基础练习106圆周角
- 格式:doc
- 大小:463.00 KB
- 文档页数:4
圆周角的练习题初三圆周角是指以圆心为顶点的角,它的度数等于所对弧的度数。
在初三的几何学中,圆周角是一个重要的概念,掌握圆周角的计算方法对于解决几何题目至关重要。
本文将为大家提供一些圆周角的练习题,帮助初三学生巩固和掌握这一知识点。
练习题一:已知直径AB的圆上一点C,连结AC和BC两条弦。
求∠ACB的度数。
解析:根据圆的性质可知,在圆上以弦为底的两个圆周角是等角,所以∠ACB = ∠AEB。
而直径AB是圆上的一条直径,它对应的圆周角为180度。
因此,∠ACB = ∠AEB = 180度。
练习题二:已知弧AC与弧BC分别是圆上的两个等分弧,且∠ACB = 20度。
求弧AC的度数。
解析:根据题目可知,∠ACB为圆周角,而弧AC和弧BC是等分弧,所以它们所对应的圆周角也相等,即∠ACB = ∠AEB。
而∠ACB 已知为20度,所以∠AEB = 20度。
而直径AB上的圆周角为180度,所以弧AC的度数为180度减去∠AEB的度数,即弧AC = 180度 - 20度 = 160度。
练习题三:已知直径AB的圆上一点C与D,连结AC和BD两条弦,交于点E。
若∠AEB = 70度,求证:∠ACD = 35度。
解析:要证明∠ACD = 35度,可以利用等角的性质。
根据题目已知,∠AEB = ∠AED = 70度。
而由圆周角的性质可知,∠ACD =∠AEB = 70度。
又∠ACD和∠ACB是同弦内角和对应的圆周角,所以有∠ACD = 180度 - ∠ACB。
将已知条件带入,∠ACD = 180度 - 70度= 110度。
由此可知,∠ACD的度数为35度。
练习题四:已知弦AB的长为8cm,圆心角∠AOB的度数为60度,求弦AB所对应的弧长。
解析:弦AB所对应的弧可以通过圆心角的度数与圆周长的比例来求解。
已知圆心角∠AOB的度数为60度,而整个圆的圆心角为360度,所以∠AOB所对应的弧所占圆周长的比例为60度/360度= 1/6。
圆心角圆周角练习题圆心角和圆周角是圆内角的一种特殊形式,它们在几何学中具有重要的地位。
本文将介绍关于圆心角和圆周角的一些练习题,帮助读者加深对这一概念的理解。
一、选择题1. 在同一个圆中,圆心角和对应的圆周角的关系是:A. 圆心角大于对应的圆周角B. 圆心角等于对应的圆周角C. 圆心角小于对应的圆周角2. 已知在同一个圆中,圆心角的度数为56°,则对应的圆周角的度数为:A. 56°B. 112°C. 224°3. 在圆O中,∠ACB是圆心角,则它所对应的圆周角的度数为:A. 30°B. 60°C. 120°4. 若∠ACD是圆O中的圆心角,且其度数为72°,则弧AB所对应的圆周角的度数为:A. 72°B. 144°C. 288°5. 在同一个圆中,圆心角和对应的弧所对应的圆周角之间的关系是:A. 圆心角小于对应的圆周角B. 圆心角等于对应的圆周角C. 圆心角大于对应的圆周角二、填空题1. 在同一圆中,一条弧的度数等于其所对应的圆周角的度数,则这条弧所对应的圆心角的度数为________。
2. 在圆O中,已知∠ACB是圆心角,则它所对应的圆周角的度数为________。
3. 在同一个圆中,圆心角的度数等于所对应的弧所对应的圆周角的度数,则该弧所对应的圆周角的度数为________。
三、解答题1. 在同一个圆中,圆心角和对应的圆周角的关系是什么?为什么?2. 已知在同一个圆中,圆心角的度数为60°,则对应的圆周角的度数是多少?并通过计算或推理进行解答。
3. 在圆O中,∠ACB是圆心角,则它所对应的圆周角的度数是多少?并通过计算或推理进行解答。
4. 若∠ACD是圆O中的圆心角,且其度数为90°,则弧AB所对应的圆周角的度数是多少?并通过计算或推理进行解答。
总结:本文通过选择题、填空题和解答题的形式,对圆心角和圆周角的概念进行了练习和探讨。
圆周角定理练习题在数学中,圆周角定理是一个非常重要的定理,它关于圆周角和圆心角的关系进行了阐述。
理解和掌握这个定理对于解决与圆相关的问题非常有帮助。
那么,现在我们来进行一些圆周角定理的练习题,以便加深对该定理的理解和运用能力。
练习题一:已知半径为r的圆上的弧AB所对的圆周角为θ,求弧AB的长度。
解答:根据圆周角定理可知,圆周角θ所对的弧的长度等于半径r乘以圆周角的弧度。
即弧AB的长度为rθ。
练习题二:已知弧CD的长度为s,求弧CD所对的圆周角。
解答:根据圆周角定理可知,弧CD所对的圆周角的弧度等于弧长s除以半径r。
即圆周角θ等于s/r。
练习题三:已知圆O的半径为r,圆弧AB所对的圆周角为θ,求圆O的周长。
解答:根据圆周角定理可知,圆周角θ所对的弧AB的长度为rθ。
因为圆O的周长等于圆周率π乘以直径d,而直径d等于半径r的两倍,所以圆O的周长为2πr。
练习题四:已知半径为r的圆上的弧AB的长度为s,求弧AB所对的圆周角。
解答:根据圆周角定理可知,弧AB所对的圆周角的弧度等于弧长s除以半径r。
即圆周角θ等于s/r。
练习题五:已知圆O的半径为r,圆上的弧AB所对的圆周角为θ,求弧AB所对的圆心角。
解答:根据圆周角定理可知,圆周角θ所对的圆心角的度数为360°乘以θ/2π。
通过以上练习题,我们可以更好地理解和应用圆周角定理。
掌握这个定理对于解决与圆有关的各种问题非常重要。
希望通过练习能够加深你对圆周角定理的理解,并培养你的数学思维和解题能力。
圆的相关知识第一部分姓名:一、圆的定义:(1)在同一平面内,所有到定点的距离等于定长的点组成的图形叫做圆。
这个定点叫做圆的圆心。
图形一周的长度,就是圆的周长。
(2)线段绕一固定不动的端点旋转一周时另一个端点所形成的封闭曲线叫做圆,固定不动的端点叫做圆心,线段的长叫做半径。
(3)综合看成:圆可以看成是所有到定点O的距离等于定长r 的点组成的图形.二、点与圆的位置:关系有三种(点到圆心的距离与圆的半径的数量比较):(1)点在圆外,这个点到圆心的距离大于半径;(2)点在圆上,这个点到圆心的距离等于半径;(3)点在圆内,这个点到圆心的距离小于半径.。
二、相关概念:(1)弧:圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
(2)优弧:大于半圆的弧(多用三个字母表示);(3)劣弧:小于半圆的弧(多用两个字母表示)(4)半圆(弧):圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(5)弦:连接圆上任意两点之间的线段叫做弦;(6)弦心距:圆心到弦的距离。
(7)圆心角:顶点在圆心,两边为半径所组成的图形;(8)圆周角:顶点在圆上,两边为弦组成的图形。
(9)同心圆:圆心相同,半径不等的两个圆叫做同心圆。
(10)等圆:能够重合的两个圆(即半径相等的两个圆)叫做等圆。
(11)等弧:在同圆或等圆中能够完全重合的两条弧叫做等弧三、圆心角定理:(1)圆心角的度数等于它所对弧的度数;(2)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦心距相等,所对的圆周角相等。
(3)简单地说:知一则知四。
即同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦心距、两个圆周角中,有一组量相等,它们所对应的其余各组量也相等.四、圆周角定理:(1)同弧或等弧所对的圆周角相等。
(2)圆周角等于同弧所对圆心角的度数的一半。
(3)半圆(直径)所对的圆周角是直角,反之90°的圆周角所对的弧是半圆,所对的弦是直径。
圆周角定理练习题一、选择题1. 圆周角定理指出,圆周角的度数是它所对弧的中心角的度数的多少?A. 1/2B. 1/3C. 2倍D. 3倍2. 在圆中,如果一个圆周角的度数是30°,那么它所对的弧的中心角的度数是多少?A. 60°B. 90°C. 120°D. 180°3. 已知圆的半径为5,圆周角为40°,求该圆周角所对的弦长。
A. 4B. 5C. 8D. 10二、填空题4. 若圆周角α的度数为60°,则它所对的弧的中心角的度数为______。
5. 在圆中,如果圆周角的度数是中心角度数的一半,那么该圆周角所对的弧长是半径的______倍。
6. 已知圆的半径为r,圆周角为θ,根据圆周角定理,该圆周角所对的弦长为______。
三、判断题7. 圆周角定理只适用于圆的内部角。
(对/错)8. 如果一个圆周角的度数是90°,那么它所对的弧的中心角的度数是180°。
(对/错)9. 圆周角定理同样适用于圆的外部角。
(对/错)四、简答题10. 解释圆周角定理的含义,并给出一个实际应用的例子。
11. 如何利用圆周角定理计算圆内接四边形的对角线长度?五、计算题12. 在半径为10的圆中,有一个圆周角为60°,求该圆周角所对的弧长。
13. 已知圆的半径为8,圆周角为120°,求该圆周角所对的弦长。
14. 一个圆周角的度数是45°,求它所对的弧的中心角的度数,并计算该圆周角所对的弦长,如果圆的半径为15。
