2017-2018学年北师大版数学七年级第二学期期末考试试题含答案
- 格式:doc
- 大小:241.50 KB
- 文档页数:8
O七年级数学试题 座号:真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!一.选择题(每题4分,共32分)1、如果线段c b a ,,能组成三角形,那么它们的长可能是( ) A .1,2,4 B. 2,3,4 C.3,4,7 D. 1,3,42、下列计算正确的是( )A. (2m+3)(2m-3)=4m 2-3B. (x-y)(x+y)=x 2+y 2C. (2x-3)2=4x 2+12x-9D. (a-2b)(3a+b)=3a 2-5ab-2b 2 3.若∠1与∠2为内错角,∠1=40°,则∠2为( ) A. 40° B.140° C. 40°或140° D.不能确定4.由四舍五入法得到近似数4.20×105,下列说法中正确的是( ) A.有3个有效数字,精确到百分位 B.有3个有效数字,精确到千位 C.有6个有效数字,精确到个位 D.有2个有效数字,精确到万位5.在一个不透明的袋中有a 只红球,b 只黄球,他们除颜色不同外,其他均相同,若从中随机摸出一个球是红球的概率为( )A.b a B. a b C. b a a + D. ba b+ 6. .如图,P 是AOB ∠内一点,且P 到AD,BO 即PC=PD,DOP COP ∆≅∆的理由是( ) A HL B. AAS C. SSS D. ASA7. 甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离s (km )和骑车时间t (h )之间的函数关系如下图所示,给出下列说法: (1)他们都骑行了20km ; (2)乙在途中中停留了0.5h ;学校_______________ 班级________ 姓名_________________ 考试号_________________密 封线B(3)甲、乙两人同时到达目的地; (4)相遇后,甲的速度小于乙的速度. 根据图象信息,以上说法正确的有( )A .1个B .2个C .3个D .4个8、下列说法中,错误的是( )A.两个成对称的图形对应点连线的垂直平分线就是他们的对称轴B.关于某直线对称的两个图形全等C.面积相等的两个四边形一定成对称D 成轴对称是指两个图形沿着某一直线对折后能完全重合 二、填空题(每题4分,共28分)9. 计算:225155-⎪⎭⎫ ⎝⎛⨯÷=____________。
2017—2018学年度第二学期七年级期末检测数学试卷分析为了总结经验,吸取教训,取长补短,改进教学,提升教学质量,提高学生成绩,现对 2017—2018学年度第二学期期末质量检测七年级数学试卷做出如下总结分析。
一、基本情况1、题型与题量全卷共有三种题型,分别为选择题、填空题和解答题。
其中选择题有10个小题,每小题3分,共30分。
填空题有6个小题,每小题4分,共24分。
解答题有7个大题,共66分,全卷合计27题,满分120分,考试用时90分。
2、内容与范围全卷试题题量适宜,难度中等偏高,全面涉及到本学期教学的全部内容,重点考察整式的乘除(完全平方公式、平方差公式)、平行线的性质、用图像表示的变量之间的关系、轴对称图形的性质、三角形内角和定理、三角形全等的条件等。
试卷内容比较灵活多样,对基础知识、生活实践、看图做题等都有考察,尤其是把课本知识融入生活实践中的这类题型,最能体现素质教育,同时也强调了数学教学与现实生活的紧密联系。
3、试题特点试卷表面上看比较容易,偏向基础知识的考察,实际上学生在做题时,却发现有一定的难度。
对学生的基本计算能力、逻辑思维能力,运用知识能力等水平要求较高。
试题的综合运算性增强,一道试题不只考查一两个知识点,而是前后章节综合在一起考查。
要求考生必须上下融会贯通,全面分析。
二、考情及存在问题分析(一)考情分析第一大题是选择题,前四个较为简单,学生多半能拿到分数。
往后的六个小题就拉开差距了。
第二大题是填空题,得分不太理想。
第11小题的负指数幂由于对公式掌握不牢固,只有少数计算出来。
第12小题较为简单,但学生分析问题的能力较差,导致答案不正确。
第13小题对所学公式不会活学活用。
第三大题是解答题,第 17题计算题是复习的重点,一些计算能力强的学生基本上做出来了,粗心大意或者根本不会的也有很多,比预料中的要差。
第18题也是在化简这一步出现了很多问题。
第19题对平行线的性质掌握较好,基本上能条理清楚的计算出角的度数。
2019-2020学年度第二学期期末测试七年级数学试题学校________ 班级________ 姓名________ 成绩________一、选择题:1.计算-12的结果为( )A. 2B. 12C. -2D. 1-22.2019年4月28日,北京世界园艺博览会正式开幕,在此之前,我国已举办过七次不同类别的世界园艺博览会.下面是北京、西安、锦州、沈阳四个城市举办的世园会的标志,其中是轴对称图形的是( )A. B. C. D. 3.小明连续抛一枚质量均匀的硬币5次,都是正面朝上,若他再抛一次,则朝上的一面( )A. 一定是正面B. 是正面的可能性较大C. 一定是反面D. 是正面或反面的可能性一样大4.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A. 50︒B. 40︒C. 45︒D. 130︒5.下列运算正确的是( )A. 66x x x ÷=B. 358x x x ÷=C. 2242x x x •=D. ()3263x y x y -=- 6.据5月23日“人民日报”微信公众号文章介绍,中国兵器工业集团豫西集团中南钻石公司推出大颗粒“首饰用钻石”,打破了国外垄断,使我国在钻石饰品主流领域领跑全球,钻石、珠宝等宝石的质量单位是克拉(ct ),1克拉为100分,已知1克拉0.2=克,则“1分”用科学计数法表示正确的是( )A. 20.210-⨯克B. 2210-⨯克C. 3210-⨯ 克D. 4210-⨯克7.如图,点A 在直线上,ABC △与''AB C V 关于直线l 对称,连接'BB 分别交,'AC AC 于点,',D D 连接'CC ,下列结论不一定正确的是( )A. ''BAC B AC ∠=∠B. '//'CC BBC. ''BD B D =D. 'AD DD =8.如图,一辆汽车在龙城大街上沿东向西方向正常行驶,从点M 处开始减速驶入路况良好的祥云桥北匝道桥,接着驶入滨河东路后沿北向南继续正常行驶.下列四个图像中能刻画该汽车这个过程中行驶速度v (千米/时)与行驶时间t (时)之间的关系是( )A. B. C. D. 9.如图,''A B C ABC ≅V V ,点'B 在边AB 上,线段''A B ,AC 交于点D ,若40,60A B ︒︒∠=∠=,则'A CB ∠的度数为( )A. 100︒B. 120︒C. 135︒D. 140︒10.有一种手持烟花,点然后每隔1.4秒发射一发花弹。
北京师大附中2017-2018学年下学期初中七年级期中考试数学试卷一、选择题:(本题共16分,每小题2分)1.下列各数中无理数有()3.141, 鼠-心,0,0.1010010001A. 2个B. 3个C. 4个D. 5个2.如图所示,四幅汽车标志设计中,能通过平移得到的是A. AB. BC. CD. D3.若小b,则下列不等式中,不一定成立的是()A. B 3 f b-3B. 4 + bC. 23 2bD. Jwly4.如图,直线AB与直线CD相交于点O, EOJLAB, L E OD-<5,则々lOC5.已知点A (a,b)在第三象限,则点B(-a+1 , 3b-1)在A.第一象限B.第二象限C.第三象限D.第四象限6.下列说法中正确的有()①负数没有平方根,但负数有立方根;②一个数的立方根等于它本身,则这个数是0或1;③,-5;④的的平方根是土W;⑤『定是负数A. 1个B. 2 个C. 3 个D. 4 个7.如图,直线a,b被直线c所截,-Z4,若々・4行,则匕工等于()A.Q|B.卜费C.D.飘X8.在平面上,过一定点。
作两条斜交的轴x和y,它们的交角是s (切于兜。
),以定点。
为原点,在每条轴上取相同的单位长度,这样就在平面上建立了一个斜角坐标系,其中仍叫做坐标角,对于平面内任意一点P, 过P作x轴和y轴的平行线,与两轴分别交于A和B,它们在两轴的坐标分别是x和y,于是点P的坐标就是(x,y),如图,辨-60°|,且y轴平分£MOx, OM=2则点M的坐标是( )A. (2, -2)B. (-1, 2)C. (-2, 2)D. (-2, 1)二、填空题:(本题共16分,每小题2分)9. ____ ___~\________10.点P (-2, 1)向上平移2个单位后的点的坐标为11.不等式2\-3三收*5的解集是12.已知实数x,y满足& 1+肉;6| 0,贝U x-y=13.已知点怙,3:i+6.a 1),若点P在x轴上,则点P的坐标为14.如图,AB//CD,若司则二的度数是.15.下列各命题中:①对顶角相等;②若则x=2;③入叵c/;④两条直线相交,若有一组邻补角相等,则这两条直线互相垂直,其中错误的命题是 (填序号)16.图a中,四边形ABC虚细长的长方形纸条,士”PD-《沿眄\将纸条的右半部分做第一次折叠,得到图b和交点p』;再沿pP:将纸条的右半部分做第二次折叠,得到图c和交点巴;再沿PP§将纸条的右半部分做第三次折叠,得到图d和交点I\.P a-------- K~5-(1)如果Q- 1T,那么-(2) ZPF4B -三、计算题(每小题6分,共24分)17.计算:屈+ 1手18.化简:||i£5i4成-科+球斗19. 解不等式20.已知a是1的算术平方根,b是8的立方根,求b-a的平方根四、几何解答:(每小题8分,共16分)21.已知:如图,AB//CD, , |^1 - 75°,解:卜.COTAB, kB-35Z二£"乙(,而£ 1 - 75°,MACD -小A —°,v CD //W,“ 4A '+= 1 孵.(,22.如图,AB//CD, £ 1 ・上二AM^MN,求证:求乙人的度数. DN1NINfl五、平面直角坐标系的应用(8分)23 .如图所示的象棋盘上,若 ,位于点(1, 0)上,。
