内燃机循环
- 格式:ppt
- 大小:453.00 KB
- 文档页数:2
内燃机热力循环一、燃气轮机循环燃气轮机理想循环为布雷顿循环(Brayton Cycle) ,它是工质连续流动做功的一种轮机循环,如图1所示 。
它既可作内燃布雷顿循环,又可作外燃布雷顿循环。
内燃的布雷顿循环为开式循环,常用工质为空气或燃气。
外燃的布雷顿循环是闭式循环,通过热交换器对工质加热,在另一热交换器排出工质余热。
循环过程为:工质在压气机中等熵压缩1-2,在燃烧室(或热交换器中)等压加热2-3 ,在燃气轮机中等熵膨胀3-4和等压排气4-1 。
图1 燃气轮机循环燃气轮机循环的指示热效率为11k k i c ηπ-=-式中,c π为压气机中气体的压比,k 为比热比。
燃气轮机开式循环常与内燃机基本循环配合使用。
二、涡轮增压内燃机热力循环将涡轮增压技术(或燃气轮机技术)应用到内燃机上是内燃机循环的一项重大技术发展。
一方面内燃机希望获得更多的进气(或可燃混合气)充量,以提高内燃机的功率和热效率;另一方面从内燃机排出的高温、高压废气能导入燃气涡轮中再作功,推动与燃气涡轮相连(同轴)的压气机来提高进气(或可燃混合气)的压力供给内燃机,这样就成为涡轮增压内燃机。
涡轮增压内燃机有等压涡轮和变压涡轮两种系统,它们的热力循环也有所不同。
1.恒压涡轮增压内燃机热力循环图2是等压涡轮增压内燃机热力循环。
它由内燃机基本循环1→2→3’→3→4→1和燃气轮机循环7→1→5→6→7组成。
图2 等压涡轮增压内燃机热力循环压气机将气体从状态7(大气压力p0)等熵压缩到状态1(压力为p s)之后进入内燃机。
按内燃机热力循环到达状态4。
气体在排气过程进入等压涡轮时由于排气门的节流损失和排气动能在排气总管内的膨胀、摩擦、涡流等损失而变成热能,气体温度升高,体积膨胀而到达状态5。
气体从4→5 这部分能量没有利用,对内燃机来说相当于从状态4直接回到状态1。
气体在等压涡轮中从状态5等熵膨胀到状态6,然后排入大气。
2 .变压涡轮增压内燃机热力循环变压涡轮增压内燃机热力循环如图3 。
内燃机的工作循环生物与农业工程学院孙舒畅45090120一,内燃机的理论循环通常根据内燃机所使用的燃料、混合气形成方式、缸内燃烧过程(加热方式)等特点,把火花点火发动机的实际循环简化为等容加热循环,把压燃式柴油机的实际循环简化为混合加热循环或等压加热循环,这些循环称为内燃机的理论循环。
根据不同的假设和研究目的,可以形成不同的理论循环,如图1,a、b和c所示为四冲程内燃机的理想气体理论循环的p-V示功图。
为建立这些内燃机的理论循环,需对内燃机的实际循环中大量存在的湍流耗散、温度压力和成分的不均匀性以及摩擦、传热、燃烧、节流和工质泄漏等一系列不可逆损失作必要的简化和假设,归纳起来有:1)忽略发动机进排气过程,将实际的开口循环简化为闭口循环。
2)将燃烧过程简化为等容、等压或混合加热过程,将排气过程简化为等容放热过程。
3)把压缩和膨胀过程简化成理想的绝热等熵可逆过程,忽略工质与外界的热量交换及其泄漏等的影响。
4)以空气为工质,并视为理想气体,在整个循环牛工质物理及化学性质保持不变,比热容为常数。
图1 四冲程内燃机典型的理论循环a)等容加热循环b)等压加热循环c)混合加热循环通过对理论循环的热力学研究,可以达到以下目的:1)用简单的公式来阐明内燃机工作过程中各基本热力参数间的关系,明确提高以理论循环热效率为代表的经济性和以循环平均压力为代表的动力性的基本途径。
2)确定循环热效率的理论极限,以判断实际内燃机工作过程的经济性和循环进行的完善程度以及改进潜力。
3)有利于比较内燃机各种热力循环的经济性和动力性。
各种理论循环的热效率和循环平均压力可以依照热力学的方法进行推导[1-3]。
内燃机理论循环热效率和循环平均压力的表达式及特点见表1。
表1 内燃机理论循环的比较注:V P c c k =为等熵指数,c a c V =ε为压缩比,c z P P P =λ为压力升高比,c z V V =0ρ为初始膨胀比。
分析表1中三种理论循环的热效率和平均压力表达式,不难发现:1)三种理论循环的热效率均与压缩比 有关,提高压缩比可以提高循环的热效率。
内燃机的工作循环第一节内燃机的理论循环内燃机的实际热力循环:是燃料的热能转变为机械能的过程,由进气、压缩、燃烧、膨胀和排气等多个过程所组成。