六、证明题15. 证明:如果两个圆周角所对的弧相等,那么这两个圆周角的度数也相等。
16. 证明:在同一个圆中,相等的圆周角所对的弧长也相等。
七、应用题17. 在一个半径为7的圆中,有一个圆周角为80°,求该圆周角所对的弦长,并计算该弦所对的圆心角的度数。
18. 如果在一个圆中,有一个圆周角的度数是圆心角度数的1/3,求这个圆周角的度数,如果圆心角的度数是120°。
初三圆周角练习题圆周角在初三数学中是一个重要的概念,理解和掌握圆周角的性质及计算方法对解题非常关键。
下面给出一系列的圆周角练习题,帮助初三学生加深对这一概念的理解和应用。
题目一:已知半径为5cm的圆上的一条弧所对圆心角的度数是120°,求此弧的长度。
解析:根据圆周角的性质,圆周角的度数等于所对弧的度数,因此所求弧的度数也是120°。
由于圆周角的度数等于所对弧的弧长与半径的比值,设所求弧的弧长为L,则有120/360 = L/(2π×5)。
解方程可得L ≈ 10π/3 cm。
题目二:在半径为8cm的圆中,两条弦长分别为12cm和16cm,求这两条弦所对的圆周角的度数。
解析:根据圆周角的性质,圆周角的度数等于所对弦所对应的弧的度数,而弧长等于弦的长度。
设所求圆周角的度数为x°,根据等式关系12/8 = x/360 和16/8 = x/360,解这两个方程可得x ≈ 180° 和x ≈ 240°。
因此,一条弦所对圆周角的度数为180°,另一条弦所对圆周角的度数为240°。
题目三:一个扇形的圆心角是64°,对应的弧长为10π cm,求此扇形的面积。
解析:根据扇形面积公式,扇形的面积等于扇形所在圆的面积乘以圆心角的度数与360°的比值。
设扇形的面积为S,圆的面积为A,则有S/A = 64°/360° = 64/360。
解方程可得S = (64/360) × π × r^2,代入已知条件,可得S ≈ (64/360) × π × (10/2)^2 = 16π/9 cm^2。
题目四:在半径为3cm的圆中,一条弦的弦长为4cm,这条弦与半径所夹的圆周角的弧度数为1/6π rad,求该弦所对的弧长。
解析:根据圆周角的性质,弧度数等于所对弧的弧长与半径的比值。
圆周角定理专项练习30题(有答案)1.如图AB是⊙O的直径,C是⊙O上的一点,若AC=8cm,AB=10cm,OD⊥BC于点D,求BD的长.2.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.3.已知AB是⊙O的直径,半径OC⊥AB,D为上任意一点,E为弦BD上一点,且BE=AD,求证:△CDE为等腰直角三角形.4.如图,AB是圆O的直径,AD=DC,∠CAB=30°,AC=2.求AD的长.5.如图,AB,CD是⊙O的两条弦,它们相交于点P,连接AD,BD.已知AD=BD=4,PC=6,求CD的长.6.如图,已知点C、D在以O为圆心,AB为直径的半圆上,且OC⊥BD于点M,CF⊥AB于点F交BD于点E,BD=8,CM=2.(1)求⊙O的半径;(2)求证:CE=BE.7.如图,A是以EF为直径的半圆上的一点,作AG⊥EF交EF于G,又B为AG上一点,EB的延长线交半圆于K,求证:(1)△AEB∽△KEA;(2)AE2=EB•EK.8.如图,BC是⊙O的直径,P为⊙O上一点,点A是的中点,AD⊥BC,垂足为D,PB分别与AD、AC相交于点E、F.(1)若∠BAD=36°,求∠ACB,∠ABP;(2)如果AE=3,求BE.9.如图,△ABC内接于⊙O,AB=AC,弦AD交BC于点E,AE=4,ED=5,(1)求证:AD平分∠BDC;(2)求AC的长;(3)若∠BCD的平分线CI与AD相交于点I,求证:AI=AC.10.如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.11.如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.12.已知如图,在⊙O中,弦BC平行于半径OA,AC交BO于M,∠C=25°.求∠AMB的度数.13.如图,⊙O是△ABC的外接圆,∠A=45°,BD是直径,且BD=2,连接CD,求BC的长.14.已知:如图,AD平分∠BAC,DE∥AC,且AB=5cm,求DE的长.15.已知如图,在△ABC中,∠BAC=90°,AB=AC=,D是BC中点,作半径是的圆经过点A和D且交AB于F,交AC于E.求∠ADF的正弦值.16.如图,在△ABC中,AB是⊙O的直径,⊙O与AC交于点D,AB=,∠B=60°,∠C=75°,求∠BOD的度数.17.如图:在⊙O中,AB是直径,∠ACB的平分线交⊙O于点D,AD=5cm.求:BD与⊙O半径的长.18.如图,AB是⊙O的直径,P是弦AC延长线上的一点,且AC=PC,直线PB交⊙O于点D,若∠BDC=30°,求∠P的度数.19.如图,△ABC中,∠B=45°,∠C=60°,AB=cm,以AB为直径的⊙O交BC于点D,求CD的长?20.如图,已知AD是△ABC的高,AE是△ABC的外接圆的直径.(1)求证:AC•AB=AD•AE;(2)若AB=6,AC=5,AD=3,求⊙O的面积.21.如图,⊙0为四边形ABCD的外接圆,AC为⊙0的直径,CD∥AB,点E、F分别在BC和AD上,且EF经过圆心0.求证:OE=OF.22.如图,等腰三角形ABC中,以腰AB为直径的⊙O交底边BC于点D,交AC于点E,连接DE.(1)求证:BD=DE;(2)若⊙O的半径为3,BC=4,求CE的长.23.如图,已知⊙0的半径为5,AB是⊙0的直径,点C、D都在⊙0上,若∠D=30°,求AC的长.24.如下图,已知△ABC内接于⊙O,若∠C=45°,AB=4,求⊙O的面积.25.如图,⊙O的直径AB为4cm,弦AC为3cm,∠ACB的平分线交⊙O于D,求:①BC的长;②AD与BD的长.26.如图,⊙O为四边形ABCD的外接圆,圆心O在AD上,OC∥AB.(1)求证:AC平分∠DAB;(2)若AC=8,AC:CD=2:1,试求⊙O的半径.27.如图,点A、B、C、D在圆上,AB=8,BC=6,AC=10,CD=4,求AD的长.28.如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=50°,∠ADC=45°,求∠CDB及∠CEB的度数.29.如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=54°,求∠DEB的度数;(2)若DC=2,AB=8,求⊙O的直径.30.如图,已知△ABC内接于⊙O,AE平分∠BAC,且AD⊥BC于点D,连接OA.求证:∠OAE=∠EAD.参考答案:1.∵AB是⊙O的直径,∴∠ACB=90°;∵OD⊥BC,∴OD∥AC,又∵AO=OB,∴OD是△ABC的中位线,即BD=BC;Rt△ABC中,AB=10cm,AC=8cm;由勾股定理,得:BC==6cm;故BD=BC=3cm2.(1)∵∠APD=∠C+∠CAB,∴∠C=65°﹣40°=25°,∴∠B=∠C=25°;(2)作OE⊥BD于E,则DE=BE,又∵AO=BO,∴,圆心O到BD的距离为3.3.连接AC、BC,由圆周角定理得∠CBE=∠CAD,∵CO⊥AB,∴点C是弧ABC的中点,∴AC=BC,又∵BE=AD∴△ACD≌△BCE,∴CD=CE.∠ADC=∠BEC,∵AB是直径,∴∠ADB=90°,∵∠BEC=∠DCE+∠CDB,∠ADC=∠ADB+∠CDB,∴∠DCE=∠ADB=90°,即△DCE是等腰直角三角形.4.连接OD;∵D 是的中点,∴OD垂直平分AC;∴∠AOD=90°﹣∠CAB=60°;又∵OA=OD,∴△OAD是等边三角形;∴OA=AD;Rt△ABC中,∠CAB=30°,AC=2;∴AB==4,OA=2;即:AD=OA=2.故AD的长为2.5.连接AC,∵AD=BD,∴=.∵∠C=∠BAD,又∵∠ADP=∠CDA,∴△ADP∽△CDA.∴=,即AD2=CD•DP.∵AD=4,PC=6,设CD=x,则42=x(x﹣6),解得:x1=8,x2=﹣2(不合题意,舍去)∴CD=8.6.1)解:∵OC为⊙O的半径,OC⊥BD,∴;∵DB=8,∴MB=4(1分)设⊙O的半径为r,∵CM=2,∴OM=r﹣2,在Rt△OMB中,根据勾股定理得(r﹣2)2+42=r2,解得r=5;(2)证明:方法一:连接AC、CB,∵AB是直径,∴∠ACB=90°.∴∠ACF+∠FCB=90°.又∵CF⊥AB,∴∠CAF+∠ACF=90°∴∠FCB=∠CAF∵OC为⊙O的半径,OC⊥BD,∴C 是的中点,∴∠CAF=∠CBD.∴∠FCB=∠DBC.∴CE=BE;方法二:如图,连接BC,补全⊙O,延长CF交⊙O于点G;又∵CF⊥AB,AB为直径,∴=.∴OC为⊙O的半径,OC⊥BD.∴C 是的中点,∴=.∴=.∴∠FCB=∠DBC.∴CE=BE.7.(1)连接AK、AF,∴∠K=∠F=90°﹣∠AEF=90°﹣∠AEG.