北师大版七年级数学第二学期期末试卷及答案一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形是轴对称图形的是()A.B.C.D.2.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6D.(﹣a3)2=﹣a63.(3分)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.B.C.D.4.(3分)已知:a﹣b=2,ab=﹣1,则a2+b2=()A.0B.2C.4D.65.(3分)小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是()A.B.C.D.6.(3分)下列语句正确的有()个(1)线段是轴对称图形,对称轴是这条线段的垂直平分线;(2)确定事件的概率是1;(3)同位角相等;(4)过一点有且只有一条直线与已知直线平行.A.0B.1C.2D.37.(3分)如图,向一个半径为R、容积为V的球形容器内注水,则能反映容积内水的体积y与容器内水深x之间的关系的图象可能为()A.B.C.D.8.(3分)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对9.(3分)端午节期间,某商场搞优惠促销活动,其活动内容是:“凡在本商场一次性购买粽子超过100元者,超过100元的部分按8折优惠”.在此活动中,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,则应付款y(元)与商品件数x(件)之间的关系式是()A.y=48x B.y=48x+20C.y=48x﹣80D.y=48x+4010.(3分)已知:如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D.下列结论:①∠EAB=∠F AC;②AF=AC;③F A平分∠EFC;④∠BFE=∠F AC中,正确的有()个.A.1B.2C.3D.4二、填空题(本大题共8小题,每小题题3分,共24分)11.(3分)若一个角的余角是其补角的,则这个角的度数为.12.(3分)光在真空中的速度约为3×108米/秒,太阳光照射到地球上大约需要5×102秒,地球与太阳距离约为米.13.(3分)等腰三角形一腰上的高与另一腰的夹角为60°,那么这个等腰三角形的底角为.14.(3分)把一根长度为6的铁丝截成3段,若三段的长度均为正整数,则能构成三角形的概率.15.(3分)某种细菌每30秒由1个分裂成2个,经过3分,1个细菌分裂成个,这些细菌再继续分裂t分后共分裂成个.16.(3分)(2+1)(22+1)(24+1)…(232+1)的个位数字是.17.(3分)已知:如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,图形中相等的角有对,互余的角有对.18.(3分)已知:如图,在△ABC中,AB=AC,DE垂直平分AB,交边AB于点D,交边AC于点E,BF垂直平分CE,交AC于点F,则∠A=度.三、解答题(本大题共3小题,每小题6分,共18分)19.(6分)计算:(1)a4+(a2)4﹣(a3)2÷a2;(2)20192﹣2020×2018(用简便方法计算).20.(6分)已知:如图,在△ABC中,BD⊥AC于D,点E在边BC上,EF⊥AC于F,点M、G在边AB上,∠AMD=∠AGF,BD与GF交于点H,∠BHG=∠FEC=54°.(1)求∠GFC的度数.(2)判断DM与BC的位置关系,并说明理由.21.(6分)先化简,再求值:(a﹣2b)2﹣(a﹣b)(2a+b)+(a+b)(a﹣b),其中a4=9﹣2,2b=42.四、解答题(本大题共2小题,22题6分,23题8分共14分)22.(6分)已知:如图,方格图中每个小正方形的边长为1,点A、B、C、M、N都在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1.(2)在直线MN上找点P,使|PB﹣P A|最大,在图形上画出点P的位置,并直接写出|PB﹣P A|的最大值.23.(8分)已知:如图,点B、E、C、F四点在一条直线上,且AB∥DE,AB=DE,BE=CF.(1)试说明:△ABC≌△DEF;(2)判断线段AC与DF的关系,并说明理由.五、解答题(本大题共2小题,24题6分,25题8分,共14分)24.(6分)某城市为了节约用水,采用分段收费标准.若某户居民每月应交水费y(元)与用水量x(吨)之间关系的图象如图所示,根据图形回答:(1)当每户每月的用水量不足5吨时,每吨水费多少元?当每户每月的用水量超过5吨时,超过的部分每吨交水费多少元?(2)若某户居民某月交了水费19.5元,则该户居民用了多少吨水?25.(8分)已知:如图,BD、CE是△ABC的高,BD、CE交于点F,BD=CD,CE平分∠ACB.(1)如图1,试说明BE=CF.(2)如图2,若点M在边BC上(不与点B重合),MN⊥AB于点N,交BD于点G,∠BMN=∠ACB,请直接写出BN与MG的数量关系,并画出能够说明该结论成立的辅助线,不必书写过程.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6D.(﹣a3)2=﹣a6【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选:B.3.(3分)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.B.C.D.【分析】让黄球的个数除以球的总个数即为所求的概率.【解答】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是.故选:C.4.(3分)已知:a﹣b=2,ab=﹣1,则a2+b2=()A.0B.2C.4D.6【分析】原式利用完全平方公式变形,把已知等式代入计算即可求出值.【解答】解:∵a﹣b=2,ab=﹣1,∴原式=(a﹣b)2+2ab=4﹣2=2.故选:B.5.(3分)小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是()A.B.C.D.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向左对折,向上对折,从直角三角形的一直角边的正中间剪去一个正方形,展开后实际是从正方形的一条对角线上剪去两个小长方形,得到结论.故选B.6.(3分)下列语句正确的有()个(1)线段是轴对称图形,对称轴是这条线段的垂直平分线;(2)确定事件的概率是1;(3)同位角相等;(4)过一点有且只有一条直线与已知直线平行.A.0B.1C.2D.3【分析】根据平行公理及推论、概率公式以及概率的意义分别对每一项进行分析,即可得出答案.【解答】解:(1)线段是轴对称图形,对称轴是这条线段的垂直平分线和这条线段所在直线,故本选项错误;(2)确定事件包括必然事件和不可能事件,必然事件的概率为1,不可能事件的概率为0,故本选项错误;(3)两直线平行,同位角相等,故本选项错误;(4)经过直线外一点有且只有一条直线与已知直线平行,故本选项错误;故选:A.7.(3分)如图,向一个半径为R、容积为V的球形容器内注水,则能反映容积内水的体积y与容器内水深x之间的关系的图象可能为()A.B.C.D.【分析】水深h越大,水的体积v就越大,故容器内水的体积y与容器内水深x间的函数是增函数,根据球的特征进行判断分析即可.【解答】解:根据球形容器形状可知,函数y的变化趋势呈现出,当0<x<R时,y增量越来越大,当R<x<2R 时,y增量越来越小,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故y关于x的函数图象是先凹后凸.故选:A.8.(3分)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OC,然后判断出△AOE和△COE全等,再根据等腰三角形三线合一的性质可得AD⊥BC,从而得到△ABC关于直线AD轴对称,再根据全等三角形的定义写出全等三角形即可得解.