF;③12EF=2PE;④2PE=EF;其中能表示点P是EF中点的有()A.4个B.3个C.2个D.1个7. 如图所示,从A地到达B地,最短的路线是().A.A→C→E→B B.A→F→E→B C.A→D→E→B D.A→C→G→E→B8..如右图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A .2()a b- B .2a b-C .a b+D .a b-9..在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是()A.2㎝B.㎝C.㎝D.1㎝10.如果AB=8,AC=5,BC=3,则()A.点C在线段AB上B.点B在线段AB的延长线上C.点C在直线AB外 D .点C可能在直线AB上,也可能在直线AB外二、填空题1.若线段AB=a,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则MN=_______.2.经过1点可作________条直线;如果有3个点,经过其中任意两点作直线,可以作______条直线;经过四点最多能确定条直线。
人教版数学四年级上册第三单元 3.1线段直线射线练习
一、填空题(共5题)
1.线段有个端点,射线有个端点,直线有个端点.
2.在下面的横线上填合适的图形序号.
直线:
射线:
线段:
3.经过平面上一点,可以画条直线;经过平面上两点,可以画条直线.
4.如图中有条直线、条射线、条线段.
5.下图中各有几条线段?
条条
条条
二、选择题(共5题)
6.小明画了一条长5厘米的( )
A.线段B.射线C.直线
7.图中一共有( )条线段.
A.5B.10C.4
8.直线与射线相比,( )
A.同样长B.直线长C.无法比较长短
9.一条笔直的、两端都看不到尽头的高速公路可以近似地看成()。
A.直线B.射线C.线段
10.把线段向两端无限延长,就得到一条( )
A.线段B.射线C.直线
三、判断题(共5题)
11.小明画了一条长6厘米的线段.
12.线段、射线都比直线要短.
13.两点之间线段最短.
14.丙同学:“射线也可以量出长度.”
15. A,B,C是同一平面内不在同一直线上的3个点,过其中两点画线段,一共能画3条.
四、操作题(共2题)
16.画一条比1分米短2厘米的线段.
17.先画一条直线,再从直线上截取一条5厘米长的线段.
五、解决问题(共1题)
18.
(1) 小玲从家去学校,走哪条路最近?
(2) 明明从体育馆出发,经过学校到少年宫;军军从电影院出发,经过学校到少年宫.他们各要走多少米?。
直线、射线、线段综合练习题一.填空题(共6小题)1.一条直线上有n个不同的点,则该直线上共有线段条.2.如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段条.3.表反映了平面内直线条数与它们最多交点个数的对应关系:图形…直线条数234…最多交点个数13=1+26=1+2+3…按此规律,6条直线相交,最多有个交点;n条直线相交,最多有个交点.(n 为正整数)4.如图,C、D、E、F为线段AB上顺次排列的4个动点(不与A、B重合),图中共有条线段.若AB=8.6cm,DE=1cm,图中所有线段长度之和为56cm,则线段CF长为cm.5.如图,能用图中字母表示的射线有条.6.如图,已知A、B、C、D四点在同一直线上,点D是线段BC的中点,且BC=3AB,如果AB=4cm,则线段AD的长度为cm.二.解答题(共7小题)7.如图(1),线段上有3个点时,线段共有3条;如图(2)线段上有4个点时,线段共有6条;如图(3)线段上有5个点时,线段共有10条.(1)当线段上有6个点时,线段共有条;(2)当线段上有n个点时,线段共有条;(用n的代数式表示)(3)当n=100时,线段共有条.8.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.9.如图,已知线段AB,延长AB到C,使,D为AC的中点,DC=3cm,求BD的长.10.如图B、C两点把线段AD分成2:3:4三部分,M是AD的中点,CD=8,求MC的长.11.如图,,D为AC的中点,DC=2cm,求AB的长.12.已知A、B、C三点在同一直线上,线段AB=8cm,线段BC=6cm,点M、点N分别是线段AB、线段BC的中点,求线段MN的长度.13.已知线段AB=AC,AB+AC=16cm,求AC和AB的长.直线、射线、线段综合练习题参考答案一.填空题(共6小题)1.一条直线上有n个不同的点,则该直线上共有线段n(n﹣1)条.【分析】直线上有n个不同点,共有线段(n﹣1)+(n﹣2)+…+3+2+1=n(n ﹣1)条.【解答】解:当直线上有三个不同点,共有线段3条,当直线上有四个不同的点,共有线段6条,所以一条直线上有n个不同的点时共有线段n(n﹣1)条,故答案为:n(n﹣1)【点评】此题考查数线段的方法,注意从简单情形考虑,找出规律解决问题.2.如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段30条.【分析】分别求出构成五角星的每条线段上有几条线段,在将其乘以5即可.【解答】解:线段AC,BE,CE,BD,AD上各有另两个点,每条上有6条线段;所以共有6×5=30条线段.