∠EAG=90°﹣∠AEG.∴∠K=∠EAG∠KEA=∠AEB.∴△AEB∽△KEA.(2)由①得△AEB∽△KEA,∴.∴AE2=EB•EK.8.(1)因为BC是⊙O的直径所以∠CAB=90°所以∠ABD+∠ACB=90°因为AD⊥BC所以∠ABD+∠BAD=90°所以∠ACB=∠BAD=36°因为A 是的中点,则所以∠ABP=∠ACB=36°.(2)因为∠ABP=∠ACB,∠BAD=∠ACB所以∠ABP=∠BAD因为AE=3所以BE=3.9.(1)∵AB=AC,∴;∴AD平分∠BDC;解:(2)∵∠ACB=∠ADB,∠CDA=∠ADB,∴∠CDA=∠ACB;∵∠CAE=∠DAC,∴△ACE∽△ADC;∴,即;∴AC=6;证明:(3)∠AIC=∠ADC+∠DCI,∠ACI=∠BCI+∠ACB;∴∠AIC=∠ACI;∴AI=AC.10.∵AB是⊙O的直径,∴∠ACB=90°.在Rt△ABC中,∠ACB=90°,AB=6,AC=5,∴BC===.∴tanA==.11.连接BC.∵AB是⊙O的直径,∴∠ACB=90°,∵∠ACD=60°,∴∠BCE=30°,∵∠CEB=100°,∴∠B=50°,∴∠ADC=∠B=50°.12.∵BC∥OA,∠C=25°,∴∠A=∠C=25°,在⊙O中,∵∠O=2∠C,∴∠O=50°,又∵∠AMB=∠A+∠O,∴∠AMB=75°13.在⊙O中,∵∠A=45°,∠D=45°,∵BD为⊙O的直径,∴∠BCD=90°,∴△BCD是等腰直角三角形,∴BC=BD•sin45°,∵BD=2,∴14.连接AE,BD,∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠ADE=∠CAD,∴∠ADE=∠BAD,∴AE=BD,∴AB=DE,∵AB=5cm,∴DE=5cm15.连接EF,ED(1分)在△ABC中∵AB=AC,∠BAC=90°,BD=CD,∴AD=,∠DAF=∠DCE=45°,∠ADC=90°,∴∠ADE+∠EDC=90°,在⊙O中,∵∠BAC=90°,∴EF是⊙O的直径,(3分)∴∠FDE=90°,∴∠FDA+∠ADE=90°,∴∠EDC=∠FDA,∴△EDC≌△FDA,∴AF=CE,(4分)设AF=x,则CE=x,AE=AC﹣CE=﹣x,∵⊙O 的半径是,∴EF=,在Rt△AEF 中,,解得,∠ADF=∠AEF,(5分)∴当x=1时,sin∠ADF=sin∠AEF==,当x=时,sin∠ADF=sin∠AEF==,∴∠ADF 的正弦值为或.16.在△ABC中,∵∠B=60°,∠C=75°,∴∠A=45°.∵AB是⊙O的直径,⊙O与AC交于点D,∴∠DOB=2∠A=90°.故答案为:90°17.∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD,∴AD=BD,∵AB是直径,∴∠ADB=90°,∵AD=5cm,∴BD=5cm;在Rt△ABD中,2AD2=AB2,∴AB=5cm,∴圆的半径为cm.18.连接BC,∵AB是直径,∴BC⊥AC,(2分)∵AC=CP,∴AB=BP,(3分)∴∠P=∠A,(4分)∵∠A=∠D=30°,(5分)∴∠P=30°.19.连接AD.(1分)∵AB是⊙O的直径.∴∠ADB=90°.(3分)在Rt△ADB中,AD=AB•sinB=2sin45°=2×=2(6分)在Rt△ADC中,CD=,即CD 的长为m.20.(1)证明:连接BE,∵AD是△ABC的高,AE是△ABC的外接圆的直径,∴∠ADC=∠ABE=90°,∵∠C=∠E,∴△ADC∽△ABE.∴AC:AE=AD:AB,∴AC•AB=AD•AE;(2)解:∵AB=6,AC=5,AD=3,∴AE===10,∴OA=5,∴⊙O的面积为:π×52=25π21.∵AC为⊙0的直径,∴∠B=∠D=90°,∵CD∥AB,∴∠B+∠BCD=180°,∴∠BCD=90°,∴∠BCD+∠D=90°,∴AD∥BC,∴∠FAO=∠ECO,在△AOF和△COE中,,∴△AFO≌△CEO(ASA),∴OE=OF22.(1)证明:连接AD,∵AB为圆O的直径,∴AD⊥BC,∵AB=AC,∴D为BC的中点,即BD=CD,∵∠DEC为圆内接四边形ABDE的外角,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∴DE=DC,∴BD=DE;(2)解:∵∠DEC=∠B,∠C=∠C,∴△DEC∽△ABC,∴=,即=,则EC=.23.连接BC.∵AB是⊙0的直径,∴∠ACB=90°,在直角△ABC中,∠A=∠D=30°,AB=2×5=10.∴AC=AB•cosA=10×=5.24.连接OA,OB;则OA=OB,∠AOB=2∠C;(2分)∵∠C=45°,∴∠AOB=90°,∴OA2+OB2=AB2;(4分)又∵AB=4,∴2OA2=42,OA2=8;(6分)∴S⊙O=π•OA2=8π.25.①∵AB为直径,∴∠ACB=90°,∵AB=4,AC=3,∴BC===;②∵AB为直径,∴∠ADB=90°,∵CD平分∠ACB,∴∠ACD=∠BCD=45°,∵∠ABD=∠ACD,∠BCD=∠BAD,∴∠DAB=∠DBA=45°,∴AD=DB,∵AD2+BD2=AB2,∴AD=DB=2,26.(1)证明:∵OC∥AB,∴∠OCA=∠CAB,∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=∠CAB,即AC平分∠DAB;(2)解∵AD是⊙O的直径,∴∠ACD=90°,∵AC=8,AC:CD=2:1,∴CD=4,在Rt△ACD中,AD==4,∴OA=AD=2,∴⊙O的半径为2.27.△ABC中,AB=8,BC=6,AC=10,∴AC2=AB2+BC2,∴∠B=90°,∴AC为直径,∴∠D=90°,Rt△ADC中,AD====2.∴AD的长为2.28.连接BC,则∠ACB=90°(圆周角定理),∵∠CBA=∠ADC=45°,∴∠CAB=90°﹣∠CBA=45°(直角三角形的两个锐角互余);∴∠CEB=∠CAB+∠ACD=45°+50°=95°(外角定理).∠CDB=∠CAB=45°.综上可得:∠CDB=45°,∠CEB=95°29.(1)∵OD⊥AB∴弧AD=弧BD∴∠DEB=∠AOD=×54°=27°…3分(2)∵OD⊥AB∴AC=AB=×8=4设⊙O的半径为R,则OC=R﹣2在Rt△AOC中,由勾股定理得:42+(R﹣2)2=R2解得:R=5∴⊙O的直径为1030.连接OE,∵AE平分∠BAC,∴∠BAE=∠CAE,∴=,∴OE⊥BC,∵AD⊥BC,∴OE∥AD,∴∠OEA=∠EAD,∵OA=OE,∴∠OEA=∠OAE,∴∠OAE=∠EAD.11。
圆周角和圆心角的关系一、基础概念 (1)圆心角:顶点在圆心的角叫圆心角. 圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.1、下图中是圆心角的有 . 下图中是圆周角的有 .①Image ②Image ③Image④ Image ⑤Image ⑥Image圆周角的性质: ①圆周角等于它所对的弧所对的圆心角的一半. ②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角. ④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角.2、如图,∠A是⊙O的圆周角,且∠A=35°,则∠OBC=_____.3、如图,若∠A=40°,则∠B=_____.4、如图,若∠A=∠B,则弧CD_____弧EF。
5、如图,AB是圆O的直径,∠B=30°,则∠A=_____.6、如图,A,B,C,D四点在圆O上,且∠A=40°,则∠C=_____.ImageImageImageImageImage(2) (3) (4) (5)(6)二、课堂练习7.如图,已知圆心角∠BOC=100°,则圆周角∠BAC的度数是( )A.50°B.100°C.130°D.200°8.如图,等边三角形ABC的三个顶点都在⊙O上,点D是弧AC上任一点(不与A、C重合),则∠ADC的度数是________.ImageImageImage9.已知∠BAD=100°,则∠BOC=_______.10.如图,A、B、C为⊙O上三点,若∠OAB=46°,则∠ACB=_______度.11.如图,AB是⊙O的直径, 弧BC=弧BD,∠A=25°,则∠BOD的度数为________.12.如图,AB是半圆O的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O 到CD 的距离OE=______.ImageImageImage( 10) (11) (12)三、能力提升13、如图,点、、是上的三点,.(1)求证:平分.(2)过点作于点,交于点. 若,求OA,OE,PE的长.14、(2009年广州市)如图,在⊙O中,∠ACB=∠BDC=60°,AC=,(1)求∠BAC的度数; (2)求⊙O的半径15.如图所示,已知AB为⊙O的直径,CD是弦,且AB CD于点E.连接AC、OC、BC.(1)求证:ACO=BCD.EDBAOC(2)若EB=,CD=,求⊙O的直径.。