【解答】解:∵EF是AC的垂直平分线,∴OA=OC,又∵OE=OE,∴Rt△AOE≌Rt△COE,∵AB=AC,D是BC的中点,∴AD⊥BC,∴△ABC关于直线AD轴对称,∴△AOC≌△AOB,△BOD≌△COD,△ABD≌△ACD,综上所述,全等三角形共有4对.故选:D.9.(3分)端午节期间,某商场搞优惠促销活动,其活动内容是:“凡在本商场一次性购买粽子超过100元者,超过100元的部分按8折优惠”.在此活动中,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,则应付款y(元)与商品件数x(件)之间的关系式是()A.y=48x B.y=48x+20C.y=48x﹣80D.y=48x+40【分析】根据已知表示出买x件礼盒的总钱数以及优惠后价格,进而得出等式即可.【解答】解:∵凡在该商店一次性购物超过100元者,超过100元的部分按8折优惠,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,∴李明应付货款y(元)与办公用品件数x(件)的函数关系式是:y=(60x﹣100)×0.8+100=48x+20(x>2),故选:B.10.(3分)已知:如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D.下列结论:①∠EAB=∠F AC;②AF=AC;③F A平分∠EFC;④∠BFE=∠F AC中,正确的有()个.A.1B.2C.3D.4【分析】根据SAS证明△AEF≌△ABC,由全等三角形的性质和外角性质可依次判断即可求解.【解答】解:在△AEF和△ABC中,,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,∠C=∠EF A,∴∠EAB=∠F AC,∠AFC=∠C,∴∠EF A=∠AFC,即F A平分∠EFC.又∵∠AFB=∠C+∠F AC=∠AFE+∠BFE,∴∠BFE=∠F AC.故①②③④正确.故选:D.二、填空题(本大题共8小题,每小题题3分,共24分)11.(3分)若一个角的余角是其补角的,则这个角的度数为45°.【分析】设这个角的度数为x,则它的余角为90°﹣x,补角为180°﹣x,再根据题意列出方程,求出x的值即可.【解答】解:设这个角的度数为x,则它的余角为90°﹣x,补角为180°﹣x,依题意得:90°﹣x=(180°﹣x),解得x=45°.故答案为:45°.12.(3分)光在真空中的速度约为3×108米/秒,太阳光照射到地球上大约需要5×102秒,地球与太阳距离约为 1.5×1011米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3×108×5×102=1.5×1011.故答案为:1.5×1011.13.(3分)等腰三角形一腰上的高与另一腰的夹角为60°,那么这个等腰三角形的底角为75°或15°.【分析】首先根据题意画出图形,然后分别从锐角三角形与钝角三角形分析求解即可求得答案.【解答】解:根据题意得:AB=AC,BD⊥AC,如图(1),∠ABD=60°,则∠A=30°,∴∠ABC=∠C=75°;如图(2),∠ABD=60°,∴∠BAD=30°,∴∠ABC=∠C=∠BAD=15°.故这个等腰三角形的底角是:75°或15°.故答案为:75°或15°.14.(3分)把一根长度为6的铁丝截成3段,若三段的长度均为正整数,则能构成三角形的概率.【分析】先求出将长度为6的铁丝截成3段,每段长度均为整数厘米,共有几种情况,再找出其中能构成三角形的情况,最后根据概率公式计算即可.【解答】解:因为将长度为6的铁丝截成3段,每段长度均为整数厘米,共有3种情况,分别是1,1,4;1,2,3;2,2,2;其中能构成三角形的是:2,2,2一种情况,所以能构成三角形的概率是.故答案为:.15.(3分)某种细菌每30秒由1个分裂成2个,经过3分,1个细菌分裂成64个,这些细菌再继续分裂t分后共分裂成22t+6个.【分析】把3分、t分转化为含30秒的次数,根据乘方的意义得结论.【解答】解:因为3分=6个30秒,所以1个细菌经过3分钟分裂成26个,即64个.t分=2t个30秒,再继续分裂t分钟,即一个细菌分裂了(2t+6)次,此时共分裂22t+6个.故答案为:64,22t+6.16.(3分)(2+1)(22+1)(24+1)…(232+1)的个位数字是5.【分析】先根据平方差公式进行计算,求出264的末位数字是6,再求出答案即可.【解答】解:(2+1)(22+1)(24+1)…(232+1)=(2﹣1)(2+1)(22+1)(24+1)…(232+1)=(22﹣1)(22+1)(24+1)…(232+1)=(24﹣1)(24+1)…(232+1)=…=264﹣1,∵21=2,22=4,23=8,24=16,25=32,26=64,…∴264的末位数字是6,∴264﹣1的末位数字是5,故答案为:5.17.(3分)已知:如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,图形中相等的角有5对,互余的角有3对.【分析】可以在Rt△ABC和Rt△BDC、Rt△ADC分别找出与相等和互余的角.【解答】解:图形中相等的角有∠A=∠BCD,∠B=∠ACD,∠A=∠BCD,∠ACB=∠BDC,∠ACB=∠CDA,∠BDC=∠CDA,一共5对,互余的角有∠A和∠B,∠A和∠ACD,∠B和∠BCD,一共3对.故答案为:5;3.18.(3分)已知:如图,在△ABC中,AB=AC,DE垂直平分AB,交边AB于点D,交边AC于点E,BF垂直平分CE,交AC于点F,则∠A=36度.【分析】连结BE,根据线段垂直平分线的性质,三角形外角的性质,等腰三角形的性质可得5∠A=180°,即可得出答案.【解答】解:连结BE,∵DE垂直平分AB,∴∠ABE=∠A,∵BF垂直平分AC,∴∠BEF=∠C,∵∠BEC=∠ABE+∠A,∴∠C=2∠A,∵AB=AC,∴∠C=∠ABC=2∠A,∴5∠A=180°,解得∠A=36°.故答案为:36.三、解答题(本大题共3小题,每小题6分,共18分)19.(6分)计算:(1)a4+(a2)4﹣(a3)2÷a2;(2)20192﹣2020×2018(用简便方法计算).【分析】(1)先算乘方,再算除法,最后合并同类项即可;(2)先变形,再根据平方差公式进行计算,最后求出即可.【解答】解:(1)原式=a4+a8﹣a6÷a2=a4+a8﹣a4=a8;(2)原式=20192﹣(2019+1)×(2019﹣1)=20192﹣20192+1=1.20.(6分)已知:如图,在△ABC中,BD⊥AC于D,点E在边BC上,EF⊥AC于F,点M、G在边AB上,∠AMD=∠AGF,BD与GF交于点H,∠BHG=∠FEC=54°.(1)求∠GFC的度数.(2)判断DM与BC的位置关系,并说明理由.【分析】(1)根据平行线的判定和性质解答即可;(2)根据平行线的判定解答即可.【解答】解:(1)∵BD⊥AC于D,EF⊥AC于F,∴∠BDF=∠EFC=90°,∴BD∥EF,∴∠HBE=∠FEC,∵∠BHG=∠FEC=54°,∴∠BHG=∠HBE=54°,∴GF∥BC,∴∠GFE=∠FEC=54°,∴∠GFC=∠HFE+∠EFC=54°+90°=144°;(2)DM∥BC,理由如下:∵∠AMD=∠AGF,∴DM∥GF,∵GF∥BC,∴DM∥BC.21.(6分)先化简,再求值:(a﹣2b)2﹣(a﹣b)(2a+b)+(a+b)(a﹣b),其中a4=9﹣2,2b=42.【分析】先根据整式的乘法法则和乘法公式算乘法,再合并同类项,求出a、b的值,最后再代入求出即可.【解答】解:(a﹣2b)2﹣(a﹣b)(2a+b)+(a+b)(a﹣b)=a2﹣4ab+4b2﹣2a2﹣ab+2ab+b2+a2﹣b2=4b2﹣3ab,∵a4=9﹣2,2b=42,∴a4=(3﹣1)4,2b=24,∴a=±,b=4,当a=,b=4时,原式=4×42﹣3××4=60;当a=﹣,b=4时,原式=64+4=68.四、解答题(本大题共2小题,22题6分,23题8分共14分)22.(6分)已知:如图,方格图中每个小正方形的边长为1,点A、B、C、M、N都在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1.(2)在直线MN上找点P,使|PB﹣P A|最大,在图形上画出点P的位置,并直接写出|PB﹣P A|的最大值.【分析】(1)利用网格特点,分别画出A、B、C关于直线的对称点A1、B1、C1即可;(2)由于P A=P A1,则|PB﹣P A|=|PB﹣P A1|,而|PB﹣P A1|≤A1B,当点P、A1、B共线时取等号,从而得到|PB ﹣P A|的最大值.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,点P为所作,|PB﹣P A|的最大值为3.23.(8分)已知:如图,点B、E、C、F四点在一条直线上,且AB∥DE,AB=DE,BE=CF.(1)试说明:△ABC≌△DEF;(2)判断线段AC与DF的关系,并说明理由.