【点评】把这个五星分成五条线段,每条上有另两个点来求解.3.表反映了平面内直线条数与它们最多交点个数的对应关系:图形…直线条数234…最多交点个13=1+26=1+2+3…数按此规律,6条直线相交,最多有个交点;n条直线相交,最多有个交点.(n为正整数)【分析】根据观察,可发现规律:n条直线最多的交点是1+2+3+(n﹣1),可得答案.【解答】解:6条直线相交,最多有个交点1+2+3+4+5=15;n条直线相交,最多有个交点,故答案为:15,.【点评】本题考查了直线,每两条直线有一个交点得出n条直线最多的交点是1+2+3+(n﹣1)是解题关键4.如图,C、D、E、F为线段AB上顺次排列的4个动点(不与A、B重合),图中共有15条线段.若AB=8.6cm,DE=1cm,图中所有线段长度之和为56cm,则线段CF长为4cm.【分析】可以设出线段CF的长,再根据图中所有线段的长度之和为56cm,即可列出方程,解方程即可求出答案.【解答】解:5+4+3+2+1=15(条)设线段CF的长为xcm,依题意有8.6×5+3x+1=56,解得x=4.答:图中共有15条线段,线段CF长为4cm.故答案为:15,4.【点评】本题考查了两点间的距离,有一定难度,根据题意列出方程式,并探讨解的合理性是关键.5.如图,能用图中字母表示的射线有5条.【分析】结合图形,根据射线的概念和表示方法进行分析.【解答】解:图中可以表示的射线有AC、CB、CD,DB,BD5条.【点评】此题考查了射线的概念和射线的表示方法.6.如图,已知A、B、C、D四点在同一直线上,点D是线段BC的中点,且BC=3AB,如果AB=4cm,则线段AD的长度为10cm.【分析】由BC=3AB,AB=4cm,得到BC=12cm,由点D是线段BC的中点,得到BD=6cm,于是得到结论.【解答】解:∵BC=3AB,AB=4cm,∴BC=12cm,∵点D是线段BC的中点,∴BD=6cm,∴AD=10cm,故答案为:10.【点评】本题主要考查了两点间的距离,利用线段中点的性质得出BD、DC的长是解题关键.二.解答题(共7小题)7.如图(1),线段上有3个点时,线段共有3条;如图(2)线段上有4个点时,线段共有6条;如图(3)线段上有5个点时,线段共有10条.(1)当线段上有6个点时,线段共有15条;(2)当线段上有n个点时,线段共有条;(用n的代数式表示)(3)当n=100时,线段共有4950条.【分析】根据每一个点与另外的一个点有一条线段,n个点中每一个点可组成(n﹣1)条线段,n个点可组成,可得答案.【解答】解:(1)当线段上有6个点时,线段共有=15条;(2)当线段上有n个点时,线段共有条;(3)当n=100时,线段共有=4950条;故答案为:15,,4950.【点评】本题考查了直线、射线、线段,任意两点有一条线段,根据规律是解题关键.8.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【分析】(1)从左向右依次固定一个端点A,C,D找出线段,最后求和即可;(2)根据数线段的特点列出式子化简即可;(3)将实际问题转化成(2)的模型,借助(2)的结论即可得出结论.【解答】解:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2),理由:设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x==m(m﹣1),∴x=;(3)把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,因此一共要进行=28场比赛.【点评】此题是线段的计数问题,主要考查了数线段的方法和技巧,解本题的关键是找出规律,此类题目容易数重或遗漏,要特别注意.9.如图,已知线段AB,延长AB到C,使,D为AC的中点,DC=3cm,求BD的长.【分析】由D为AC的中点可得AC的长,进而由BC=AB可得BC占AC的三分之一,求得BC,让DC减去BC长即为BD长.【解答】解:∵D为AC的中点,DC=3cm,∴AC=2DC=6cm,∵BC=AB,∴BC=AC=2cm,∴BD=CD﹣BC=1cm.【点评】考查线段上两点间距离的计算;判断出与所求线段相关的线段CD的长是解决本题的突破点.10.如图B、C两点把线段AD分成2:3:4三部分,M是AD的中点,CD=8,求MC的长.【分析】设AB为2x,则CD=4x=8,得出x=2,再利用MC=MD﹣CD求解.【解答】解:设AB=2x,BC=3x,CD=4x,∴AD=9x,MD=x,则CD=4x=8,x=2,MC=MD﹣CD=﹣4x==×2=1.【点评】本题考查了线段长短的比较,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.11.如图,,D为AC的中点,DC=2cm,求AB的长.【分析】在一条直线或线段上的线段的加减运算和倍数运算,首先明确线段间的相互关系,根据题目中的几何图形,再根据题意进行计算.【解答】解:设AB长为x,BC=AB=,D为AC的中点,DC=2cm,解得:AC=4cm,∵AC=AB+BC,∴4=x+=x,解得:x=,故AB的长为cm.【点评】本题考查了线段的长短比较,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.12.