内燃机的工作循环
- 格式:ppt
- 大小:659.50 KB
- 文档页数:33
内燃机原理内燃机的工作循环内燃机是一种将燃料燃烧产生的能量转化为机械能的装置。
它是现代社会中广泛使用的技术之一,应用于汽车、发电机、飞机和船舶等各个领域。
内燃机的工作循环是指在一个完整的运行周期内,发动机执行吸气、压缩、燃烧和排气四个过程的过程。
内燃机的工作循环通常包括四个阶段:吸气阶段、压缩阶段、燃烧阶段和排气阶段。
在吸气阶段,活塞从汽缸上部的最高位置(称为上死点)向下移动,此时汽缸内的活塞腔体积增大,形成一个低压区域。
此时,汽缸顶部的进气门打开,使空气通过进气道进入到汽缸内。
当活塞达到下死点位置时,进气门关闭,汽缸内的容积达到最大,吸气阶段结束。
在压缩阶段,活塞从下死点位置向上移动,汽缸内的容积减小,空气被压缩。
同时,压缩使空气温度升高,增加了燃料燃烧的能量。
当活塞达到上死点位置时,压缩阶段结束。
在燃烧阶段,燃油被喷射到汽缸内,燃料和空气混合物被点燃,产生高温和高压的燃烧气体。
燃烧气体的体积急剧膨胀,推动活塞向下运动。
同时,高温高压的燃烧气体也推动汽缸底部的排气门打开,将废气排出。
在排气阶段,废气通过排气门排出汽缸,活塞向上运动,汽缸内的容积增大。
当活塞达到下死点位置时,排气门关闭,排气阶段结束。
随后活塞再次向上移动,回到吸气阶段,循环开始。
内燃机的工作循环通常使用缸内燃烧循环表示,也称为奥托循环。
在奥托循环中,理想气体假设忽略活塞、气缸以及其他运动零件的摩擦和损失,并假设燃料燃烧为完全燃烧。
内燃机的工作循环会受到多种因素的影响,如空气质量、燃料质量、点火时机、气门的开闭控制等。
通过调整和优化这些因素,可以提高内燃机的功率输出和燃料效率。
总结起来,内燃机的工作循环是通过吸气、压缩、燃烧和排气四个过程来完成的。
内燃机通过燃烧产生的高温高压气体推动活塞运动,将燃料的化学能转化为机械能。
内燃机的工作循环的优化和改进是实现高效能、低排放的关键。
内燃机的工作循环生物与农业工程学院孙舒畅45090120一,内燃机的理论循环通常根据内燃机所使用的燃料、混合气形成方式、缸内燃烧过程(加热方式)等特点,把火花点火发动机的实际循环简化为等容加热循环,把压燃式柴油机的实际循环简化为混合加热循环或等压加热循环,这些循环称为内燃机的理论循环。
根据不同的假设和研究目的,可以形成不同的理论循环,如图1,a、b和c所示为四冲程内燃机的理想气体理论循环的p-V示功图。
为建立这些内燃机的理论循环,需对内燃机的实际循环中大量存在的湍流耗散、温度压力和成分的不均匀性以及摩擦、传热、燃烧、节流和工质泄漏等一系列不可逆损失作必要的简化和假设,归纳起来有:1)忽略发动机进排气过程,将实际的开口循环简化为闭口循环。
2)将燃烧过程简化为等容、等压或混合加热过程,将排气过程简化为等容放热过程。
3)把压缩和膨胀过程简化成理想的绝热等熵可逆过程,忽略工质与外界的热量交换及其泄漏等的影响。
4)以空气为工质,并视为理想气体,在整个循环牛工质物理及化学性质保持不变,比热容为常数。
图1 四冲程内燃机典型的理论循环a)等容加热循环b)等压加热循环c)混合加热循环通过对理论循环的热力学研究,可以达到以下目的:1)用简单的公式来阐明内燃机工作过程中各基本热力参数间的关系,明确提高以理论循环热效率为代表的经济性和以循环平均压力为代表的动力性的基本途径。
2)确定循环热效率的理论极限,以判断实际内燃机工作过程的经济性和循环进行的完善程度以及改进潜力。
3)有利于比较内燃机各种热力循环的经济性和动力性。
各种理论循环的热效率和循环平均压力可以依照热力学的方法进行推导[1-3]。
内燃机理论循环热效率和循环平均压力的表达式及特点见表1。
表1 内燃机理论循环的比较注:V P c c k =为等熵指数,c a c V =ε为压缩比,c z P P P =λ为压力升高比,c z V V =0ρ为初始膨胀比。
分析表1中三种理论循环的热效率和平均压力表达式,不难发现:1)三种理论循环的热效率均与压缩比 有关,提高压缩比可以提高循环的热效率。