圆周角练习题1.如图,AB是⊙O的直径,点C和点D在⊙O上,若∠BDC=20°,则∠AOC等于度.2.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为.第1题第2题第3题第4题第5题3.如图,已知AB是⊙O的弦,半径OC垂直AB,点D是⊙O上一点,且点D与点C位于弦AB两侧,连接AD、CD、OB,若∠BOC=68°,∠ADC= 度.4.如图,已知AB为⊙O的直径,∠CAB=32°,则∠ADC= °.5.如图,点A、B、C在圆O上,弦AC与半径OB互相平分,则∠ABC= 度.6.如图,已知AB、AD是⊙O的弦,∠ABO=30°,∠ADO=20°,则∠BOD= .第6题第7题第8题第9题第10题7.如图,AB是⊙O的直径,弦CD垂直平分半径OA,AB=6,则BC的长是.8. 如图,点A,B,C在⊙O上,∠B=100°,则∠AOC=________.9.如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB= .10.如图,AB是半圆的直径,C、D是半圆上的两个点,若∠BAD=55°,则∠ACD= °.11.AB是⊙O的直径,C是BD的中点,CE⊥AB于E,BD交CE于点F.(1)若CD=6,AC=8,则⊙O的半径为________;(2)求证CF=BF.12.已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E (Ⅰ)如图①,求∠CED的大小;(Ⅱ)如图②,当DE=BE时,求∠C的大小.13.已知:△ABC内接于⊙O,D是BC上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB14. 如图,在⊙O中,AE平分∠BAD,BE平分∠ABD.求证CB=CE=CD.15.已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(1)如图①,若BC为⊙O的直径,AB=6,求AC及点D到BC的距离;(2)如图②,若∠CAB=60°,求BD的长.图①图②16.已知,如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上一点,AG与DC的延长线交于点F.(1)如CD=8,BE=2,求⊙O的半径长;(2)求证:∠FGC=∠AGD.17.已知等边△ABC内接于⊙O,点P是劣弧上的一点(端点除外),延长BP至D,使BD=AP,连接CD.(1)若AP过圆心O,如图1,且圆O的直径为10cm,求CD的长;(2)若AP不过圆心O,如图2,PC=3cm,求PD的长.。
圆周角练习题圆周角练习题在数学中,圆周角是一个重要的概念。
它是指以圆心为顶点的角度,通常以度数或弧度来表示。
圆周角的概念在几何学、三角学和物理学等领域中都有广泛的应用。
在这篇文章中,我们将通过一些练习题来加深对圆周角的理解。
练习题一:已知一个圆的半径为5cm,求其圆心角的度数。
解答一:圆心角是以圆心为顶点的角度,它的度数等于所对的弧度的度数。
由于圆的周长是2πr,其中r是半径,所以整个圆的弧度是360°。
因此,圆心角的度数是360°。
练习题二:已知一个圆的直径为12cm,求其圆心角的弧度。
解答二:圆心角的弧度等于所对的弧长除以半径。
由于圆的周长是2πr,其中r 是半径,所以整个圆的弧长是2πr。
根据题意,所对的弧长是12cm,半径是6cm。
因此,圆心角的弧度是12cm/6cm=2弧度。
练习题三:已知一个圆的半径为8cm,一个圆心角的度数是60°,求其所对的弧长。
解答三:所对的弧长等于圆周长乘以圆心角的度数除以360°。
由于圆的周长是2πr,其中r是半径,所以整个圆的周长是2π×8cm=16πcm。
根据题意,圆心角的度数是60°。
因此,所对的弧长是16πcm×60°/360°=8πcm。
练习题四:已知一个圆的半径为10cm,一个圆心角的弧度是π/4,求其所对的弧长。
解答四:所对的弧长等于圆周长乘以圆心角的弧度除以2π。
由于圆的周长是2πr,其中r是半径,所以整个圆的周长是2π×10cm=20πcm。
根据题意,圆心角的弧度是π/4。
因此,所对的弧长是20πcm×(π/4)/(2π)=5cm。
通过以上练习题,我们可以看到圆周角的度数和弧度之间的转换关系,以及如何计算所对的弧长。
这些知识在解决实际问题时非常有用。
除了以上的练习题,还有很多其他类型的圆周角练习题,例如求解未知角度、弧度或弧长等。
通过不断的练习和思考,我们可以提高对圆周角的理解和应用能力。
完整版)圆心角圆周角练习题知识点三:弧、弦、圆心角与圆周角1.定义圆心角为顶点在圆心的角。
2.在同圆或等圆中,弧、弦、圆心角之间的关系:两个圆心角相等,圆心角所对的弧相等(无论是优弧还是劣弧),圆心角所对的弦相等。
3.一个角是圆周角必须满足两个条件:(1)角的顶点在圆上;(2)角的两边都与圆有除顶点外的交点。
4.同一条弧所对的圆周角有两个。
5.圆周角定理:圆周角等于圆心角的一半。
6.圆周角定理的推论:(1)同弦或等弦所对的圆周角相等;(2)半圆或直径所对的圆周角相等;(3)90°的圆周角所对的弦是直径。
需要注意的是,“同弦或等弦”改为“同弧或等弧”结论就不一定成立了,因为一条弦所对的圆周角有两类,它们是相等或互补关系。
7.圆内接四边形定义为所有顶点都在圆上的多边形,圆心即为这个圆内接四边形的交点。
圆内接四边形的对角线相互垂直,且交点为对角线的中点。
夯实基础1.如果两个圆心角相等,则它们所对的弧相等,选项B正确。
2.不正确的语句为③,因为圆不一定是轴对称图形,只有圆上的任何一条直径所在直线才是它的对称轴。
3.错误的说法是D,相等圆心角所对的弦不一定相等。
4.根据圆心角的性质,∠A=2∠B,所以∠A=140°。
5.∠BAC与∠BCD互补,∠BCD与∠CBD相等,所以与∠BAC相等的角有2个,即∠CBD和∠ABD。
6.因为∠CAB为30°,所以∠ABC为60°,由正弦定理可得BC=5√3.7.根据圆周角定理,∠ACB=40°。
8.设∠A=3x,∠B=4x,∠C=6x,则∠D=360°-3x-4x-6x=120°。
9.∠DCE=∠A。
1、如图,AB是⊙O的直径,C,D是BE上的三等分点,∠AOE=60°,求证∠COE=80°。
证明:由三等分点的性质可知,BC=CD=DE,又∠AOE=60°,所以∠AOC=120°。
中考数学复习----《圆周角定理》知识点总结与专项练习题(含答案)知识点总结1.圆心角、弦以及弧之间的关系:①定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
②推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧。
2.圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。
3.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
4.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
5.圆的内接四边形:①定义:四个顶点都在圆上的四边形叫做圆的内接四边形。
②性质:I:圆内接四边形的对角互补。
II:圆内接四边形的任意一个外角等于它的内对角。