已知A、B、C三点在同一直线上,线段AB=8cm,线段BC=6cm,点M、点N分别是线段AB、线段BC的中点,求线段MN的长度.【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.【解答】解:第一种情况:B在AC内,则MN=AB+BC=7;第二种情况:B在AC外,则MN=AB﹣BC=1.【点评】由于B的位置有两种情况,所以本题MN的值就有两种情况,做这类题时学生一定要思维细密.13.已知线段AB=AC,AB+AC=16cm,求AC和AB的长.【分析】在一条直线或线段上的线段的加减运算和倍数运算,首先明确线段间的相互关系,最好准确画出几何图形,再根据题意进行计算.【解答】解:①∵AB=AC,AB+AC=16cm∴AC+AC=16,AC=16∴AC=12cm,AB=4cm.②∵AB=AC,AB+AC=16cm,∴AC+AC=16,AC=16∴AC=12cm,AB=4cm.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.。
北师大版数学七年级上册第四章4.1线段、射线、直线同步练习一、选择题1.延长线段AB到C,下列说法正确的是()A.点C在线段AB上B.点C在直线AB上C.点C不在直线AB上D.点C在直线BA的延长线上答案:B解析:解答:因为线段有两个端点,所以线段可以向两方延长,所以点C不在线段AB上,点C在直线AB上,故A、C错误,B正确,因为直线没有端点,可以向两方无限延伸,直线没有延长线的说法,故D错误.故选B.分析:本题根据直线、线段、以及射线的概念来解答即可.2.如图,图中共有线段的条数是()A.4B.5C.6D.7答案:C解析:解答:图中的线段有AB、AC、AD、BC、BD、CD;故选:C.分析:根据图示数出线段即可.3.下列各直线的表示法中,正确的是()A.直线AB.直线ABC.直线abD.直线Ab答案:B解析:解答:表示一条直线,可以用直线上的两个点表示,一般情况用两个大写字母表示;故选B.分析:此题考查直线的表示方法.4.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直答案:A解析:解答:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.分析:根据公理“两点确定一条直线”来解答即可.5.如图,点A、B、C在一直线上,则图中共有射线()A.1条B.2条C.4条D.6条答案:D解析:解答:根据射线的定义,这条直线上的每个点可以有两条射线,故图中共有射线6条.故选:D.分析:根据射线的定义,一条直线上的每个点可以有两条射线,分析图形可得答案.6.平面内的三个点A、B、C能确定的直线的条数是()A.1条C.3条D.1条或3条答案:D解析:解答:∵若平面内的三个点A、B、C不在同一直线上,则能确定的直线的条数是:3条;若平面内的三个点A、B、C在同一直线上,则能确定的直线的条数是:1条.∴平面内的三个点A、B、C能确定的直线的条数是:1条或3条.故选D.分析:分别从若平面内的三个点A、B、C不在同一直线上与若平面内的三个点A、B、C 在同一直线上去分析,则可求得答案.7.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线(2)射线AC和射线AD是同一条射线(3)AB+BD>AD(4)三条直线两两相交时,一定有三个交点.A.1个B.2个C.3个D.4个答案:C解析:解答:(1)直线BA和直线AB是同一条直线,直线没有端点,此说法正确;(2)射线AC和射线AD是同一条射线,都是以A为端点,同一方向的射线,正确;(3)AB+BD>AD,三角形两边之和大于第三边,所以此说法正确;(4)三条直线两两相交时,一定有三个交点,错误,可能有1个交点的情况.所以共有3个正确.分析:结合图形,区别各概念之间的联系.8.如图,平面内有公共端点的六条射线OA、OB、OC、OD、OE、OF,从射线OA开始按逆时针依次在射线上写出数字1、2、3、4、5、6、7…,则数字“”在()A.射线OA上B.射线OB上C.射线OD上D.射线OF上答案:C解析:解答:÷6=334…4,所以在射线OD上.故选C.分析:根据规律,所写数字按6个一组循环,用除以6余数是几就在第几条线.9.如下图,直线l、射线PQ、线段MN中能相交的是()A.B.C.D.答案:D解析:解答:根据线段不延伸,而射线只向一个方向延伸即可得到:正确的只有D.分析:根据线段与射线的定义,以及延伸性即可作出判断.10.将线段AB延长至C,再将线段AB反向延长至D,则共有线段()条.A.8B.7C.6D.5答案:C解析:解答:线段上有4个点时,线段总条数是3+2+1条,即6条.故选C.分析:因为将线段AB延长至C,再将线段AB反向延长至D,线段上有4个点,则共有线段条数可求.11.下列说法中正确的是()A.画一条3厘米长的射线B.画一条3厘米长的直线C.画一条5厘米长的线段D.在线段、射线、直线中直线最长答案:C解析:解答:A.射线可无限延长,不可测量,所以画一条3厘米长的射线是错误的;B.直线是无限长的,直线是不可测量长度的,所以画一条3厘米长的直线是错误的;C.线段有两个端点,有限长度,可以测量,所以画一条5厘米长的线段是正确的;D.