内燃机原理内燃机的工作循环内燃机原理:内燃机的工作循环内燃机是一种将化学能转化为机械能的装置,广泛应用于汽车、船舶、飞机等交通领域。
它的工作原理主要包括四个工作循环:吸气、压缩、爆炸、排气。
吸气循环是内燃机的第一个工作阶段。
当活塞下行时,汽缸膛内的发动机油门打开,气缸外的大气压力将空气通过进气阀进入气缸。
在这个过程中,燃料还未注入,发动机主要借助活塞自身的下行运动产生的负压使混合气进入气缸。
压缩循环是内燃机的第二个工作阶段。
当活塞开始上升时,进气阀关闭,活塞将混合气体向气缸膛内压缩。
在这个过程中,活塞上升使得混合气压力增加,同时体积减小。
最终,混合气体达到了高压状态。
爆炸循环是内燃机的第三个工作阶段。
当混合气体压缩到一定程度时,火花塞会发出火花,点燃混合气体。
这个点燃的火焰扩散到整个气缸,产生了高温和高压气体。
高温高压气体作用于活塞上,将活塞推力向下运动。
排气循环是内燃机的第四个工作阶段。
当活塞再次上升时,这个运动将排气门打开,将燃烧后的废气排出气缸。
这个过程使得气缸内的压力迅速下降,使活塞对外做功。
内燃机的工作循环是由上述四个阶段交替进行的。
每个循环周期内,发动机都完成了吸气、压缩、爆炸和排气的过程。
这种循环反复进行,产生连续的动力输出。
内燃机的工作循环可以分为两种类型:四冲程循环和两冲程循环。
首先是四冲程循环,在这种循环中,吸气、压缩、爆炸和排气四个阶段分别占据发动机的四个循环。
每个循环都需要两个活塞上下运动才能完成。
四冲程循环由于充分利用了活塞上下循环运动,具有较高的热效率和动力输出。
其次是两冲程循环,它将吸气、压缩、爆炸和排气四个阶段合并到两个运动循环中。
这意味着每个循环中只需一个活塞上下运动就可完成整个循环。
两冲程循环由于缺乏四冲程循环中的压缩阶段,使得其热效率较低,并且排放污染物较多。
然而,两冲程循环由于结构简单,适用于小型和低功率的内燃机。
内燃机的工作循环是内燃机能够正常运行的基础。
2、等压加热循环(柴油机) 1 0 1c * 1 2 3 4 ( 01)3、混合加热循环(柴油机) p ( 01)第三章 内燃机的工作循环 概念:内燃机的工作循环是周期性地将燃料(化学能)燃烧所产生的热能 转变为机械能的过程,由活塞往复运动形成的进气、压缩、膨胀和排气等有序 联系和重复进行的过程组成。
首先在进气过程吸入新鲜空气,或空气与燃油的混合气,活塞压缩使气缸内 工质的压力和温度升高到一定的程度,然后由火花点火或压燃着火燃烧释放出热 能,推动活塞运动转化为机械功输出。
燃烧做功后的排气排出气缸,继续下一个 循环。
第一节 内燃机的理论循环 一、概念:根据内燃机所使用的燃料、混合气形成方式、缸内燃烧过程(加 热方式)等特点,把火花点火发动机的实际循环简化为等容加热循环,把压燃 式柴油机的实际循环简化为混合加热或等压加热循环,这些循环称为内燃机的 理论循环。
1) 三种理论循环的热效率均与压缩比有关,提高压缩比c 可以提高循环 的热效率。
2) 增大压力升高比p 可以增加混合加热循环中等容部分的加热量,使循环 的最高温度和最高压力增加,可以提高循环热效率;3)增大初期膨胀比°,使等压部分加热量增加,导致混合加热循环热效率降低;4)增加循环始点压力,降低进气温度,增加循环供油量等,均有利于循环 平均压力的增加。
四、提高循环热效率和平均压力的限制1) 结构强度的限制;2) 机械效率的限制;3) 燃烧方面的限制;4) 排放方面的限制。
第二节 内燃机的燃料和热化学一、内燃机的燃料(一) 石油基燃料组成元素:主要C 、H ;少量0、N 、S 。
烷烃、烯烃、环烷烃和芳香烃等组 成。
汽油:C 原子5—12;轻柴油:C 原子10-22(二) 柴油的理化性质m EGREGR 1、 自燃性:在无外源点火的情况下,柴油能自行着火的性质叫自燃性。
自行着火的最低温度叫自燃温度。
衡量:十六烷值,正十六烷 C 16H 34, 100, —甲基萘C 11H 10,0。
九年级物理内燃机知识点物理中“路程-时间”图像是学习运动力学图像和其他图像的基础。