【分析】(1)直接利用全等三角形的判定方法得出答案;(2)由全等三角形的性质可得出结论.【解答】(1)证明:∵AB∥DE,∴∠B=∠DEF∵BE=FC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).(2)AC=DF,AC∥DF.理由如下:∵△ABC≌△DEF,∴AC=DF,∠ACB=∠DFE,∴AC∥DF.五、解答题(本大题共2小题,24题6分,25题8分,共14分)24.(6分)某城市为了节约用水,采用分段收费标准.若某户居民每月应交水费y(元)与用水量x(吨)之间关系的图象如图所示,根据图形回答:(1)当每户每月的用水量不足5吨时,每吨水费多少元?当每户每月的用水量超过5吨时,超过的部分每吨交水费多少元?(2)若某户居民某月交了水费19.5元,则该户居民用了多少吨水?【分析】(1)根据图象给出的数据即可求出答案.(2)设该户居民用了x吨水,根据题意列出方程即可求出答案.【解答】解:(1)当用水量不足5吨时,每吨水费为:=元/吨,当用水量超过5吨时,每吨水费为:=元/吨.(2)设该户居民用了x吨水,由题意可知:5×+(x﹣5)=19.5,解得:x=7,答:该户居民用了7吨水.25.(8分)已知:如图,BD、CE是△ABC的高,BD、CE交于点F,BD=CD,CE平分∠ACB.(1)如图1,试说明BE=CF.(2)如图2,若点M在边BC上(不与点B重合),MN⊥AB于点N,交BD于点G,∠BMN=∠ACB,请直接写出BN与MG的数量关系,并画出能够说明该结论成立的辅助线,不必书写过程.【分析】(1)由“SAS”可证△ABD≌△FCD,可得AB=CF,由“ASA”可证△ACE≌△BCE,可得AE=BE,可得结论;(2)如图,过点M作MH∥AC,交AB于H,交BD于P,由“SAS”可证BPH≌△MPG,可得GM=BH,由“ASA”可证△BMN≌△HMN,可得BN=NH,可得结论.【解答】解:(1)∵BD⊥AC,CE⊥AB,∴∠ADB=∠BDC=∠AEC=90°,∴∠A+∠ABD=90°,∠A+∠ACE=90°,∴∠ABD=∠ACE,在△ABD和△FCD中,,∴△ABD≌△FCD(SAS),∴AB=CF,∵CE平分∠ACB,∴∠ACE=∠BCE,在△ACE和△BCE中,,∴△ACE≌△BCE(ASA),∴AE=BE,∴BE=AB=CF;(2)BN=MG,理由如下:如图,过点M作MH∥AC,交AB于H,交BD于P,∵BD=CD,BD⊥CD,∴∠DBC=∠DCB=45°,∵MH∥AC,∴∠PMB=∠DCB=∠PBM=45°,∠BPM=∠BDC=90°,∴BP=PM,∵∠BHP+∠HBP=90°,∠BHP+∠HMN=90°,∴∠HBP=∠HMN,在△BHP和△MGP中,,∴△BPH≌△MPG(ASA),∴GM=BH,∵∠BMN=∠ACB=22.5°,∴∠BMN=∠HMN=22.5°,在△BMN和△HMN中,,∴△BMN≌△HMN(ASA)∴BN=NH,∴BN=BH=MG.。
北师版七年级数学期中模拟试卷题号一二三总分得分第I卷(选择题)评卷人得分一、选择题(每小题3分,共30分)1.计算a5•a3正确的是()A.a2B.a8C.a10D.a15 2.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1 C.x≠0D.x≠1 3.若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a 4.计算(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)等于()A.x+74xy2B.x﹣3y+74xy2C.x2﹣3y+74xy2D.x﹣3y+47x5.如图,下列说法中不正确的是()A.∠1和∠3是同旁内角B.∠2和∠3是内错角C.∠2和∠4是同位角D.∠3和∠5是对顶角6.两条直线相交于一点,则共有对顶角的对数为()A.1对B.2对C.3对D.4对7.如图,现要从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,则这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线8.下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥c D.若两条线段不相交,则它们互相平行9.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.10.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米第II卷(非选择题)评卷人得分二、填空题(每小题3分,共18分)11.计算:(﹣ab)2÷a2b=.12.若(x﹣ay)(x+ay)=x2﹣16y2,则a=.13.直线AB、CD、EF交于点O,则∠1+∠2+∠3=度.14.如图,圆锥的底面半径r=2cm,当圆锥的高h由小到大变化时,圆锥的体积V也随之发生了变化,在这个变化过程中,变量是(圆锥体积公式:V=13πr2h)15.已知一个长方形的长为5cm,宽为xcm,周长为ycm,则y与x之间的函数表达式为.16.在如图所示的三个函数图象中,近似地刻画如下a、b、c三个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.情境c:小芳从家出发,到校上,放回到了家.情境a,b,c所对应的函数图象分别是(按次序填写a,b,c对应的序号)评卷人得分三、解答题(共8小题,共62分)17.(6分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)18.(8分)观察下列关于自然数的等式:(1)32﹣4×12=5(1)(2)52﹣4×22=9(2)(3)72﹣4×32=13(3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.19.(8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.20.(10分)如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°求:(1)∠3的度数;(2)求∠2的度数.21.(10分)如图,直线AB与CD相交于点O,OE⊥A B.(1)如果∠AOD=140°,那么根据,可得∠BOC=度.(2)如果∠EOD=2∠AOC,求∠AOD的度数.22.(6分)某药物研究单位试制成功一种新药,经测试,如果患者按规定剂量服用,那么服药后每毫升血液中含药量y(微克)随时间x(小时)之间的关系如图所示,如果每毫升血液中的含药量不小于20微克,那么这种药物才能发挥作用,请根据题意回答下列问题:(1)服药后,大约分钟后,药物发挥作用.(2)服药后,大约小时,每毫升血液中含药量最大,最大值是微克;(3)服药后,药物发挥作用的时间大约有小时.23.(6分)探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数式)解:∵DE∥BC,∴∠DEF=.()∵EF∥AB,∴=∠AB C.()∴∠DEF=∠AB C.(等量代换)∵∠ABC=40°,∴∠DEF=°.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF=°.24.(10分)我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出由图2所表示的数等式:;写出由图3所表示的数等式:;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.参考答案第I卷(选择题)一、选择题(每小题3分,共30分)1.计算a5•a3正确的是()A.a2B.a8C.a10D.a15【答案】B.【解析】试题解析:a5•a3=a5+3=a8.故选:B.2.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1C.x≠0D.x≠1【答案】D【解析】试题解析:由题意可知:x﹣1≠0,x≠1故选:D.3.若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a【答案】C【解析】试题解析:∵4a2﹣9b2=(2a+3b)(2a﹣3b),∴(2a+3b)(2a﹣3b)=4a2﹣9b2,故选:C.4.计算(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)等于()A.x+74xy2B.x﹣3y+74xy2C.x2﹣3y+74xy2D.x﹣3y+47x【答案】B【解析】试题解析:(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)=x﹣3y+74xy2.故选:B.5.如图,下列说法中不正确的是()A.∠1和∠3是同旁内角B.∠2和∠3是内错角C.∠2和∠4是同位角D.∠3和∠5是对顶角【答案】C6.