直线、射线都是无限延长,不可测量,不能比较长短,只有线段可以比较长短,所以在线段、射线、直线中直线最长是错误的.故选:C.分析:利用直线、射线、线段的意义和特点,逐项分析,找出正确答案即可.12.下列说法正确的是()A.过一点P只能作一条直线B.直线AB和直线BA表示同一条直线C.射线AB和射线BA表示同一条射线D.射线a比直线b短解析:解答:A.过一点P可以作无数条直线;故A错误.B.直线可以用两个大写字母来表示,且直线没有方向,所以AB和BA是表示同一条直线;故B正确.C.射线AB和射线BA,顶点不同,方向相反,故射线AB和射线BA表示不同的射线;故C 错误.D.射线和直线不能进行长短的比较;故D错误.故选B.分析:过一点可以做无数条直线,根据直线的表示方法,AB和BA是表示同一条直线.而射线AB和射线BA表示不同的射线,射线与直线不能进行长短的比较.13.下列说法正确的是()A.经过两点有且只有一条线段B.经过两点有且只有一条直线C.经过两点有且只有一条射线D.经过两点有无数条直线答案:B解析:解答:A.线段有长短,例如过A、B两点的线段不止一条,故本选项错误;B.经过两点有且只有一条直线,是直线公理,正确;C.射线有一个端点,例如过B、C两点的射线有射线AB、射线BC,故本选项错误;D.因为两点确定一条直线,所以本选项错误.故选B.分析:根据两点确定一条直线的公理和直线、射线、线段的性质对各选项分析判断后利用排除法求解.14.“两条直线相交,有且只有一个交点”的题设是()A.两条直线B.交点C.两条直线相交D.只有一个交点解析:解答:两条直线相交,有且只有一个交点这一命题题设是两条直线相交,结论是有且只有一个交点,故选C.分析:本题考查两直线相交,有且只有一个交点的命题,题设和结论要搞清楚.15.如图,给出的直线、射线、线段,根据各自的性质,能相交的是()A.B.C.D.答案:D解析:解答:A.射线延伸后两直线不能相交,故本选项错误;B.直线延伸后两直线不能相交,故本选项错误;C.射线和直线延伸后两直线不能相交,故本选项错误;D.射线延伸后两直线能相交,故本选项正确;故选D.分析:根据直线可以沿两个方向延伸,射线可以沿一个方向延伸,线段不能延伸即可得出答案.二、填空题16.直线上有n个点,我们进行如下操作:在每相邻两点间插入2个点.经过2次这样的操作后,直线上共有______个点.(用含n的代数式表示)答案:9n-8解析:解答:第一次操作,共有n+(n-1)×2=3n-2个点,第二次操作,共有(3n-2)+(3n-2-1)×2=9n-8个点,故答案为:9n-8.分析:根据n个点中间可以有(n-1)个空插入,从而找出规律并得解.17.平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=______.解析:解答:∵平面内三条直线两两相交,最多有3个交点,最少有1个交点,∴a+b=4.故答案为:4.分析:分析可得:平面内三条直线两两相交,最多有3个交点,最少有1个交点,则即可求得a+b的值.18.乘火车从A站出发,沿途经过3个车站方可到达B站,那么在A、B两站之间需要安排不同的车票______种.(A到B与B到A车票不同.)答案:20解析:解答:设点C、D、E是线段AB上的三个点,根据题意可得:图中共用()515102-⨯=条线段∵A到B与B到A车票不同.∴从A到B的车票共有10×2=20种故答案为;20.分析:本题需先求出A、B之间共有多少条线段,根据线段的条数即可求出车票的种数.19.一条直线上立有10根距离相等的标杆,一名学生匀速地从第1杆向第10杆行走,当他走到第6杆时用了6.5s,则当他走到第10杆时所用时间是______.答案:11.7s解析:解答:从第1根标杆到第6根标杆有5个间隔,所以,每个间隔行进6.5÷5=1.3s,从第1根标杆到第10根标杆共有9个间隔,所以,行进9个间隔共用1.3×9=11.7s.故答案为:11.7s.分析:根据到第6杆时有5个间隔求出走1个间隔的时间,再求出到第10杆有9个间隔,然后列式计算即可得解.20.平面上有五条直线相交(没有互相平行的),则这五条直线最多有______个交点,最少有______个交点.答案:10|1解析:解答:最多时54102⨯=,相交于同一个点时最少,有1个交点.分析:直线交点最多时,根据公式()12n n-,把直线条数代入公式求解即可,直线相交于同一个点时最少,是1个交点.故答案为:10;1.三、解答题20.按要求画一画,再填空(1)延长AB到C,使BC=AB;(2)延长BA到D,使AD=2AB;答案:(3)根据画图过程,推想下列线段之间具有的等量关系,并将倍数填在横线上:CD=______BC,BD=______B C=______AC.答案:4|3|32.解析:解答:(1)(2)如图:;(3)∵BC=AB,AD=2AB,∴CD=4BC,BD=3BC=32 AC.故答案为:4;3;32.分析:(1)(2)根据题意画出图形即可;(3)根据图形得出线段之间的数量关系即可.22.①如图1直线l上有2个点,则图中有2条可用图中字母表示的射线,有1条线段②如图2直线l上有3个点,则图中有______条可用图中字母表示的射线,有______条线段;答案:4|3③如图3直线上有n个点,则图中有______条可用图中字母表示的射线,有______条线段;答案:2n -2|()1 2n n -;④应用③中发现的规律解决问题:某校七年级共有6个班进行足球比赛,准备进行循环赛(即每两队之间赛一场),预计全部赛完共需______场比赛.