第三章 内燃机的工作循环
- 格式:pdf
- 大小:757.37 KB
- 文档页数:62
内燃机原理内燃机的工作循环内燃机是一种将燃料燃烧产生的能量转化为机械能的装置。
它是现代社会中广泛使用的技术之一,应用于汽车、发电机、飞机和船舶等各个领域。
内燃机的工作循环是指在一个完整的运行周期内,发动机执行吸气、压缩、燃烧和排气四个过程的过程。
内燃机的工作循环通常包括四个阶段:吸气阶段、压缩阶段、燃烧阶段和排气阶段。
在吸气阶段,活塞从汽缸上部的最高位置(称为上死点)向下移动,此时汽缸内的活塞腔体积增大,形成一个低压区域。
此时,汽缸顶部的进气门打开,使空气通过进气道进入到汽缸内。
当活塞达到下死点位置时,进气门关闭,汽缸内的容积达到最大,吸气阶段结束。
在压缩阶段,活塞从下死点位置向上移动,汽缸内的容积减小,空气被压缩。
同时,压缩使空气温度升高,增加了燃料燃烧的能量。
当活塞达到上死点位置时,压缩阶段结束。
在燃烧阶段,燃油被喷射到汽缸内,燃料和空气混合物被点燃,产生高温和高压的燃烧气体。
燃烧气体的体积急剧膨胀,推动活塞向下运动。
同时,高温高压的燃烧气体也推动汽缸底部的排气门打开,将废气排出。
在排气阶段,废气通过排气门排出汽缸,活塞向上运动,汽缸内的容积增大。
当活塞达到下死点位置时,排气门关闭,排气阶段结束。
随后活塞再次向上移动,回到吸气阶段,循环开始。
内燃机的工作循环通常使用缸内燃烧循环表示,也称为奥托循环。
在奥托循环中,理想气体假设忽略活塞、气缸以及其他运动零件的摩擦和损失,并假设燃料燃烧为完全燃烧。
内燃机的工作循环会受到多种因素的影响,如空气质量、燃料质量、点火时机、气门的开闭控制等。
通过调整和优化这些因素,可以提高内燃机的功率输出和燃料效率。
总结起来,内燃机的工作循环是通过吸气、压缩、燃烧和排气四个过程来完成的。
内燃机通过燃烧产生的高温高压气体推动活塞运动,将燃料的化学能转化为机械能。
内燃机的工作循环的优化和改进是实现高效能、低排放的关键。
简述内燃机的工作过程
内燃机的工作过程可以分为以下四个冲程:
1. 吸气冲程:活塞下行形成气缸内压力小于大气压的差,这个压力差使空气进入气缸。
对于汽油机,吸入的是汽油和空气的混合物;对于柴油机,吸入的是纯空气。
2. 压缩冲程:吸气冲程完成后,活塞上行压缩空气达到一定温度,使燃料燃烧。
对于柴油机,由于压缩的工质是纯空气,压缩比高于汽油机,压缩终点的温度和压力都大大超过柴油的自燃温度,使其自燃。
3. 做功冲程:燃烧的空气使活塞下行,从而将热能转换成机械能。
这种转换是通过连杆活塞组和曲轴实现的,高温高压的燃气推动活塞下行,通过连杆使曲轴做圆周运动。
4. 排气冲程:在飞轮惯性的驱动下,活塞上行将燃烧后的废气从打开的排气阀门中排出。
当活塞行至上终点位置时,整个内燃机的工作循环完成。
这四个冲程中,只有做功冲程是内燃机中唯一对外做功的冲程,其他三个冲程都是依靠飞轮的惯性来完成的。
在压缩冲程中,机械能转化为内能;在做功冲程中,内能转化为机械能。
内燃机的工作循环生物与农业工程学院孙舒畅45090120一,内燃机的理论循环通常根据内燃机所使用的燃料、混合气形成方式、缸内燃烧过程(加热方式)等特点,把火花点火发动机的实际循环简化为等容加热循环,把压燃式柴油机的实际循环简化为混合加热循环或等压加热循环,这些循环称为内燃机的理论循环。
根据不同的假设和研究目的,可以形成不同的理论循环,如图1,a、b和c所示为四冲程内燃机的理想气体理论循环的p-V示功图。
为建立这些内燃机的理论循环,需对内燃机的实际循环中大量存在的湍流耗散、温度压力和成分的不均匀性以及摩擦、传热、燃烧、节流和工质泄漏等一系列不可逆损失作必要的简化和假设,归纳起来有:1)忽略发动机进排气过程,将实际的开口循环简化为闭口循环。
2)将燃烧过程简化为等容、等压或混合加热过程,将排气过程简化为等容放热过程。
3)把压缩和膨胀过程简化成理想的绝热等熵可逆过程,忽略工质与外界的热量交换及其泄漏等的影响。