两条直线相交于一点,则共有对顶角的对数为()A.1对B.2对C.3对D.4对【答案】B【解析】试题解析:如图所示,∠1与∠2,∠3与∠4都是对顶角,故两条直线相交于一点,则共有对顶角的对数为2对.故选:B.#网7.如图,现要从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,则这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线【答案】C【解析】试题解析:∵从直线外一点到这条直线上各点所连线段中,垂线段最短,∴过点A作AH⊥PQ于点H,这样做的理由是垂线段最短.21世纪教育网故选:C.8.下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥c D.若两条线段不相交,则它们互相平行【答案】C9.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.【答案】B【解析】试题解析:A、∠1和∠2的是对顶角,不能判断AB∥CD,此选项不正确;B、∠1和∠2的对顶角是同位角,又相等,所以AB∥CD,此选项正确;C、∠1和∠2的是内错角,又相等,故AC∥BD,不是AB∥CD,此选项错误;D、∠1和∠2互为同旁内角,同旁内角相等两直线不平行,此选项错误.故选:B.10.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米【答案】C第II卷(非选择题)评卷人得分二、填空题(每小题3分,共18分)11.计算:(﹣ab)2÷a2b=.【答案】b【解析】试题解析:原式=a2b2÷a2b=b故答案为:b12.若(x﹣ay)(x+ay)=x2﹣16y2,则a=.【答案】±4【解析】试题解析:∵(x﹣ay)(x+ay)=x2﹣(ay)2(x﹣ay)(x+ay)=x2﹣16y2,∴a2=16,∴a=±4.13.直线AB、CD、EF交于点O,则∠1+∠2+∠3=度.【答案】18014.如图,圆锥的底面半径r=2cm,当圆锥的高h由小到大变化时,圆锥的体积V也随之发生了变化,在这个变化过程中,变量是(圆锥体积公式:V=πr2h)【答案】V、h.【解析】试题解析:圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.故答案为:V,h.点睛:主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.15.已知一个长方形的长为5cm,宽为xcm,周长为ycm,则y与x之间的函数表达式为.【答案】y=2x+10【解析】试题解析:一个长方形的长为5c m,宽为xcm,周长为ycm,则y与x之间的函数表达式为y=2x+10;故答案为:y=2x+1016.在如图所示的三个函数图象中,近似地刻画如下a、b、c三个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.情境c:小芳从家出发,到校上,放回到了家.情境a,b,c所对应的函数图象分别是(按次序填写a,b,c对应的序号)【答案】③①②评卷人得分三、解答题(共8小题,共72分)17.(6分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)【答案】(1) 17a6b3;(2)a2﹣4b2+4bc﹣c2;21世纪教育网18.(8分)观察下列关于自然数的等式:(1)32﹣4×12=5(1)(2)52﹣4×22=9(2)(3)72﹣4×32=13(3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【答案】(1)5;21. (2)(2n+1)2﹣4n2=4n+1.【解析】试题分析:(1)根据前三个找出规律,写出第五个等式;(2)用字母表示变化规律,根据完全平方公式计算,即可证明.试题解析:(1)112﹣4×52=21,故答案为:5;21;(2)第n个等式为:(2n+1)2﹣4n2=4n+1,证明:(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1.19.(8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.【答案】63.点睛:本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.20.(10分)如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°求:(1)∠3的度数;(2)求∠2的度数.【答案】(1)65°.【解析】试题分析:(1)根据平角为180度可得∠3=180°﹣∠1﹣∠FOC(2)根据对顶角相等可得∠AOD的度数,然后再根据角平分线定义进行计算即可试题解析:(1)∵∠AOB=180°,∴∠1+∠3+∠COF=180°,∵∠FOC=90°,∠1=40°,∴∠3=180°﹣∠1﹣∠FOC=50°,(2)∠BOC=∠1+∠FOC=130°,∴∠AOD=∠BOC=130°,∵OE平分∠AOD,∴∠2=12∠AOD=65°.21.(10分)如图,直线AB与CD相交于点O,OE⊥A B.(1)如果∠AOD=140°,那么根据,可得∠BOC=度.(2)如果∠EOD=2∠AOC,求∠AOD的度数.【答案】(1)对顶角相等,140°.(2)150°.故答案为:(1)对顶角相等,140°.(2)150°.22.(6分)某药物研究单位试制成功一种新药,经测试,如果患者按规定剂量服用,那么服药后每毫升血液中含药量y(微克)随时间x(小时)之间的关系如图所示,如果每毫升血液中的含药量不小于20微克,那么这种药物才能发挥作用,请根据题意回答下列问题:(1)服药后,大约分钟后,药物发挥作用.(2)服药后,大约小时,每毫升血液中含药量最大,最大值是微克;(3)服药后,药物发挥作用的时间大约有小时.【答案】(1)20,(2)2,80;(3)6.7.23.(6分)探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数式)解:∵DE∥BC,∴∠DEF=.()∵EF∥AB,∴=∠AB C.()∴∠DEF=∠AB C.(等量代换)∵∠ABC=40°,∴∠DEF=°.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF=°.【答案】∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,40;24.(10分)我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出由图2所表示的数等式:;写出由图3所表示的数等式:;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.【答案】4D:完全平方公式的几何背景.21世纪教育网【解析】试题分析:(1)运用几何直观理解、通过不同的方法计算图形的面积可以得到一个数等式然后再通过化简可得.(2)可利用(1)所得的结果进行等式变换直接带入求得结果.%网试题解析:(1)由图2可得正方形的面积为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac故答案为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac【点评】本题主要是在完全平方公式的几何背景图形的基础上,利用其解题思路求得结果.。
北师大版七年级第二学期期末数学试卷及答案一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确答案的代号字母用2B铅笔涂在对应的答题卡上.1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.2.(3分)计算a4÷(﹣a2)的结果是()A.a2B.a C.﹣a2D.﹣a63.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣84.(3分)如图把一块含有30°角的直角三角板两个顶点放在一把直尺的对边上,如果∠1=25°,那么∠2的度数为()A.25°B.35°C.45°D.55°5.(3分)汽车开始行驶时,油箱内有油50升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的关系用图象表示应为()A.B.C.D.6.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能使△ABC≌△DCB的是()A.AB=DC B.∠A=∠D C.AC=DB D.∠ACB=∠DBC7.(3分)一个小球在如图所示的方砖上自由滚动,并随机地停留在某块方砖上,则最终停在阴影部分上的概率是()A.B.C.D.不确定8.(3分)若9x2﹣kxy+49y2是一个完全平方式,那么k的值是()A.42B.﹣42C.±21D.±429.(3分)如图,已知AD是△ABC的角平分线,ED是线段AB的垂直平分线,∠ACB=90°,AC=6,则BE的长为()A.5B.6C.7D.1210.