答案:65152⨯=. 解析:解答:②射线有:12A A 、23A A 、21A A 、31A A 共4条,线段有:12A A 、13A A 、23A A 共3条;③2n -2,()1 2n n -; ④65152⨯=. 分析:②写出射线和线段后再计算个数;③根据规律,射线是每个点用两次,但第一个和最后一个只用一次;线段是从所有点中,任取两个;④代入③中规律即可.23.如图,C 是线段AB 外一点,按要求画图:(1)画射线CB ;(2)反向延长线段AB ;(3)连接AC ,并延长AC 至点D ,使CD =AC .答案:解答:根据题意画图:解析:分析:根据作图的步骤即可画出图形.24.已知平面上四点A、B、C、D,如图:(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于E;(4)连接AC、BD相交于点F.(5)延长AC至M,使CM等于2AC.答案:解答:如图:解析:分析:利用直线,射线及线段的定义画图即可.25.如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC;(6)取一点P,使P在直线AB上又在直线CD上.答案:解析:解答:如图所示.分析:分别根据直线、射线、线段的定义作出图形即可.。
1.下列各说法一定成立的是A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行2.如图,用圆规比较两条线段A′B′和AB的长短,其中正确的是A.A′B′>AB B.A′B′=ABC.A′B′<AB D.A′B′≤AB3.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是A.过一点有且只有一条直线B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线4.下列语句正确的是A.延长线段AB到C,使BC=ACB.反向延长线段AB,得到射线BAC.取直线AB的中点D.连接A、B两点,并使直线AB经过C点5.如图所示,不同的线段的条数是A.4条B.5条C.10条D.12条6.如图所示,该条直线上的线段有A.3条B.4条C.5条D.6条7.射线OA与OB是同一条射线,画图正确的是A.B.C.D.8.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是A.1cm B.9cmC.1cm或9cm D.以上答案都不正确9.如图,对于直线AB,线段CD,射线EF,其中能相交的图是A.B.C.D.10.经过同一平面内的A,B,C三点中的任意两点,可以作出__________条直线.11.如图,该图中不同的线段数共有__________条.12.如下图,从小华家去学校共有4条路,第__________条路最近,理由是__________.13.如图,若D是AB中点,E是BC中点,若AC=8,EC=3,AD=__________.14.如图,已知线段AB,反向延长AB到点C,使AC=12AB,D是AC的中点,若CD=2,求AB的长.15.如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.16.AB、AC是同一条直线上的两条线段,M在AB上,且AM=13AB,N在AC上,且AN=13AC,线段BC和MN的大小有什么关系?请说明理由.17.如图所示,C是线段AB上的一点,D是AC的中点,E是BC的中点,如果AB=9cm,AC=5cm.求:(1)AD的长;(2)DE的长.18.如图,已知A、B、C、D四点,根据下列语句画图:(1)画直线AB;(2)连接AC、BD,相交于点O;(3)画射线AD、BC,交于点P.19.如图,点C在线段AB上,点D是AC的中点,如果CB=32CD,AB=7cm,那么BC的长为A.3cm B.3.5cmC.4cm D.4.5cm20.如图,C是AB的中点,D是BC的中点,则下列等式不成立的是A.CD=AD–AC B.CD=12AB-BDC.CD=14AB D.CD=13AB21.A、B是直线l上的两点,P是直线l上的任意一点,要使PA+PB的值最小,那么点P的位置应在A.线段AB上B.线段AB的延长线上C.线段AB的反向延长线上D.直线l上22.已知点P是线段AB的中点,则下列说法中:①PA+PB=AB;②PA=PB;③PA=12AB;④PB=12AB.其中,正确的有A.1个B.2个C.3个D.4个23.如图,D是线段AB中点,E是线段BC中点,若AC=10,则线段DE=________.24.在直线l两侧各取一定点A、B,直线l上动点P,则使PA+PB最小的点P的位置是________.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其他条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC–BC=b cm,M、N分别为AC、BC的中点,你能猜想MN 的长度吗?并说明理由.26.