练习题1、(2022•襄阳)已知⊙O的直径AB长为2,弦AC长为2,那么弦AC所对的圆周角的度数等于.【分析】首先利用勾股定理逆定理得∠AOC=90°,再根据一条弦对着两种圆周角可得答案.【解答】解:如图,∵OA=OC=1,AC=,∴OA2+OC2=AC2,∴∠AOC=90°,∴∠ADC=45°,∴∠AD'C=135°,故答案为:45°或135°.2、(2022•日照)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为.【分析】连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC 即可.【解答】解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC===13(cm),所以圆形镜面的半径为cm,故答案为:cm.3、(2022•永州)如图,AB是⊙O的直径,点C、D在⊙O上,∠ADC=30°,则∠BOC=度.【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半求出∠AOC的度数,根据平角的定义即可得到∠BOC=180°﹣∠AOC的度数.【解答】解:∵∠ADC是所对的圆周角,∴∠AOC=2∠ADC=2×30°=60°,∴∠BOC=180°﹣∠AOC=180°﹣60°=120°.故答案为:120.4、(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D=°.【分析】如图,连接BC,证明∠ACB=90°,求出∠ABC,可得结论.【解答】解:如图,连接BC.∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=62°,∴∠D=∠ABC=62°,故答案为:62.5、(2022•湖州)如图,已知AB 是⊙O 的弦,∠AOB =120°,OC ⊥AB ,垂足为C ,OC 的延长线交⊙O 于点D .若∠APD 是AB ⌒所对的圆周角,则∠APD 的度数是 .【分析】由垂径定理得出,由圆心角、弧、弦的关系定理得出∠AOD =∠BOD ,进而得出∠AOD =60°,由圆周角定理得出∠APD =∠AOD =30°,得出答案.【解答】解:∵OC ⊥AB ,∴,∴∠AOD =∠BOD ,∵∠AOB =120°,∴∠AOD =∠BOD =∠AOB =60°,∴∠APD =∠AOD =×60°=30°,故答案为:30°.6、(2022•徐州)如图,A 、B 、C 点在圆O 上,若∠ACB =36°,则∠AOB = .【分析】利用一条弧所对的圆周角等于它所对的圆心角的一半即可得出结论.【解答】解:∵∠ACB =∠AOB ,∠ACB =36°,∴∠AOB =2×∠ACB =72°.故答案为:72°.7、(2022•锦州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC的度数为.【分析】利用圆内接四边形的性质和∠ADC的度数求得∠B的度数,利用直径所对的圆周角是直角得到∠ACB=90°,然后利用直角三角形的两个锐角互余计算即可.【解答】解:∵四边形ABCD内接于⊙O,∠ADC=130°,∴∠B=180°﹣∠ADC=180°﹣130°=50°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=90°﹣50°=40°,故答案为:40°.8、(2022•雅安)如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE=72°,那么∠BOD的度数为.【分析】根据邻补角的概念求出∠BCD,根据圆内接四边形的性质求出∠A,根据圆周角定理解答即可.【解答】解:∵∠DCE=72°,∴∠BCD=180°﹣∠DCE=108°,∵四边形ABCD内接于⊙O,∴∠A=180°﹣∠BCD=72°,由圆周角定理,得∠BOD=2∠A=144°,故答案为:144°.9、(2022•甘肃)如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC=°.【分析】根据圆内接四边形的对角互补即可得到结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=110°,∴∠ADC=180°﹣∠ABC=180°﹣110°=70°,故答案为:70.。
初三圆周角定理及其推论练习题圆周角定理是初中数学中的一个重要概念,它帮助我们理解和计算圆内的角度。
本文将介绍圆周角定理及其推论,并提供一些相关的练习题供读者加深理解和巩固知识。
一、圆周角定理圆周角定理是指:圆心角的度数等于其所对的弧的度数的两倍。
记作:∠AOB = 2∠ACB。
在一个圆中,以圆心为顶点的角叫做圆心角,以圆弧为底的角叫做弦对的圆周角。
图1: 圆心角和弦对的圆周角示意图根据圆周角定理,可以得出以下推论:推论1:在同一个圆上,圆心角相等的弧相等;弧相等的圆心角相等。
推论2:在同一个圆上,以弦分割的圆弧所对的圆心角相等。
推论3:在同一个圆上,以弦为底的圆周角相等的弧相等;弧相等的圆周角相等。
推论4:在同一个圆上,平分相同弧的两个圆心角的弦相等。
二、练习题现在我们来做一些练习题,加深对圆周角定理及其推论的理解。
1. 图2中,∠AOB = 80°,求∠ACB的度数。
图2: 圆心角的度数求解解:根据圆周角定理可知,∠AOB = 2∠ACB,代入已知条件80°,得到2∠ACB = 80°,再将其化简得∠ACB = 40°。
2. 图3中,∠ACD = 30°,求∠AED的度数。
图3: 弦对的圆周角的度数求解解:根据圆周角定理的推论3可知,以弦分割的圆弧所对的圆心角相等,∠ACB = ∠AED。
又已知∠ACD = 30°,所以∠AED = ∠ACB = 30°。
3. 图4中,弧AB = 80°,求∠AOB的度数。
图4: 弧长求解圆心角的度数解:根据推论1可知,圆心角相等的弧相等,所以∠AOB =2∠ACB。
又已知弧AB = 80°,所以∠AOB = 2 × 80° = 160°。
4. 图5中,弧CD = 弧EF,求∠CED的度数。
图5: 弧长相等的圆心角的度数求解解:根据推论3可知,以弦为底的圆周角相等的弧相等,所以弧CD = 弧EF。
圆周角、圆心角以及垂径定理总结与提高知识点:1、圆周角的性质:.①圆周角等于它所对的弧所对的圆心角的一半.在同圆或等圆中,相等的圆周角所对的弧相等②同弧或等弧所对的圆周角相等;.90°的圆周角所对的弦为直径; 半圆或直径所对的圆周角为直角③.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角2、垂径定理及推论:.①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.的直径垂直于弦,并且平分弦所对的两条弧(不是直径)②平分弦. ③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等、关系定理:3在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任___________ .意一组量相等,那么它所对应的其他各组分别相等〖课前热身〗______________ 下列说法不正确有1 _______________________ .过一点可作无数个圆,那是因为圆心不确定,半径也不确定A B.过两个点可以画无数个圆,圆心在这两点连线段的中垂线上C.优弧一定比劣弧长.D .两个圆心角相等那么所对的弧也相等E.平分弦的直径垂直于弦F .弦的中垂线必过圆心得到任意一CCD上不同于点在劣弧正方形ABCDiO O的内接正方形,点P2 . 的度数是()点,则/ BP(A DB . . A6045O P ODC 9075CB如图2,是OO的直径,点E,, DCAB,则若E / C / D / / B / A BA图1ED2图 B/ BC = =CDEAC BD 相交于点,,AB 4、如图 3,弦 A ___________/ ACD 勺度数为EC D 3图1 : 5分为度数比为O 弦AB 把O 的两条弧,则弧5、在O O 中, 的圆心角的度数为_____________ 6、圆的弦长与它的半径相等,那么这条弦所对的圆周角的度数 是70。
5题图DCBA8题图BAB10题图9题图BAB6题图九年级数学圆周角练习题班别: 姓名:圆周角定理1.在同圆或等圆中,同弧或等弧所对的 相等;都等于这条弧所对的圆心角的 .2. 在同圆或等圆中,相等的圆周角 所对的 也相等. 推论3、半圆(或直径)所对的圆周角是 ; 的圆周角所对的弦直径. 4.圆的内接四边形的对角5.如果三角形一条边上的中线等于这条边的一半,那么这个三角形是 课堂训练:1、如图,四边形ABCD 内接于⊙O ,若0105=∠ABC ,则_______=∠ADC2、如图四边形ABOC ,(O 为圆心),若0150=∠BOC ,则_____=∠A3、如图,AB 是⊙O 的直径,020=∠A ,则_______=∠B4、如图,在⊙O 中,0045,30=∠=∠C B ,则_____=BOC5、如图,AB 是直径,且CD ⊥AB ,若0110=∠COD ,则______=∠ADC6、如图,△ABC 是等边三角形,动点P 在圆周的劣弧AB 上,且不与A、B 重合, 则∠BPC=7题图BOCAB7题图B 7、如图0100=∠AOB ,则_______=∠ACB8.如图所示∠DCB=120°则∠AOB=9.如图,在直径为AB 的半圆中,O 为圆心,C 、D 为半圆上的两点,∠COD=50°,则 ∠CAD=______;10.如图,⊙O 是△ABC 的外接圆,已知∠ACO =30°,∠B =______11.如图ABC △内接于⊙O ,30C ∠=,2AB =, 求⊙O 的半径。
12.如图,⊙O 为等腰三角形ABC 的外接圆,∠BAC=120°,AB=4,求圆心 到弦AB 的距离距。
13.AB 、AC 为⊙O 的两条弦,延长CA 到D ,使 AD=AB ,如果∠ADB=35° , 求∠BOC 的度数。