(3分)如图,在长方形ABCD中,AD=16,AB=8,点M、N分别在AD、BC上,将长方形ABCD沿MN折叠,使点A,B分别落在长方形ABCD外部的点A′,B′处,则阴影部分的图形的周长为()A.12B.24C.48D.56二、填空题(每小题3分,共15分)11.(3分)已知∠a=35°,则∠a的余角是.12.(3分)若m=20,按下列程序计算,最后得出的结果是.13.(3分)某镇要修建一条灌溉水渠,如图所示,水渠从A村沿北偏东65°方向到B村,从B村沿北偏西25°方向到C村,为了保持水渠CE与AB方向一致,则∠BCE为度.14.(3分)如图,三个大小相同的球恰好放在一个圆柱形盒子里(球的半径为R时,球的体积为V=),若圆柱的容积为300π,则三个球的体积之和为.(结果保留π)15.(3分)如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为.三、解答题(本大题8个小题,共75分)16.(8分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x(x+4y),其中x=1,y=﹣1.17.(10分)计算(1)(x3y3+4x2y2﹣3xy)÷(﹣3xy);(2)﹣12+(π﹣3.14)0﹣(﹣)﹣2.18.(9分)如图,在正方形网格中,每个小正方形的边长都是1,网格中有一条直线l,△ABC的三个顶点A、B、C均在格点处.(1)画出△ABC关于直线l的对称图形△A'B'C';(2)求△A'B'C'的面积.19.(9分)桌子上放有两张卡片,正面分别写有4cm,5cm;小明手里有四张卡片,正面分别写有1cm,3cm,4cm和5cm.将卡片正面向下,小亮随机从小明手里抽取一张,与桌子上的卡片放在一起,以卡片上的数量分别作为三条线段的长度,请回答下列问题:(1)求这三条线段能构成三角形的概率;(2)求这三条线段能构成等腰三角形的概率.20.(9分)如图,在△ABC和△BDE中,BA=BC,BE=BD,∠ABC=∠DBE=90°,连接AE、DC,试说明:△ABE≌△CBD.21.(9分)直线AB、CD交于点O,OE为∠BOD的平分线,OF⊥OE,CG∥OE,且∠C=30°.(1)求∠AOE为多少度;(2)判断∠FOA与∠FOD的大小关系,并说明理由.22.(10分)(1)如图①所示的大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是.(2)若将图①中的阴影部分剪下来,拼成如图②的长方形,则其面积是.(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式:.(4)应用公式计算:(1﹣)(1﹣)(1﹣).23.(11分)在一次劳动技能竞赛中,甲、乙两名工人同时生产相同数量的一种口罩,他们生产的口罩数y(个)与生产所用时间t(时)之间的关系如图所示.(1)在甲生产的过程中,自变量是,因变量是;(2)甲、乙两人中,先完成生产任务;(3)当甲、乙所生产的口罩个数相等时,求t的值.参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确答案的代号字母用2B铅笔涂在对应的答题卡上.1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念的对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)计算a4÷(﹣a2)的结果是()A.a2B.a C.﹣a2D.﹣a6【分析】根据整式的运算法则即可求出答案.【解答】解:原式=﹣a2,故选:C.【点评】本题考查学生的运算能力,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000095=9.5×10﹣7,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)如图把一块含有30°角的直角三角板两个顶点放在一把直尺的对边上,如果∠1=25°,那么∠2的度数为()A.25°B.35°C.45°D.55°【分析】根据两直线平行,内错角相等可得∠3=∠1,然后根据∠2=60°﹣∠3计算即可得解.【解答】解:∵直尺的两边互相平行,∴∠3=∠1=25°,∴∠2=60°﹣∠3,=60°﹣25°,=35°.故选:B.【点评】本题考查了平行线的性质,直角三角板的知识,熟记性质并准确识图是解题的关键.5.(3分)汽车开始行驶时,油箱内有油50升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的关系用图象表示应为()A.B.C.D.【分析】根据题意,可以写出Q与t的函数关系式,然后即可判断哪个选项中的函数图象符合题意,本题得以解决.【解答】解:由题意可得,Q=50﹣5t,当t=0时,Q=50,当Q=0时,t=10,故选:C.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.6.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能使△ABC≌△DCB的是()A.AB=DC B.∠A=∠D C.AC=DB D.∠ACB=∠DBC【分析】根据全等三角形的判定解决问题即可.【解答】解:∵∠ABC=∠DCB,BC=CB,要使得△ABC≌△DCB,可以添加:∠A=∠D,AB=DC,∠ACB=∠DBC,故选:C.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.7.(3分)一个小球在如图所示的方砖上自由滚动,并随机地停留在某块方砖上,则最终停在阴影部分上的概率是()A.B.C.D.不确定【分析】根据几何概率的求法:最终停留在阴影区域的概率就是阴影区域的面积与总面积的比值.【解答】解:观察这个图可知:阴影区域(6块)的面积占总面积(15块)的=,则它最终停留在阴影部分的概率是,故选:A.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.8.(3分)若9x2﹣kxy+49y2是一个完全平方式,那么k的值是()A.42B.﹣42C.±21D.±42【分析】利用完全平方公式的结构特征判断即可确定出k的值.【解答】解:∵9x2﹣kxy+49y2是一个完全平方式,∴k=±42,故选:D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.9.(3分)如图,已知AD是△ABC的角平分线,ED是线段AB的垂直平分线,∠ACB=90°,AC=6,则BE的长为()A.5B.6C.7D.12【分析】依据角平分线的性质即可得到DC=DE,再判定Rt△ACD≌Rt△AED,即可得到AC=AE,进而得出BE的长与AC的长相等.【解答】解:∵AD是△ABC的角平分线,∠C=90°,DE⊥AE,∴DC=DE,∠C=∠AED=90°,又∵AD=AD,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∵ED是线段AB的垂直平分线,∴AE=BE,∴AC=AE=BE=6,故选:B.【点评】本题主要考查了全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.10.(3分)如图,在长方形ABCD中,AD=16,AB=8,点M、N分别在AD、BC上,将长方形ABCD沿MN折叠,使点A,B分别落在长方形ABCD外部的点A′,B′处,则阴影部分的图形的周长为()A.12B.24C.48D.56【分析】根据折叠的性质,得A'M=AM,A'B'=AB,B'N=BN,即可得出阴影部分的周长等于矩形的周长.【解答】解:根据折叠的性质,得A'M=AM,A'B'=AB,B'N=BN,∴阴影部分图形的周长=A'B'+B'N+NC+A'M+MD+CD=AB+(BN+NC)+(AM+MD)+CD=AB+BC+AD+CD=2AD+2AB=2(16+8)=48.故选:C.【点评】此题主要考查了翻折变换以及矩形的性质,关键是要能够根据折叠的性质得到对应的线段相等,从而求得阴影部分的周长.二、填空题(每小题3分,共15分)11.(3分)已知∠a=35°,则∠a的余角是55°.【分析】根据余角的概念计算,得到答案.【解答】解:90°﹣∠a=90°﹣35°=55°,则∠a的余角是55°,故答案为:55°.【点评】本题考查的是余角的概念,如果两个角的和等于90°,就说这两个角互为余角.12.(3分)若m=20,按下列程序计算,最后得出的结果是21.【分析】根据数值转换机列代数式,再代入计算即可求解.【解答】解:由题意得,当m=20时,原式=.故答案为21.【点评】本题主要考查代数式求值,列代数式是解题的关键.13.(3分)某镇要修建一条灌溉水渠,如图所示,水渠从A村沿北偏东65°方向到B村,从B村沿北偏西25°方向到C村,为了保持水渠CE与AB方向一致,则∠BCE为90度.【分析】利用平行线的性质得出CE∥BD,可得∠NCE=25°+65°=90°,进而得出∠BCE的度数即可得出答案.