4)以空气为工质,并视为理想气体,在整个循环牛工质物理及化学性质保持不变,比热容为常数。
图1 四冲程内燃机典型的理论循环a)等容加热循环b)等压加热循环c)混合加热循环通过对理论循环的热力学研究,可以达到以下目的:1)用简单的公式来阐明内燃机工作过程中各基本热力参数间的关系,明确提高以理论循环热效率为代表的经济性和以循环平均压力为代表的动力性的基本途径。
2)确定循环热效率的理论极限,以判断实际内燃机工作过程的经济性和循环进行的完善程度以及改进潜力。
3)有利于比较内燃机各种热力循环的经济性和动力性。
各种理论循环的热效率和循环平均压力可以依照热力学的方法进行推导[1-3]。
内燃机理论循环热效率和循环平均压力的表达式及特点见表1。
表1 内燃机理论循环的比较注:V P c c k =为等熵指数,c a c V =ε为压缩比,c z P P P =λ为压力升高比,c z V V =0ρ为初始膨胀比。
分析表1中三种理论循环的热效率和平均压力表达式,不难发现:1)三种理论循环的热效率均与压缩比 有关,提高压缩比可以提高循环的热效率。
内燃机的工作原理内燃机是一种利用燃料在密闭腔内燃烧产生高温高压气体,然后将气体的能量转化为机械能的热机。
它是现代工业和交通运输中最常用的动力装置之一,广泛应用于汽车、飞机、船舶等各种机械设备中。
内燃机的工作原理主要包括吸气、压缩、爆燃和排气四个基本过程。
首先是吸气过程。
在内燃机的工作过程中,气缸下行时,活塞向下运动,气缸内的压力降低,气门打开,外界空气通过进气道进入气缸内,充满气缸。
这一过程称为吸气过程。
接下来是压缩过程。
当活塞向上运动时,气缸内的空气被压缩,压缩比增大,空气温度升高。
在压缩过程中,气缸内的燃料也被喷入,与压缩空气混合,形成可燃混合气体。
这一过程称为压缩过程。
然后是爆燃过程。
在压缩结束时,点火系统向燃料混合气体中产生火花,引燃混合气体,使其燃烧。
燃烧产生大量热能,使气缸内的压力和温度急剧升高,驱动活塞向下运动,推动曲轴旋转。
这一过程称为爆燃过程。
最后是排气过程。
在活塞向上运动时,废气通过排气门排出气缸外,气缸内再次充满新鲜空气,为下一个工作循环做好准备。
这一过程称为排气过程。
内燃机的工作原理可以简单概括为“吸气-压缩-爆燃-排气”这一循环过程。
通过这一过程,内燃机能够将燃料的化学能转化为机械能,驱动机械设备的运转。
内燃机的工作原理虽然简单,但在实际应用中需要精密的设计和精准的控制,才能发挥出最大的效能。
总的来说,内燃机的工作原理是通过燃料在气缸内的燃烧产生高温高压气体,然后将气体的能量转化为机械能的过程。
它的工作过程包括吸气、压缩、爆燃和排气四个基本过程,通过这一循环过程,内燃机能够驱动各种机械设备的运转。
内燃机作为一种高效、便捷的动力装置,对现代工业和交通运输发挥着重要的作用。
内燃机原理内燃机的工作循环内燃机原理:内燃机的工作循环内燃机是一种将化学能转化为机械能的装置,广泛应用于汽车、船舶、飞机等交通领域。
它的工作原理主要包括四个工作循环:吸气、压缩、爆炸、排气。
吸气循环是内燃机的第一个工作阶段。
当活塞下行时,汽缸膛内的发动机油门打开,气缸外的大气压力将空气通过进气阀进入气缸。
在这个过程中,燃料还未注入,发动机主要借助活塞自身的下行运动产生的负压使混合气进入气缸。
压缩循环是内燃机的第二个工作阶段。
当活塞开始上升时,进气阀关闭,活塞将混合气体向气缸膛内压缩。
在这个过程中,活塞上升使得混合气压力增加,同时体积减小。
最终,混合气体达到了高压状态。
爆炸循环是内燃机的第三个工作阶段。
当混合气体压缩到一定程度时,火花塞会发出火花,点燃混合气体。
这个点燃的火焰扩散到整个气缸,产生了高温和高压气体。
高温高压气体作用于活塞上,将活塞推力向下运动。
排气循环是内燃机的第四个工作阶段。
当活塞再次上升时,这个运动将排气门打开,将燃烧后的废气排出气缸。
这个过程使得气缸内的压力迅速下降,使活塞对外做功。
内燃机的工作循环是由上述四个阶段交替进行的。