14.已知⊙O 中,弦AB 等于半径,求弦AB 所对的圆心角的度数。
圆周角练习题及答案在平面几何课程中,圆周角是一个非常重要的概念。
学生通过练习圆周角的计算和解题,可以更好地理解和应用该概念。
本文将提供一些圆周角的练习题及其答案,旨在帮助学生加深对圆周角的理解和应用能力。
一、单选题1. 在圆的半径为r的两条弦之间所夹的圆周角是:A. 60度B. 90度C. 180度D. 360度答案:C. 180度2. 在相同圆上的两个圆周角,其中一个是另一个的两倍,那么它们的度数分别是:A. 60度和120度B. 90度和180度C. 120度和240度D. 150度和300度答案:C. 120度和240度二、填空题1. 在相同圆上的两个圆周角,它们的度数之和为________度。
答案:360度2. 在一个圆上,一个圆周角的度数是60度,那么它所对应的弧长为________。
答案:π/3(弧度)三、解答题1. 已知一个圆的半径为8cm,圆心角的度数为60度,求该圆内切正多边形的边长和面积。
解答:首先,由于圆心角度数为60度,所以切割的正多边形是六边形。
其次,由于圆的半径为8cm,因此可以通过正多边形的对称性得知,该六边形的边长为2r=16cm。
最后,可以通过将该六边形切割成等腰三角形,并计算其面积的一半来得到该多边形的面积。
所以,该六边形的边长为16cm,面积为(16*8*sin60°)/2=64√3 cm^2。
2. 若一个正八边形的外接圆的圆周角的度数为x度,求x的值。
解答:在一个正八边形中,通过连接圆心以及相邻的两个顶点,可以将该八边形分割为八个等腰三角形。
由于正八边形的圆心角度数为x 度,而圆心角是等腰三角形的内角,所以每个三角形的内角度数为x/2度。
根据三角形的内角和公式,可得(x/2)*8=180度,解得x=360度。
综上所述,圆周角练习题及答案提供了一些常见的练习题,通过对这些题目的解答,可以帮助学生更好地理解和应用圆周角的概念。
希望本文对学生们的学习有所帮助!。
初三上册圆的圆周角练习题在初三数学的课程中,圆的相关概念和性质是学生们需要掌握的重要内容之一。
其中,圆周角作为圆的一个重要性质,在解题过程中起着至关重要的作用。
本文将为大家提供一些圆周角练习题,帮助大家巩固和提升对圆周角的理解和运用。
1.已知半径为r的圆上有两条弧AB和CD,弧AB对应的圆心角为α,弧CD对应的圆心角为β。
如果α+β=90°,求证:弧AB和弧CD的长度相等。
解答:由于α+β=90°,根据圆周角和的性质可知,弧AB和弧CD所对应的弧度和为π/2,即AB+CD=π/2。
又由于AB和CD是同一圆上的两条弧,因此它们的弧长相等,即AB=CD。
2.已知圆心角θ对应的圆弧长度为s,圆的半径为r。
求证:θ的度数等于s/r的弧度数。
解答:根据圆周等分的原理,360°对应于2π的弧度数。
假设θ对应的弧度数为x,那么x/2π=θ/360°。
根据题目已知条件,s/r=x/2π,两边乘以360°得到s/r=θ。
3.已知直径为d的圆上的两条弧AB和CD,弧AB对应圆心角为α,弧CD对应圆心角为β。
如果α和β的度数之和等于180°,求证:弧AB和弧CD的长度之和等于圆周长的一半。
解答:由题意可知,α+β=180°,根据圆周角和的性质可得,AB+CD=π,即弧AB和弧CD的长度之和等于圆周长的一半。
通过以上的练习题,我们可以更深入地了解和应用圆的圆周角的性质。
在解题过程中,需要灵活运用和转化弧度和度数的关系、圆周角和的性质等概念。
只有真正理解并掌握这些概念,才能在数学问题中正确地运用它们。
圆周角作为圆的一个重要性质,不仅存在于初三数学中,也在实际生活中有着广泛的应用。
比如,在建筑中,为了保证圆形构件的连接稳定,需要正确地计算和设计圆周角。
因此,对圆周角的学习不仅仅是应试的需要,更是培养学生逻辑思维和数学运算能力的重要一环。
通过不断练习和巩固,相信大家在初三数学中的圆的圆周角问题上将能够得心应手,取得良好的成绩。
圆周角练习一.选择题(共6小题)1.(2018•济宁)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°2.(2018•菏泽)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A.64°B.58°C.32°D.26°3.(2018•陇南)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x 轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°4.(2018•通辽)已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°5.(2005•双柏县)如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD=()A.128°B.100°C.64°D.32°6.(2018•西湖区一模)在菱形ABCD中,记∠ABC=∠α(0°<∠α<90°),菱形的面积记作S,菱形的周长记作C,若AD=2,则()A.C与∠α的大小有关B.当∠α=45°时,S=C.A,B,C,D四个点可以在同一个圆上D.S随∠α的增大而增大二.解答题(共8小题)7.(2018•宜昌)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.8.(2018•兴庆区校级一模)已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.(1)求证:ED=EC;(2)若CD=3,EC=2,求AB的长.9.(2018•滨湖区模拟)如图,在平面直角坐标系中,以点M(0,)为圆心,以长为半径作⊙M交x轴于A、B两点,交y轴于C、D两点,连接AM并延长交⊙M于P点,连接PC交x轴于E.(1)求点C、P的坐标;(2)求证:BE=2OE.10.(2018•和平区模拟)已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E(Ⅰ)如图①,求∠CED的大小;(Ⅱ)如图②,当DE=BE时,求∠C的大小.11.(2018•长兴县一模)已知,如图,AB是⊙O的直径,弦CD⊥AB于点E,G 是上一点,AG与DC的延长线交于点F.(1)如CD=8,BE=2,求⊙O的半径长;(2)求证:∠FGC=∠AGD.12.(2011•南漳县模拟)如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),点B的坐标为(,0),解答下列各题:(1)求线段AB的长;(2)求⊙C的半径及圆心C的坐标;(3)在⊙C上是否存在一点P,使得△POB是等腰三角形?若存在,请求出∠BOP 的度数;若不存在,请说明理由.13.(2016•汉川市模拟)如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2cm/s的速度向D移动.(1)P、Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2;(2)P、Q两点从出发开始到几秒时,点P和点Q的距离是10cm.14.(2016•濉溪县三模)如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知,这时我们把关于x的形如的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”必有实数根;(3)若x=﹣1是“勾系一元二次方程”的一个根,且四边形ACDE 的周长是6,求△ABC面积.圆周角练习参考答案与试题解析一.选择题(共6小题)1.(2018•济宁)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度数,再根据圆周角的性质,即可求得答案.【解答】解:圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.【点评】此题考查了圆周角的性质与圆的内接四边形的性质.此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法.2.(2018•菏泽)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A.64°B.58°C.32°D.26°【分析】根据垂径定理,可得=,∠OEB=90°,根据圆周角定理,可得∠3,根据直角三角形的性质,可得答案.【解答】解:如图,由OC⊥AB,得=,∠OEB=90°.∴∠2=∠3.∵∠2=2∠1=2×32°=64°.∴∠3=64°,在Rt△OBE中,∠OEB=90°,∴∠B=90°﹣∠3=90°﹣64°=26°,故选:D.【点评】本题考查了圆周角定理,利用垂径定理得出=,∠OEB=90°是解题关键,又利用了圆周角定理.3.