【解答】解:如图所示:由题意可得:∠1=65°,当CE保持与AB的方向一致,则CE∥BD,可得∠NCE=25°+∠1=25°+65°=90°,故∠BCE=180°﹣∠NCE=90°,故答案为:90.【点评】此题主要考查了方向角以及平行线的性质,得出∠FCE的度数是解题关键.14.(3分)如图,三个大小相同的球恰好放在一个圆柱形盒子里(球的半径为R时,球的体积为V=),若圆柱的容积为300π,则三个球的体积之和为200π.(结果保留π)【分析】根据圆柱体的体积和球的体积的计算公式即可得到结果.【解答】解:设球的半径为r,根据题意得:三个球的体积之和=3×πr3=4πr3,圆柱体盒子容积=πr2•6r=6πr3,=,300π×=200π.答:三个球的体积之和是200π.故答案为:200π.【点评】本题考查了圆柱体的体积,球的体积的计算,整式的混合运算,熟记圆柱体的体积和球的体积的计算公式是解题的关键.15.(3分)如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为18或70.【分析】设BE=3t,则BF=7t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG.【解答】解:设BE=3t,则BF=7t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,∴7t=60﹣3t,解得:t=6,∴AG=BE=3t=3×6=18;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴3t=60﹣3t,解得:t=10,∴AG=BF=7t=7×10=70,综上所述,AG=18或AG=70.故答案为:18或70.【点评】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.三、解答题(本大题8个小题,共75分)16.(8分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x(x+4y),其中x=1,y=﹣1.【分析】原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2+2xy+y2+x2﹣y2﹣2x2﹣8xy=﹣6xy,当x=1,y=﹣1时,原式=6.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.17.(10分)计算(1)(x3y3+4x2y2﹣3xy)÷(﹣3xy);(2)﹣12+(π﹣3.14)0﹣(﹣)﹣2.【分析】(1)直接利用整式的除法运算法则计算得出答案;(2)直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【解答】解:(1))(x3y3+4x2y2﹣3xy)÷(﹣3xy)=x3y3÷(﹣3xy)+4x2y2÷(﹣3xy)﹣3xy÷(﹣3xy)=﹣x2y2﹣xy+1;(2)﹣12+(π﹣3.14)0﹣(﹣)﹣2=﹣1+1﹣9=﹣9.【点评】此题主要考查了整式的除法运算以及实数运算,正确掌握相关运算法则是解题关键.18.(9分)如图,在正方形网格中,每个小正方形的边长都是1,网格中有一条直线l,△ABC的三个顶点A、B、C均在格点处.(1)画出△ABC关于直线l的对称图形△A'B'C';(2)求△A'B'C'的面积.【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)利用分割法求三角形的面积即可.【解答】解:(1)如图,△A'B'C'即为所求.(2)S△A′B′C′=3×4﹣×1×4﹣×2×2﹣×2×3=12﹣2﹣2﹣3=5.【点评】本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是熟练掌握轴对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(9分)桌子上放有两张卡片,正面分别写有4cm,5cm;小明手里有四张卡片,正面分别写有1cm,3cm,4cm 和5cm.将卡片正面向下,小亮随机从小明手里抽取一张,与桌子上的卡片放在一起,以卡片上的数量分别作为三条线段的长度,请回答下列问题:(1)求这三条线段能构成三角形的概率;(2)求这三条线段能构成等腰三角形的概率.【分析】先利用列举法展示所有5种可能的结果数,再分别根据三角形三边的关系、等腰三角形的判定找出两个事件的结果数,然后根据概率公式计算即可.【解答】解:(1)共有5种可能的结果数,它们是:1、4、5;3、4、5;4、4、5;5、4、5;其中这三条线段能构成三角形的有3、4、5;4、4、5;5、4、5这3种结果,∴这三条线段能构成三角形的概率为;(2)这三条线段能构成等腰三角形的有2种结果,所以这三条线段能构成等腰三角形的概率为=.【点评】本题考查概率公式、三角形的三边关系、等腰三角形的判定,解题的关键是明确题意,可以写出所有的可能性,求出相应的概率.20.(9分)如图,在△ABC和△BDE中,BA=BC,BE=BD,∠ABC=∠DBE=90°,连接AE、DC,试说明:△ABE≌△CBD.【分析】由“SAS”可证△ABE≌△CBD.【解答】证明:∵∠ABC=∠DBE=90°,∴∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS).【点评】本题考查了全等三角形的判定,掌握全等三角形的判定是本题的关键.21.(9分)直线AB、CD交于点O,OE为∠BOD的平分线,OF⊥OE,CG∥OE,且∠C=30°.(1)求∠AOE为多少度;(2)判断∠FOA与∠FOD的大小关系,并说明理由.【分析】(1)利用平行线的性质可得∠DOE=∠C,再结合角平分线定义可得∠BOE=∠DOE=30°,根据邻补角互补可得答案;(2)利用垂线定义,邻补角的性质分别计算出∠FOA与∠FOD的度数即可.【解答】解:(1)∵CG∥OE,∴∠DOE=∠C=30°,∵OE为∠BOD的平分线,∴∠BOE=∠DOE=30°,∴∠AOE=180°﹣30°=150°;(2)∠AOF=∠DOF,理由:∵∠BOE=∠DOE=30°,∴∠AOD=120°,∵OF⊥OE,∴∠EOF=90°,∴∠DOF=60°,∴∠AOF=60°,∴∠AOF=∠DOF.【点评】此题主要考查了平行线的性质,以及角平分线的定义,关键是理清图中角之间的关系.22.(10分)(1)如图①所示的大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是a2﹣b2.(2)若将图①中的阴影部分剪下来,拼成如图②的长方形,则其面积是(a+b)(a﹣b).(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式:(a﹣b)(a+b)=a2﹣b2.(4)应用公式计算:(1﹣)(1﹣)(1﹣).【分析】(1)根据面积的和差,可得答案;(2)根据矩形的面积公式,可得答案;(3)根据图形割补法,面积不变,可得答案;(4)根据平方差公式计算即可.【解答】解:(1)如图①所示,阴影部分的面积是a2﹣b2,故答案为:a2﹣b2;(2)根据题意知该长方形的长为a+b、宽为a﹣b,则其面积为(a+b)(a﹣b),故答案为:(a+b)(a﹣b);(3)由阴影部分面积相等知(a﹣b)(a+b)=a2﹣b2,故答案为:(a﹣b)(a+b)=a2﹣b2;(4)(1﹣)(1﹣)(1﹣)====.【点评】本题考查的是平方差公式的推导和运用,灵活运用平方差公式、掌握数形结合思想是解题的关键.23.(11分)在一次劳动技能竞赛中,甲、乙两名工人同时生产相同数量的一种口罩,他们生产的口罩数y(个)与生产所用时间t(时)之间的关系如图所示.(1)在甲生产的过程中,自变量是t,因变量是y;(2)甲、乙两人中,乙先完成生产任务;(3)当甲、乙所生产的口罩个数相等时,求t的值.【分析】(1)根据自变量与因变量的含义得到时间是自变量,口罩数是因变量;(2)观察图象可得甲、乙两人中,乙先完成生产任务;(3)观察图象可得,当甲、乙所生产的口罩个数相等时,t的值有两个,其中一个值是3,另一个值可列方程解答.【解答】解:(1)函数图象反映口罩数随时间变化的图象,则t是自变量,y为因变量;故答案为:t;y;(2)观察图象可知,乙先完成生产任务;故答案为:乙;(3)当甲、乙所生产的口罩个数相等时,t的值有两个,其中一个是3,甲后来的速度为:(4000﹣400)÷(8﹣2)=600(个/小时),乙后来的速度为:(4000﹣1000)÷(7﹣5)=1500(个/小时),则:400+600(t﹣2)=1500(t﹣5),解得t=,即当甲、乙所生产的口罩个数相等时,t=3或.【点评】本题主要考查了函数的图象,从图象中获取信息是学习函数的基本功,要结合题意熟练掌握.。