每个循环周期内,发动机都完成了吸气、压缩、爆炸和排气的过程。
这种循环反复进行,产生连续的动力输出。
内燃机的工作循环可以分为两种类型:四冲程循环和两冲程循环。
首先是四冲程循环,在这种循环中,吸气、压缩、爆炸和排气四个阶段分别占据发动机的四个循环。
每个循环都需要两个活塞上下运动才能完成。
四冲程循环由于充分利用了活塞上下循环运动,具有较高的热效率和动力输出。
其次是两冲程循环,它将吸气、压缩、爆炸和排气四个阶段合并到两个运动循环中。
这意味着每个循环中只需一个活塞上下运动就可完成整个循环。
两冲程循环由于缺乏四冲程循环中的压缩阶段,使得其热效率较低,并且排放污染物较多。
然而,两冲程循环由于结构简单,适用于小型和低功率的内燃机。
内燃机的工作循环是内燃机能够正常运行的基础。
发动机的工作循环
1 内燃机工作循环
内燃机是一种流体动力机械,它是由活塞和活塞环受到连续循环作用所产生的燃烧发动机。
内燃机的工作循环一般分为4个阶段:进气阶段、压缩阶段、燃烧阶段和排气阶段。
2 进气阶段
进气阶段是内燃机一次工作循环的第一阶段。
当活塞纵向下运动时,机械活塞及其连接的气门都处于开启状态,外界新鲜空气就进入气缸中。
此时,气缸内只有外界新鲜空气,混入空气的可燃气体几乎为零,空气压力逐渐升高,内燃机进入下一个工作阶段。
3 压缩阶段
在压缩阶段,活塞上行,气门关闭,内燃机真空化,空气高压,空气温度也随之升高,空气中的可燃气体混合物也变的更细腻。
压缩阶段的压力有许多因素影响,如缸径、进气阀形状等因素都会影响最终的发动机效率。
4 燃烧阶段
在燃烧阶段,活塞继续向上移动,燃烧室静置,发动机的点火系统将一定量的燃料放入燃烧室中,搭配准确的火花塞点火,燃料和空气混合的迅速发生爆燃,释放出大量的热能,热能通过活塞转换为机械能量。
5 排气阶段
排气阶段是内燃机一次工作循环的最后一个阶段,是燃烧阶段的
反面过程,活塞下行,将气缸中的热气体向外排出,完成一次循环后,发动机就会再次重复上述四个阶段,一直循环下去。
第三章:内燃机的工作循环内燃机的理论循环3种形式:等容加热循环、等压加热循环、混合加热循环等容加热循环:加热循环很快完成,热效率仅与压缩比有关等压加热循环:加热过程在等压条件下缓慢完成,负荷的增加使得热效率下降。
当初始状态一致且加热量及压缩比相同时等容加热循环的热效率最高,等压加热循环的热效率最低,当最高循环压力相同、加热量相同而压缩比不同时,等压加热循环的热效率最高,等容加热循环的热效率最低。
得出结论:1、提高压缩比,提高了热效率,但提高率随着压缩比的不断增大而逐渐降低2、增大压力升高比,可使热效率提高3、压缩比以及压力升高比的增加,将导致最高循环压力的急剧上升4、增大初始膨胀比,可以提高循环平均压力,导致热循环效率降低5、等熵指数增大,循环热效率提高柴油的理化性质:自然温度、馏程、粘度、含硫量等,以自然温度和低温流动性影响较大。
1、自然温度:柴油在无外源点火的情况下能够自形点火的性质为自然性。
能够使柴油自行着火的最低温度称自然温度。
自然性用正十六烷值衡量2、低温流动性(浊点与凝点):温度降低时,柴油中所含的高分子烷簇(如石蜡)和燃料中夹杂的水分开始析出并结晶,使原来呈半透明状的柴油变得浑浊,达到这一状态的温度值就是柴油的浊点,当温度再降低时,柴油完全凝固,此温度称为凝点。
3、化学成分及发热量:燃油的化学成分:碳、氢、氧、氮。
1千克柴油完全燃烧所发出的热量叫做燃料的发热量或热值。
汽油的理化性质:挥发性和抗爆性1、挥发性:表示液体燃料汽化的倾向,与燃料的馏分组成、蒸汽压、表面张力以及汽化潜热有关。
汽油馏出的温度范围称为馏程。
初馏点:40-80︒C,终馏点:180-210︒C。
2、抗爆性:燃料对发动机发生爆燃的抵抗能力称为燃料的抗爆性。
汽油的抗爆性是以辛烷值来表示的。
根据试验规范的不同,所得的辛烷值分别称为马达法MON或研究法RON辛烷值气体燃料:天然气、液化石油气、氢气、煤气、沼气。
代用燃料:醇类燃料、植物油燃料燃烧:燃烧是外界热源向工质在一定条件下加热的过程。