如图所示,直线l是一条平直的公路,A、B是某公司的两个仓库,位于公路两旁,请在公路上找一点建一货物中转站C,使A、B到C的距离之和最小,请在图中找出点C的位置,并说明理由.27.(2017•桂林)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=__________.28.(2017•河北)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.1.【答案】D【解析】A、直线无限长,错误;B、若A、B、C三点不共线,则无法画出一条直线,错误;C、射线无限长,错误;D、过直线AB外一点只能画一条直线与AB平行,正确.故选D.4.【答案】B【解析】A、延长线段AB到C,使BC=AC,不可以做到,故本选项错误;B、反向延长线段AB,得到射线BA,故本选项正确;C、取直线AB的中点,错误,直线没有中点,故本选项错误;D、连接A、B两点,并使直线AB经过C点,若A、B、C三点不共线则做不到,故本选项错误.故选B.5.【答案】C【解析】图中线段有:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10条.故选C.6.【答案】D【解析】线段有:AB,AC,AD,BC,BD,CD共6条.故选D.7.【答案】B【解析】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.8.【答案】C【解析】如图所示,当点C在AB之间时,AC=AB−BC=5−4=1(cm);当点C在点B的右侧时,AC=AB+BC=5+4=9(cm).故选C.10.【答案】1或3【解析】若A,B,C三点在同一直线上,可作出1条直线;若A,B,C三点不在同一直线上,可作出3条.故答案为:1或3.11.【答案】6【解析】因为图中的线段有:BC、DC、AC、BD、BA、DA,所以共有6条线段.故答案为:6. 12.【答案】③;两点之间,线段最短【解析】从小华家去学校共有4条路,第③条路最近,理由是:两点之间,线段最短.13.【答案】1【解析】因为EC=3,E是BC中点,所以BC=2EC=2×3=6,因为AC=8,所以AB=AC–BC=8–6=2,因为D是AB中点,所以AD=12AB=12×2=1.14.【解析】因为D是AC的中点,所以AC=2CD,因为CD=2cm,所以AC=4cm,因为AC=12AB,所以AB=2AC,所以AB=2×4cm=8cm.15.【解析】设AB=3x,则BC=2x,CD=5x,因为E、F分别是AB、CD的中点,所以BE=32x,CF=52x,因为BE+BC+CF=EF,且EF=24,所以32x+2x+52x=24,解得x=4,所以AB=12,BC=8,CD=20.16.【解析】BC=3MN.分三种情况:17.【解析】(1)因为AC=5cm,D是AC中点,所以AD=DC=12AC=52cm,(2)因为AB=9cm,AC=5cm,所以BC=AB−AC=9−5=4(cm),因为E是BC中点,所以CE=12BC=2cm,所以DE=CD+CE=52+2=92(cm).18.【解析】(1)如图所示,直线AB即为所求;(2)如图所示,线段AC,BD即为所求;(3)如图所示,射线AD、BC即为所求.19.【答案】A20.【答案】D【解析】因为C是AB的中点,所以CA=CB,又因为D是BC的中点,所以DC=DB,所以CD=DB=14AB;CD=BC−BD=12AB−BD;CD=AD−AC.故选D.21.【答案】A【解析】当P点在线段AB的延长线上,则PA+PB=PB+AB+PB=AB+2PB;当P点在线段AB的反向延长线上,则PA+PB=PA+AB+PB=AB+2PA;当P点在线段AB上,则PA+PB=AB,所以当P点在线段AB上时PA+PB的值最小.故选A.22.【答案】D【解析】由P是线段AB的中点,得①PA+PB=AB②PA=PB③PA=12AB④PB=12AB,故选D.23.【答案】5【解析】因为D是线段AB中点,E是线段BC中点,所以BD=12AB,BE=12BC,所以DE=BD+BE=12AB+12BC=12(AB+BC)=12AC,因为AC=10,所以DE=1102=5.故答案为:5.24.【答案】点P是直线AB与l的交点【解析】由两点之间,线段最短可知:当点P位于直线AB与l的交点时,PA+PB最小.故答案为:点P是直线AB与l的交点.25.【解析】(1)因为点M、N分别是AC、BC的中点,因为点M、N分别是AC、BC的中点,所以MC=12AC,NC=12BC,所以MN=MC–CN=12(AC–BC)=12b(cm).26.【解析】如图所示,理由:两点之间,线段最短.27.【答案】4【解析】因为点C是线段AD的中点,若CD=1,所以AD=1×2=2,因为点D是线段AB的中点,所以AB=2×2=4.故答案为:4.28.【解析】(1)若以B为原点,则C表示1,A表示–2,。