初中物理是为高中物理、大学物理打基础的。
下面是我整理的九年级物理内燃机知识点,仅供参考希望能够帮助到大家。
九年级物理内燃机知识点1、内燃机及其工作原理:将燃料的化学能通过燃烧转化为内能,又通过做功,把内能转化为机械能。
按燃烧燃料的不同,内燃机可分为汽油机、柴油机等。
(1)汽油机和柴油机都是一个工作循环为四个冲程即吸气冲程、压缩冲程、做功冲程、排气冲程的热机。
(2)一个工作循环中只对外做一次功,曲轴转2周,飞轮转2圈,活塞往返2次。
(3)压缩冲程是对气体压缩做功,气体内能增加,这时机械能转化为内能。
(4)做功冲程是气体对外做功,内能减少,这时内能转化为机械能。
(5)汽油机和柴油机工作的四个冲程中,只有做功冲程是燃气对活塞做功,其它三个冲程要靠飞轮的惯_完成。
(6)判断汽油机和柴油机工作属哪个冲程应抓住两点:一是气阀门的开与关;二是活塞的运动方向。
(7)汽油机和柴油机的不同处。
2、燃料的热值(1)燃料燃烧过程中的能量转化:目前人类使用的能量绝大部分是从化石燃料的燃烧中获得的内能,燃料燃烧时释放出大量的热量。
燃料燃烧是一种化学反应,燃烧过程中,储存在燃料中的化学能被释放,物体的化学能转化为周围物体的内能。
(2)燃料的热值①定义:lkg某种燃料完全燃烧时放出的热量,叫做这种燃料的热值。
用符号“q”表示。
②热值的单位j/kg,读作焦耳每千克。
还要注意,气体燃料有时使用j/m3,读作焦耳每立方米。
③热值是为了表示相同质量的不同燃料在燃烧时放出热量不同而引人的物理量。
它反映了燃料通过燃烧放出热量本领大小不同的燃烧特_。
不同燃料的热值一般是不同的,同种燃料的热值是一定的,它与燃料的质量、体积、放出热量多少无关。
(3)在学习热值的概念时,应注意以下几点:①“完全燃烧”是指燃料全部燃烧变成另一种物质。
②强调所取燃料的质量为“lkg”,要比较不同燃料燃烧本领的不同,就必须在燃烧质量和燃烧程度完全相同的条件下进行比较。
【初中物理】初中物理知识点:内燃机的四个冲程内燃机、冲程及工作循环1.内燃机:燃料在汽缸内燃烧的热机叫内燃机,内燃机分为汽油机和柴油机。
它们的特点是让燃料存汽缸内燃烧,从而使燃烧更充分,热损失更小,热效率较高,内能利用率较大。
2.冲程:活塞在汽缸内住复运动时,从汽缸的一端运动到另一端的过程,叫做一个冲程。
3.工作原理:四冲程内燃机的工作过程是由吸气、压缩、做功、排气四个冲程组成的。
四个冲程为一个工作循环,在一个工作循环中,活塞往复两次,曲轴转动两周,四个冲程中,只有做功冲程燃气对外做功,其他三个冲程靠飞轮的惯性完成。
(1)吸气冲程:进气门打开,排气门关闭,活塞向下运动,汽油和空气的混合物进入气缸;(2)压缩冲程:进气门和排气门都关闭,活塞向上运动,燃料混合物被压缩;(3)做功冲程:在压缩冲程结束时,火花塞产生电火花,使燃料猛烈燃烧,产生高温高压的气体。
高温高压的气体推动活塞向下运动,带动曲轴转动,对外做功;(4)排气冲程:进气门关闭,排气门打开,活塞向上运动,把废气排出气缸。
(如下四个冲程的示意图)。
汽油机的工作过程进气阀开关排气阀开关活塞运动曲轴运动冲程作用能量的转化吸气冲程开向下半周吸入汽油和空气的混合物??压缩冲程关关向上半周燃料混合物被压缩,温度升高,压强增大机械能→内能做功冲程关关向下半周燃烧产生的高温高压燃气推动活塞向下运动,通过连杆带动曲轴对外做功内能→机械能排气冲程关开向上半周排除废气说明一个工作循环中,有两次内能与机械能的转化:压缩冲程机械能转化为内能,做功冲程内能转化为机械能柴油机和汽油机的区别:汽油机柴油机构造不同汽缸顶部有火花塞汽缸顶部有喷油嘴燃料不同汽油柴油吸气冲程汽油机在吸气冲程中吸入的是汽油和空气的混合物柴油机在吸气冲程中只吸入空气点火方式压缩冲程末,火花塞产生电火花点燃燃料,称为点燃式压缩冲程末,喷油嘴向汽缸内喷出雾状柴油遇到温度超过柴油燃点的空气而自动点燃,称为压燃式效率效率低20%一30%效率高30%~45%应用自重轻便,主要用于汽车、飞机、摩托车等机体笨重,主要用于载重汽车、火车、轮船等区分汽油机、柴油机以及判断内燃机的四个冲程的方法:区分汽油机和柴油机时,要从构造上区别,有喷油嘴的是柴油机,有火花塞的是汽油机,一要看进气门、排气门的开闭状态,二要看活塞的运动方向,在此基础上进行综合分析。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 内燃机的每一个工作循环都包括内燃机的每一个工作循环都包括:进气、压缩、燃烧膨胀和排气等四个过程。