(2018•陇南)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x 轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°【分析】连接DC,利用三角函数得出∠DCO=30°,进而利用圆周角定理得出∠DBO=30°即可.【解答】解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.【点评】此题考查圆周角定理,关键是利用三角函数得出∠DCO=30°.4.(2018•通辽)已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°【分析】由图可知,OA=10,OD=5.根据特殊角的三角函数值求角度即可.【解答】解:由图可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD=,∴tan∠1=,∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴圆周角的度数是60°或120°.故选:D.【点评】本题考查的是垂径定理,根据题意画出图形,利用数形结合求解是解答此题的关键.5.(2005•双柏县)如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD=()A.128°B.100°C.64°D.32°【分析】由圆内接四边形的外角等于它的内对角知,∠A=∠DCE=64°,由圆周角定理知,∠BOD=2∠A=128°.【解答】解:∵四边形ABCD内接于⊙O,∴∠A=∠DCE=64°,∴∠BOD=2∠A=128°.故选:A.【点评】本题利用了圆内接四边形的性质和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.(2018•西湖区一模)在菱形ABCD中,记∠ABC=∠α(0°<∠α<90°),菱形的面积记作S,菱形的周长记作C,若AD=2,则()A.C与∠α的大小有关B.当∠α=45°时,S=C.A,B,C,D四个点可以在同一个圆上D.S随∠α的增大而增大【分析】根据菱形的周长公式、菱形的面积公式、锐角三角函数的定义判断即可.【解答】解:A、错误.菱形的周长=8,与∠α 的大小无关;B、错误,∠α=45°时,菱形的面积=2•2•sin45°=2;C、错误,A,B,C,D四个点不在同一个圆上;D、正确.∵0°<α<90°,S=菱形的面积=2•2•sinα,∴菱形的面积S随α的增大而增大.故选:D.7.(2018•宜昌)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.(2)设CD=x,连接BD.利用勾股定理构建方程即可解决问题;【解答】(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S菱形ABFC =8.∴S半圆=•π•42=8π.【点评】本题考查平行四边形的判定和性质、菱形的判定、线段的垂直平分线的性质勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.8.(2018•兴庆区校级一模)已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.(1)求证:ED=EC;(2)若CD=3,EC=2,求AB的长.【解答】解:(1)∵∠EDC+∠EDA=180°、∠B+∠EDA=180°,∴∠B=∠EDC,又∵AB=AC,∴∠B=∠C,∴∠EDC=∠C,∴ED=EC;(2)连接AE,∵AB是直径,∴AE⊥BC,又∵AB=AC,∴BC=2EC=4,∵∠B=∠EDC、∠C=∠C,∴△ABC∽△EDC,∴AB:EC=BC:CD,又∵EC=2、BC=4、CD=3,∴AB=8.【点评】本题主要考查圆周角定理,解题的关键是掌握圆内接四边形的性质、圆周角定理、相似三角形的判定与性质及等腰三角形的性质.9.(2018•滨湖区模拟)如图,在平面直角坐标系中,以点M(0,)为圆心,以长为半径作⊙M交x轴于A、B两点,交y轴于C、D两点,连接AM并延长交⊙M于P点,连接PC交x轴于E.(1)求点C、P的坐标;(2)求证:BE=2OE.【解答】(1)解:连接PB,∵PA是圆M的直径,∴∠PBA=90°∴AO=OB=3又∵MO⊥AB,∴PB∥MO.∴PB=2OM=∴P点坐标为(3,)在直角三角形ABP中,AB=6,PB=2,根据勾股定理得:AP=4,所以MC=2,又OM=,所以OC=MC﹣OM=,则C(0,)(1分)(2)证明:连接AC.∵AM=MC=2,AO=3,OC=,∴AM=MC=AC=2,∴△AMC为等边三角形又∵AP为圆M的直径得∠ACP=90°得∠OCE=30°(1分)∴OE=1,BE=2 ∴BE=2OE.(2分)【点评】本题综合考查了圆周角定理、等边三角形的判定与性质以及坐标与图形性质.解答该题时通过作辅助线AC、BP构建直径所对的圆周角∠ACP、∠ABP,然后利用圆周角定理来解决问题.10.(2018•和平区模拟)已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E(Ⅰ)如图①,求∠CED的大小;(Ⅱ)如图②,当DE=BE时,求∠C的大小.【分析】(Ⅰ)利用圆内接四边形的性质证明∠CED=∠A即可;(Ⅱ)连接AE.在Rt△AEC中,求出∠EAC即可解决问题;【解答】解:(Ⅰ)∵四边形ABED 圆内接四边形,∴∠A+∠DEB=180°,∵∠CED+∠DEB=180°,∴∠CED=∠A,∵∠A=68°,∴∠CED=68°.(Ⅱ)连接AE.∵DE=BD,∴=∴∠DAE=∠EAB=∠CAB=34°,∵AB是直径,∴∠AEB=90°,∴∠AEC=90°,∴∠C=90°﹣∠DAE=90°﹣34°=56°【点评】本题考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.(2018•长兴县一模)已知,如图,AB是⊙O的直径,弦CD⊥AB于点E,G 是上一点,AG与DC的延长线交于点F.(1)如CD=8,BE=2,求⊙O的半径长;(2)求证:∠FGC=∠AGD.【分析】(1)连接OC.设⊙O的半径为R.在Rt△OEC中,根据OC2=OE2+EC2,构建方程即可解决问题;(2)连接AD,根据垂径定理得到=,根据圆周角定理得到∠ADC=∠AGD,根据圆内接四边形的性质证明即可【解答】(1)解:连接OC.设⊙O的半径为R.∵CD⊥AB,∴DE=EC=4,在Rt△OEC中,∵OC2=OE2+EC2,∴R2=(R﹣2)2+42,解得R=5.(2)证明:连接AD,∵弦CD⊥AB∴=,∴∠ADC=∠AGD,∵四边形ADCG是圆内接四边形,∴∠ADC=∠FGC,∴∠FGC=∠AGD.【点评】本题考查的是圆周角定理和垂径定理的应用,掌握圆周角定理、垂径定理是解题的关键,学会添加常用辅助线.12.(2011•南漳县模拟)如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),点B的坐标为(,0),解答下列各题:(1)求线段AB的长;(2)求⊙C的半径及圆心C的坐标;(3)在⊙C上是否存在一点P,使得△POB是等腰三角形?若存在,请求出∠BOP 的度数;若不存在,请说明理由.【分析】(1)根据A、B的坐标,即可求得OA、OB的长,进而可根据勾股定理求出AB的长;(2)由于∠AOB=90°,由圆周角定理知AB即为⊙C的直径,根据AB的长即可求得⊙C的半径;若过C作y轴的垂线,根据三角形中位线定理,很明显的可以看出C点横坐标是B点横坐标的一半,C点纵坐标是A点纵坐标的一半,由此得解;(3)由图知:若△POB是等腰三角形,则P点一定是OB垂直平分线与⊙C的交点,可据此求出P点的坐标及∠BOP的度数.【解答】解:(1)∵A(0,2),B(2,0)∴OA=2,OB=2;Rt△OAB中,由勾股定理,得:AB==4;(2)∵∠AOB=90°,∴AB是⊙C的直径;∴⊙C的半径r=2;过C作CE⊥y轴于E,则CE∥OB;∵C是AB的中点,∴CE是△AOB的中位线,则OE=OA=1,CE=OB=,即C(,1);故⊙C的半径为2,C(,1);(3)作OB的垂直平分线,交⊙C于P1、P2,交OB于D如图;连接OC;由垂径定理知:P1P2必过点C,即P1P2是⊙C的直径;∴P1(,3),P2(,﹣1);在Rt△OMP1中,P1D=3,OD=,∴∠BOP1=60°;∵P1P2是直径,∴∠P1OP2=90°,∠BOP2=30°;由于P1P2垂直平分OB,所以△OBP1、△OBP2都是等腰三角形,因此P1、P2均符合P点的要求;由于此时同时BO=P1O,因此不需要考虑BO为腰的情况.故存在符合条件的P点:P1(,3),∠BOP1=60°;P2(,﹣1),∠BOP2=30°.