4.2 直线射线线段2一、单选题1.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为( )A.3 B.7 C.3或7D.以上都不对2.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )A.在A的左侧B.在AB之间C.在BC之间D.B处3.如果线段AB=5cm,BC=4cm,且A,B,C在同一条直线上,那么A,C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不正确4.如果一条直线上得到10条不同的线段,那么在这条直线上至少有点()A.20个B.10个C.7个D.5个5.下列说法错误的是()A.两点之间的所有连线中,线段最短B.经过一点有且只有一条直线与已知直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.经过一点有且只有一条直线与已知直线垂直6.在图中,线段的条数为( )A.9B.10 C.13D.157.如图,C 是AB 的中点,D 是BC 的中点,则下列等式不成立的是( ,A . CD,AD -ACB . CD,21AB,BDC . CD,41ABD . CD=31AB 8.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A . 171B . 190C . 210D . 3809.如图,从A 地到B 地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A . 两点确定一条直线B . 垂线段最短C . 两点之间,线段最短D . 两点之间,直线最短10.如图所示的图形表示正确的有( )A . 3个B . 4个C . 5个D . 6个11.下列说法:,两点之间的所有连线中,线段最短;,在数轴上与表示﹣1的点距离是3的点表示的数是2,,连接两点的线段叫做两点间的距离;,射线AB和射线BA是同一条射线;,若AC=BC,则点C是线段AB的中点;,一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有()A.2个B.3个C.4个D.5个二、填空题12.点C在线段AB上,下列条件中:①AC=BC②AC=2AB③AB=2BC④AC=0.5AB。
.直线、射线、线段测试题及答案————————————————————————————————作者:————————————————————————————————日期:4.2直线、射线、线段测试姓名:_______________班级:_______________分数:_______________一、选择题。
(每题3分)1、如图,小华的家在A处,书店在B处,星期日小华到书店去买书,他想尽快地赶到书店,请你帮助他选择一条最近的路线( )题1 题2A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B2、如图,林林的爸爸只用两枚钉子就把一根木条固定在墙上,下列语句能解释这个原理的( )A.木条是直的B.两点确定一条直线C.过一点可以画无数条直线D.一个点不能确定一条直线3、如右图是一条射线,一条线段和一条直线,则它们的交点的个数有()个.A.0B.1C.2D.34、下列四个图中的线段(或直线、射线)能相交的是( )A.(1)B.(2)C.(3)D.(4)5、A、3cmB、4cmC、5cmD、6cm6、如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A.两点之间,线段最短B.两点确定一条直线C.两点之间,直线最短D.两点确定一条线段题6 题7 题97、.如图,C、D是线段AB上两点,D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长等于( )A. 2 cm B. 3 cm C. 4 cm D. 6 cm8、平面内有三个点,过任意两点画一条直线,则可以画直线的条数是( )A.2条B.3条C.4条D.1条或3条9、如图3,图中有( )A.3条直线B.3条射线C.3条线段D.以上都不对10、如图,C、D是线段AB上的两个点,CD=3cm,M是AC的中点,N是DB的中点,MN=5.4cm,那么线段AB的长等于A.7.6cm B.7.8cm C.8cm D.8.2cm二、填空题。
4.2直线、射线、线段测试题
一、选择题
1. 下列说法错误的是()
A. 平面内过一点有且只有一条直线与已知直线垂直
B. 两点之间的所有连线中,线段最短
C.经过两点有且只有一条直线
D. 过一点有且只有一条直线与已知直线平行
3.如果A BC三点在同一直线上,且线段AB=4CM,BC=2CM,那么AC两点之间的距离为()
A .2CM B. 6CM C .2 或6CM D .无法确定
4.下列说法正确的是()
A.延长直线AB到C; B.延长射线OA到C;C.平角是一条直线; D.延长线段AB到C 5.如果你想将一根细木条固定在墙上,至少需要几个钉子()
A.一个 B.两个 C.三个 D.无数个
6.点P在线段EF上,现有四个等式①PE=PF;②PE=EF;③EF=2PE;④2PE=EF;其中能表示点P是EF
中点的有()
A.4个 B.3个 C.2个 D.1个
7. 如图所示,从A地到达B地,最短的路线是().
A.A→C→E→B B.A→F→E→B C.A→D→E→B D.A→C→G→E→B
8..如右图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,
则线段AD的长是()
A .
B .
C .
D .