在这些过程中,伴随着各种复杂的物理、化学过程,同时,机械摩擦、散热、燃烧、节流等引起的一系列不可逆损失也大量存在。
内燃机的理论循环:将实际循环进行若干简化,忽略一些次要的影响因素,并对其中变化复杂、难于进行细致分析的物理、化学过程〔如可燃混合气的准备与燃烧过程等〕进行简化处理,从而得到便于进行定量分析的假想循环或简化循环。
对理论循环进行研究可以达到以下目的:1)用简单的公式来阐明内燃机工作过程中各基本热力参数间的关系,以明确提高以理论循环热效率为代表的经济性和以平均压力为代表的动力性的基本途径。
2)确定循环热效率的理论极限,以判断实际内燃机经济性和工作过程进行的完善程度以及改进潜力。
3)有利于分析比较内燃机不同热力循环方式的经济性和动力性。
建立理论循环的简化假设:1)以空气作为工作循环的工质,并视其为理想气体,在整个循环中的物理及化学性质保持不变,工质比热容为常数。
2)不考虑实际存在的工质更换以及泄漏损失,工质的总质量保持不变,循环是在定量工质下进行的,忽略进、排气流动损失及其影响。
3)把气缸内的压缩和膨胀过程看成是完全理想的绝热等熵过程,工质与外界不进行热量交换。
4)分别用假想的加热与放热过程来代替实际的燃烧过程与排气过程,并将排气过程即工质的放热视为等容放热过程。
内燃机理论循环的三种形式:等容加热循环、等压加热循环和混合加热循环。
三种理论循环的热效率分析:❖当初始状态一致且加热量及压缩比相同时,等容加热循环的热效率最高,等压加热循环的热效率最低,混合加热循环的热效率介于两者之间;❖当最高循环压力pz(或称为最高燃烧压力)相同、加热量相同而压缩比不同时,等压加热循环的热效率最高,等容加热循环的热效率最低,混合加热循环的热效率仍介于两者之间。
由热效率表达式,还可以得到如下结论:1.提高压缩比εc可以提高热效率ηt,但提高率随着压缩比εc的不断增大而逐渐降低。
内燃机的四个冲程•内燃机、冲程及工作循环1.内燃机:燃料在汽缸内燃烧的热机叫内燃机,内燃机分为汽油机和柴油机。
它们的特点是让燃料存汽缸内燃烧,从而使燃烧更充分,热损失更小,热效率较高,内能利用率较大。
2.冲程:活塞在汽缸内住复运动时,从汽缸的一端运动到另一端的过程,叫做一个冲程。
3.工作原理:四冲程内燃机的工作过程是由吸气、压缩、做功、排气四个冲程组成的。
四个冲程为一个工作循环,在一个工作循环中,活塞往复两次,曲轴转动两周,四个冲程中,只有做功冲程燃气对外做功,其他三个冲程靠飞轮的惯性完成。
(1)吸气冲程:进气门打开,排气门关闭,活塞向下运动,汽油和空气的混合物进入气缸;(2)压缩冲程:进气门和排气门都关闭,活塞向上运动,燃料混合物被压缩;(3)做功冲程:在压缩冲程结束时,火花塞产生电火花,使燃料猛烈燃烧,产生高温高压的气体。
高温高压的气体推动活塞向下运动,带动曲轴转动,对外做功;(4)排气冲程:进气门关闭,排气门打开,活塞向上运动,把废气排出气缸。
(如下四个冲程的示意图)。
•汽油机的工作过程进气阀开关排气阀开关活塞运动曲轴运动冲程作用能量的转化吸气冲程开关向下半周吸入汽油和空气的混合物——压缩冲程关关向上半周燃料混合物被压缩,温度升高,压强增大机械能→内能做功冲程关关向下半周燃烧产生的高温高压燃气推动活塞向下运动,通过连杆带动曲轴对外做功内能→机械能排气关开向上半周排除废气——冲程说明一个工作循环中,有两次内能与机械能的转化:压缩冲程机械能转化为内能,做功冲程内能转化为机械能•柴油机和汽油机的区别:汽油机柴油机构造不同汽缸顶部有火花塞汽缸顶部有喷油嘴燃料不同汽油柴油吸气冲程汽油机在吸气冲程中吸入的是汽油和空气的混合物柴油机在吸气冲程中只吸入空气点火方式压缩冲程末,火花塞产生电火花点燃燃料,称为点燃式压缩冲程末,喷油嘴向汽缸内喷出雾状柴油遇到温度超过柴油燃点的空气而自动点燃,称为压燃式效率效率低20%一30%效率高30%~45%应用自重轻便,主要用于汽车、飞机、摩托车等机体笨重,主要用于载重汽车、火车、轮船等••区分汽油机、柴油机以及判断内燃机的四个冲程的方法:区分汽油机和柴油机时,要从构造上区别,有喷油嘴的是柴油机,有火花塞的是汽油机,一要看进气门、排气门的开闭状态,二要看活塞的运动方向,在此基础上进行综合分析。