【点评】此题主要考查了圆周角定理、垂径定理、等腰三角形的判定、勾股定理的应用以及直角三角形的性质等知识,涉及知识点较多,难度适中.13.(2016•汉川市模拟)如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2cm/s的速度向D移动.(1)P、Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2;(2)P、Q两点从出发开始到几秒时,点P和点Q的距离是10cm.【解答】解:(1)设P、Q两点从出发开始到x秒时四边形PBCQ的面积为33cm2,则PB=(16﹣3x)cm,QC=2xcm,得(16﹣3x+2x)×6=33,解之得x=5,(2)设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,作QE⊥AB,垂足为E,则QE=AD=6,PQ=10,∵PA=3t,CQ=BE=2t,∴PE=AB﹣AP﹣BE=|16﹣5t|,由勾股定理,得(16﹣5t)2+62=102,解得t1=4.8,t2=1.6.答:(1)P、Q两点从出发开始到5秒时四边形PBCQ的面积为33cm2;(2)从出发到1.6秒或4.8秒时,点P和点Q的距离是10cm.【点评】(1)主要用到了梯形的面积公式:S=(上底+下底)×高;(2)作辅助线是关键,构成直角三角形后,用了勾股定理.14.(2016•濉溪县三模)如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知,这时我们把关于x的形如的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”必有实数根;(3)若x=﹣1是“勾系一元二次方程”的一个根,且四边形ACDE 的周长是6,求△ABC面积.【分析】(1)直接找一组勾股数代入方程即可;(2)通过判断根的判别式△的正负来证明结论;(3)利用根的意义和勾股定理作为相等关系先求得c的值,根据完全平方公式求得ab的值,从而可求得面积.【解答】(1)解:当a=3,b=4,c=5时勾系一元二次方程为3x2+5x+4=0;(2)证明:根据题意,得△=(c)2﹣4ab=2c2﹣4ab∵a2+b2=c2∴2c2﹣4ab=2(a2+b2)﹣4ab=2(a﹣b)2≥0即△≥0∴勾系一元二次方程必有实数根;(3)解:当x=﹣1时,有a﹣c+b=0,即a+b=c∵2a+2b+c=6,即2(a+b)+c=6∴3c=6∴c=2∴a2+b2=c2=4,a+b=2∵(a+b)2=a2+b2+2ab∴ab=2∴S=ab=1.△ABC【点评】此类题目要读懂题意,根据题目中所给的材料结合勾股定理和根的判别式解题.。
基础练习106 圆周角
知识点:圆周角 :顶点在圆上,并且两边都和圆相交的角叫做圆周角。
圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
、
圆周角定理的推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对 的弧是等弧;
定理:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
基础练习 1、顶点在_____,并且角的两边在圆____的线段是圆的弦,这样的角叫做圆周角. 2、下列图形中所画的角是圆周角的是_______.
3、如图,AB 是⊙O 的直径,点C 在⊙O 上,则∠ACB 的度数为( ) A 、0
30 B 、0
45 C 、0
60 D 、900
4、如图,已知⊙O 的直径AB=8cm ,C 为⊙O 上的一点,∠ ABC=300
,则BC 为( ) A 、2cm B 、3cm C 、4cm D 、5cm
5、如图,AB 和CD 都是⊙O 的直径,∠AOC=500
,则∠C 的度数是( ) A 、0
20 B 、0
25 C 、0
30 D 、500
6、如图,AB 是⊙O 的直径,半径OC ⊥
AB ,过OC 的中点D 作弦EF ∥AB , 求∠
ABE 的度数.
巩固与提升
1、如图,AB 是⊙O 的直径,弦CD∥AB.若∠ABD=650
,则∠ADC=_________.
2、如图,AB 是⊙O 的直径,点C 在圆上,CD⊥AB,DE∥BC,则图中与△ABC
相似的 三角形个数有_______.
(1) (2) (3) (4) B 3题图 B 4题图 B 5题图 B
6题图
3、如图,AB 是⊙O 的直径,点C 在⊙O 上,OD ∥AC ,若0D=1,则BC 的长为_________.
4、如图,已知AB 是⊙O 的直径,BC 为弦,∠ ABC=300
.过圆心O 作OD ⊥BC 交于点D , 连结DC ,则∠DCB=_________.
5、如图,AB=BC ,∠ABC=0
120,AD 为⊙O 的直径,AD=6,那么BD=_________. 6、如图,AB 是⊙O 的直径,点C 是⊙O 上一点,CD ⊥AB 于点D ,AB=8,
若BD=3AD ,
求CD 的长.
7、如图,半圆的直径AB=10,点C 在半圆上,BC=6.(1)求弦AC
的长; (2)若P 为
AB 的中点,PE ⊥AB 交AC 于点E ,求PE 的长.
8、如图,以⊙O 的直径BC 为一边作等边△ABC ,AB 、AC 交⊙O 于 D 、E 两点.求证:BD=DE=EC
9、如图,已知AB 是⊙O 的直径,D 是圆上任意一点 (不与A 、B 重合),连接BD 并延长到C ,使BD=DC ,连
接AC ,试判断△ABC 的形状.
综合训练练习
1、一条弧所对的圆周角等于它所对的_________角的一半.
2、在同一圆中,同弧或等弧所对的圆周角__________;_________的圆周角所对的弧相等.
B 1题图 B 2题图 B 3题图
A 4题图 5题图
B 6题图 C
9题图
3、如图,在⊙O中,∠ABC=500,则∠AOC等于_________.
4、如图,与的度数之差为200,弦AB与CD交于点E,∠CEB=600,
则∠CAB等于_______.
5、如图,点A、B、C在⊙O上,AO∥BC,∠AOB=0
50,则∠OAC的度数是________.
6、如图,AB是⊙O的直径,C、D、E
⊙O上,则∠ACE+∠BDE=_________.
7、在⊙O中,圆心角∠AOB=0
56,则弦
AB所对的圆周角等于()
A、0
28 B、0
112 C、0
0152
28或 D、0
056
124或
8、如图,A、B、C为⊙O上三点,如果∠OAB=0
46,
求∠ACB的度数.
9、分别指出图中弧AC、弧BD所对的圆周角
.
知识巩固与提升
1、如图,量角器外沿上有A、B两点,它们的读数分别是
70、0
40,则∠1的度数为_________.
2、已知,如图,正方形ABCD内接于⊙O,点P为上不同于点C的任意一点,
则∠BPC的度数是()A、0
45 B、0
60 C、0
75 D、900
3、如图,AB是⊙O 的直径,点C、D在⊙O 上,OD∥AC,下列结论错误的是()
A、∠BOD=∠BAC B D、∠C=∠D
3题图
C
E
B
D
4题图
A
5题图
6题图
C
2题图
P
8题图
A
9题图
B C
D
3题图4题图
4、如图,C 是⊙O 上一点,O 是圆心,若∠AOB=0
80,则∠A+∠B=_______________. 5、如图,在世界杯足球比赛中,甲带球向对方球门PQ 进攻,当他带球冲到A 点时,
同伴乙已经冲到B 点,有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙, 由乙射门.仅从射门角度考虑,应选择_________射门方式.
6、如图,点A 、B 、C 在⊙O
上,AB=AC ,∠A=0
45,BD 为⊙O 的直径,BD=
22,连 接CD ,则∠D=________,BC=___________.
7、如图,已知点A 、B 、C 、
D 、
E 是⊙O 的五等分点,则∠BAD 的度数是_________. 8、如图,在⊙O 中,∠
AOB 的度数为m ,C 是弧ACB 上一点,D 、E 是弧AB 上不同的两 点(不与A 、B 两点重合),则∠D+∠E=_____________.
9、如图,A 、B 、C 是⊙
O 上的三点,AB=2,
∠ACB=030,那么⊙O 的半径等于_________. 10、如图,
A 、
B 、
C 、
D 是圆上的点,∠1=070, ∠A=0
40,则∠D=________.
11、如图,△ABC 内接于⊙O ,AD 是△ABC 的边BC 上的高,AE 是⊙O 的直径,
连接BE ,△ABE 与△ADC 相似吗?请证明你的结论.
12、如图,在⊙O 中,∠ACB=∠BDC=0
60,AC=32cm. (1)求∠BAC 的度数;(2)求⊙O 的周长.
5题图
6题图 A
7题图 E
8题图 9题图
B 1
D C
10题图 A 11题图 E
12题图。