四冲程内燃机的工作循环是在曲轴旋转两周,即四个行程中完成的;而二冲程内燃机的工作循环则是在曲轴旋转一周,即两个行程中完成的。
下面介绍四冲程内燃机的工作原理:3 O: r, L4 j: t0 f+ U. [ (一)四冲程汽油机的工作原理: p, C) w) C2 D8 v( A 研究内燃机的工作循环时,可以利用一种表示汽缸内气体压力 p 和相当于活塞不同位置时的汽缸容积 v 之间的变化关系图。
此图能表示一个工作循环中气体在汽缸内所做的功,所以称为示功图。
1 、进气过程 5 [# R( w1 c6 P# Y v# e) N’ B$ H 在进气过程中,活塞从上止点向下止点移动,进气门开启,排气门关闭。
这时活塞上方的汽缸容积增大,于是压力降低到小于大气压力,也就是产生了真空度处于真空状态下的气体稀簿程度,通常用真空度表示。
若所测设备内的压强低于大气压强,其压力测量需要真空表。
从真空表所读得的数值称真空度。
1 / 12真空度数值是表示出系统压强实际数值低于大气压强的数值,即:真空度=(大气压强绝对压强)。
在外界大气压力的作用下,空气经空气滤清器进入化油器,在化油器中与汽油混合而成为可燃混合气,经进气管和进气门进入汽缸。
由于进气系统对气流有阻力,所以进气终了时汽缸内的气体压力低于大气压力 po。
进气过程在示功图上以曲线 ra 表示。
( x% I w; [3 @. p P% @ 当活塞到达下止点活塞在气缸里作往复直线运动时,当活塞向下运动到最低位置,即活塞顶部距离曲轴旋转中心最近的极限位置,称为下止点。
第三章:内燃机的工作循环内燃机的理论循环3种形式:等容加热循环、等压加热循环、混合加热循环等容加热循环:加热循环很快完成,热效率仅与压缩比有关等压加热循环:加热过程在等压条件下缓慢完成,负荷的增加使得热效率下降。
当初始状态一致且加热量及压缩比相同时等容加热循环的热效率最高,等压加热循环的热效率最低,当最高循环压力相同、加热量相同而压缩比不同时,等压加热循环的热效率最高,等容加热循环的热效率最低。
得出结论:1、提高压缩比,提高了热效率,但提高率随着压缩比的不断增大而逐渐降低2、增大压力升高比,可使热效率提高3、压缩比以及压力升高比的增加,将导致最高循环压力的急剧上升4、增大初始膨胀比,可以提高循环平均压力,导致热循环效率降低5、等熵指数增大,循环热效率提高柴油的理化性质:自然温度、馏程、粘度、含硫量等,以自然温度和低温流动性影响较大。
1、自然温度:柴油在无外源点火的情况下能够自形点火的性质为自然性。
能够使柴油自行着火的最低温度称自然温度。
自然性用正十六烷值衡量2、低温流动性(浊点与凝点):温度降低时,柴油中所含的高分子烷簇(如石蜡)和燃料中夹杂的水分开始析出并结晶,使原来呈半透明状的柴油变得浑浊,达到这一状态的温度值就是柴油的浊点,当温度再降低时,柴油完全凝固,此温度称为凝点。
3、化学成分及发热量:燃油的化学成分:碳、氢、氧、氮。
1千克柴油完全燃烧所发出的热量叫做燃料的发热量或热值。
汽油的理化性质:挥发性和抗爆性1、挥发性:表示液体燃料汽化的倾向,与燃料的馏分组成、蒸汽压、表面张力以及汽化潜热有关。
汽油馏出的温度范围称为馏程。
初馏点:40-80︒C,终馏点:180-210︒C。
2、抗爆性:燃料对发动机发生爆燃的抵抗能力称为燃料的抗爆性。
汽油的抗爆性是以辛烷值来表示的。
根据试验规范的不同,所得的辛烷值分别称为马达法MON或研究法RON辛烷值气体燃料:天然气、液化石油气、氢气、煤气、沼气。
代用燃料:醇类燃料、植物油燃料燃烧:燃烧是外界热源向工质在一定条件下加热的过程。