9..在直线上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB 的长度是()
A.2㎝ B.0.5㎝ C.1.5㎝ D.1㎝
10.如果AB=8,AC=5,BC=3,则()
A.点C在线段AB上 B.点B在线段AB的延长线上
C.点C在直线AB外 D .点C可能在直线AB上,也可能在直线AB外
二、填空题
1.若线段AB=a,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则MN=_______.
2.经过1点可作________条直线;如果有3个点,经过其中任意两点作直线,可以作______条直线;
经过四点最多能确定条直线。
4.如图,学生要去博物馆参观,从学校A处到博物馆B处的路径共有⑴、⑵、⑶三条,为了节约时间,尽快从A处赶到B处,假设行走的速度不变,你认为应该走第________条线路(只填番号)最快,理由是___________________。
5.若AB=BC=CD那么AD=AB AC=AD
6.直线上8点可以形成_______条线
段;若n个点可以形成_____条线段。
7.如图,点C是线段AB上一点,点D、E分别是线段AC、BC的中点. 如果AB=a,AD=b,
其中,那么CE= 。
8.如图,若CB = 4 cm,DB = 7 cm,且D是AC的中点,则AC =_________________.
9.下面由火柴杆拼出的一列图形中,第n个图形由几根火柴组成.(4分)
通过观察可以发现:第4个图形中,火柴杆有_______根,第n个图形中,火柴杆有________根.10.已知:A、B、C三点在一条直线上,且线段AB=15cm,BC=5cm,则线段AC=_______。
14、往返于甲、乙两地的火车中途要停靠三个站,则有种不同的票价(来回票价一样),需准备种车票.
15、火车从A地到B地途经C、D、E、F四个车站,且相邻两站之间的距离各不相同,则售票员应准备种票价的车票.
16、如图,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是
________________。
17、如图3,点C、D在线段AB上,AC=BD,若AD=8cm,则BC= .
18、要在墙上固定一根木条,至少需要根钉子,理由
是: .
19、①如图(1)直线l上有2个点,则图中有2条可用图中字母表示的射线,有1条线段
②如图(2)直线l上有3个点,则图中有条可用图中字母表示的射线,有条线段。
③如图(3)直线上有n个点,则图中有条可用图中字母表示的射线,有条线段。
④应用③中发现的规律解决问题:某校七年级共有6个班进行足球比赛,准备进行循环赛(即每两队之间赛一场),预计全部赛完共需场比赛。
三、解答题
1.如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度。
2.线段AD=6cm,线段AC=BD=4cm ,E、F分别是线段AB、CD中点,求EF。
3.如图所示一只蚂蚁在A处,想到C处的最短路线是请画出简图,并说明理由。
4.观察图①,由点A和点B可确定条直线;
观察图②,由不在同一直线上的三点A、B和C最多能确定条直线;
(1)动手画一画图③中经过A、B、C、D四点的所有直线,最多共可作条直线;
(2)在同一平面内任三点不在同一直线的五个点最多能确定条
直线、n个点(n≥2)最多能确定条直线。
5.如图,点C在线段AB上,AC = 8 cm,CB = 6
cm,点M、N分别是AC、BC的中点。
(1)求线段MN的长;
(2)若C为线段AB上任一点,满足,其它条件不变,你能猜想MN的长度吗?并说明理由。
(3)若C在线段AB的延长线上,且满足,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由。
参考答案
一.选择题
1.D
2.C
3.C
4.D
5.B
6.A
7.B
8.B
9.D 10.A
二。
填空题
1. ;
2.无数、1或3 、6;
3.31;
4.(2)、两点之间的所有连线中,线段最短;
5.3、
6.28、;
7. ;
8.6cm;
9.13、; 10.20cm或10cm
三。
解答题
1. 解:如图
∵C点为线段AB的中点,D点为BC的中点,AB=10cm
∴
∴
∴
答:AD的长度为7.5cm。
2. 解:如图
∵线段AD=6cm,线段AC=BD=4cm
∴
∴
又∵E、F分别是线段AB、CD中点
∴
∴
∴
答:线段EF的长为4cm。
3.如图所示一只蚂蚁在A处,想到C处的最短路线如图所示,
理由是:两点之间,线段最短。
(圆柱的侧面展开图是长方形,是一个平面)4.由点A和点B可确定 1 条直线;
由不在同一直线上的三点A、B和C最多能确定 3 条直线;
经过A、B、C、D四点最多能确定 6 条直线;
在同一平面内任三点不在同一直线的五个点最多能确定 10 条
直线、n个点(n≥2)最多能确定条直
线。
5.解:(1)如图
∵AC = 8 cm,CB = 6 cm
∴
又∵点M、N分别是AC、BC的中点
∴
∴
答:MN的长为7cm。
(2)若C为线段AB上任一点,满足AC + CB = a cm,其它条件不变,则
理由是:
∵点M、N分别是AC、BC的中点
∴
∵
∴
(3)解:如图
∵点M、N分别是AC、BC的中点
∴
∵
∴。