北师大版七年级数学测试卷(考试题)2017-2018学年北师大版七年级下册数学2.4 用尺规作图同步测试一、单选题(共10题;共20分)1.如图所示的尺规作图的痕迹表示的是()A. 尺规作线段的垂直平分线B. 尺规作一条线段等于已知线段C. 尺规作一个角等于已知角D. 尺规作角的平分线2.下列尺规作图的语句正确的是()A. 延长射线AB到DB. 以点D为圆心,任意长为半径画弧C. 作直线AB=3cmD. 延长线段AB至C,使AC=BC3.已知三边作三角形,用到的基本作图是()A. 作一个角等于已知角B. 平分一个已知角C. 在射线上截取一线段等于已知线段D. 作一条直线的垂线4.在直线m上顺次取A,B,C三点,使AB=10cm,BC=4cm,如果点O是线段AC的中点,则线段OB的长为()A. 3cmB. 7cmC. 3cm或7cmD. 5cm或2cm5.用直尺和圆规作线段的垂直平分线,下列作法正确的是()A. B. C. D.6.作已知角的平分线是根据三角形的全等判定()作的.A. AASB. ASAC. SASD. SSS7.作一个角等于已知角用到下面选项的哪个基本事实()A. SSSB. SASC. ASAD. AAS8.如图,用尺规法作∠DEC=∠BAC,作图痕迹的正确画法是()A. 以点E为圆心,线段AP为半径的弧B. 以点E为圆心,线段QP为半径的弧C. 以点G为圆心,线段AP为半径的弧D. 以点G为圆心,线段QP为半径的弧9.在△ABC中,AB=AC,∠A=80°,进行如下操作:①以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点E、F;②分别以E、F为圆心,以大于EF长为半径作弧,两弧交于点M;③作射线BM交AC于点D,则∠BDC的度数为()A. 100°B. 65°C. 75°D. 105°10.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法错误的是()A. ∠BAD=∠CADB. 点D到AB边的距离就等于线段CD的长C. S△ABD=S△ACDD. AD垂直平分MN二、填空题(共5题;共5分)11.如图,已知线段AB,分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,连接AC,BC,BD,CD.其中AB=4,CD=5,则四边形ABCD的面积为________ .12.在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为________ .13.如图,用直尺和圆规画∠AOB的平分线OE,其理论依据是________ .14.利用直尺和圆规作出一个角的角平分线的作法,其理论依据是全等三角形判定方法________ .15.数学活动课上,同学们围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”其中一位同学作出了如图所示的图形.你认为他的作法的理由有________三、解答题(共2题;共20分)16.综合题。
北师大七年级数学下册《第二章相交线与平行线》质量检测试卷(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.如图所示,直线AB,CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70°B.80°C.90°D.100°2.下列说法不正确的是()A.若两个相等的角有一组边平行,则另一组边也平行B.两条直线相交,所成的两组对顶角的平分线互相垂直C.两条平行线被第三条直线所截,同旁内角的平分线互相垂直D.经过直线外一点,有且只有一条直线与已知直线平行3.如图所示,直线a,b都和直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判定a∥b的有()A.①③B.②④C.①③④D.①②③④4.下列说法不正确的是()A.如果两条直线都和第三条直线平行,那么这两条直线也平行B.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行C.两条直线被第三条直线所截,如果同位角互补,那么这两条直线平行D.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行5.下列说法中正确的是()A.相等的两个角是对顶角B.一条直线有且只有一条垂线C.直线外一点与这条直线上的各点所连接的线段中,垂线段最短D.一个角一定不等于它的余角6.如图所示,直线l1∥l2,∠1=120°,则∠2的度数为()A.60°B.80°C.100°D.120°7.如图所示,已知直线a,b被直线c所截,且a∥b,∠1=65°,那么∠2等于()A.145°B.65°C.55°D.35°8.如图所示,AB∥CD,EF分别交AB,CD于M,N,NG平分∠DNF,∠1=60°,则∠2等于()A.40°B.50°C.60°D.70°9.下列说法中正确的有()①同位角相等;②过一点有且只有一条直线与已知直线平行;③平面内,过一点有且只有一条直线与已知直线垂直;④三条直线两两相交总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个10.如图所示,下列推理正确的是()A.因为∠1=∠4,所以BC∥ADB.因为∠2=∠3,所以AB∥CDC.因为AD∥BC,所以∠BCD+∠ADC=180°D.因为∠1+∠2+∠C=180°,所以BC∥AD二、填空题(每小题4分,共32分)11.如图所示,AB∥CD,直线EF分别交AB,CD于点E,F,∠1=47°,则∠2的大小是.12.如图所示,∠1和∠2是直线,被第三条直线所截得的角.13.如图所示,AB∥CD,∠1=50°,∠2=110°,则∠3=.14.如图所示,∠1=56°,∠2=124°,∠3=85°,则∠4=.15.从钝角∠AOB的顶点引射线OP⊥OA,若∠BOP∶∠AOP=2∶3,则∠AOB=.16.如图所示,AD∥BC,BD平分∠ABC,若∠A=110°,则∠D=.17.如图所示,直线AB,CD相交于点O,OE⊥CD,∠1与∠2,∠2与∠3是,∠2与∠4,∠1与∠3.(填“互为余角”“互为补角”或“对顶角”)18.如图所示,AD∥BC,∠D=100°,∠BAC=70°,CA平分∠BCD,则∠ABC=.三、解答题(共58分)19.(10分)如图所示,OA∥O'A',OB∥O'B'.(1)试说明∠AOB=∠A'O'B';(2)反向延长OA到C,试说明∠COB+∠A'O'B'=180°.20.(9分)如图所示,直线AB,CD,EF相交于O点,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠AOG的度数.21.(9分)如图所示,已知∠1=∠2,∠3=∠4,∠5=∠6.试说明AD∥BC.22.(9分)按要求作图(不写作法,但要保留作图痕迹).已知点P,Q分别在∠AOB的边OA,OB上.①作直线PQ.②过点P作OB的垂线.③过点Q作OA的平行线.23.(9分)如图所示,已知AD⊥BC,EF⊥BC,∠3=∠C,那么∠1=∠2.谈谈你的理由.24.(12分)已知AB∥CD,试解决下列问题:(1)如图(1)所示,∠1+∠2等于多少度?请说明理由;(2)如图(2)所示,∠1+∠2+∠3等于多少度?请说明理由;(3)如图(3)所示,∠1+∠2+∠3+∠4等于多少度?为什么?(4)如图(4)所示,试探究∠1+∠2+∠3+∠4+…+∠n等于多少度.【答案与解析】1.B2.A3.D(解析:根据平行线的判定即可得到答案.)4.C(解析:A.平行的传递性.B.平行线的判定.C.同位角相等,两直线才平行.D.平行线的判定.)5.C(解析:可以举反例说明.)6.D(解析:根据对顶角相等及平行线的性质可以得出.)7.B(解析:两直线平行,内错角相等.)8.C(解析:先求∠END,再求∠FND,∠2=∠FND=60°.)9.B(解析:①没说两直线平行,②如果这点在该直线上就作不出平行线,④如果三线共点就只有1个交点.)10.C(解析:两直线平行,同旁内角互补.)11.133°(解析:因为∠1=∠AEF,∠1=47°,所以∠AEF=47°.因为AB∥CD,所以∠AEF+∠2=180°,所以∠2=180°- ∠AEF=133°.)12.AC BD AB 同位13.60°14.95°(解析:根据∠1+∠2=180°得∠1的对顶角+∠2=180°,进而得到平行线,则∠3+∠4=180°,所以∠4=180°- 85°=95°.)15.150°(解析:∠AOP=90°,∠BOP=60°.)16.35°17.互为余角对顶角互为补角互为余角18.70°(解析:∠BCD=180°- ∠D=80°,∠ACB=∠BCD=40°,∠DAC=∠ACB=40°,∠BAD=∠DAC+∠BAC=110°,∠ABC=180°- ∠BAD=70°.)19.解:(1)因为OA∥O'A'(已知),所以∠AOB=∠1(两直线平行,同位角相等).又因为OB∥O'B'(已知),所以∠1=∠A'O'B'(两直线平行,同位角相等),所以∠AOB=∠A'O'B'(等量代换). (2)因为AO∥A'O'(已知),所以∠COB+∠OMO'=180°(两直线平行,同旁内角互补).又因为OB∥O'B'(已知),所以∠OMO'=∠A'O'B'(两直线平行,内错角相等),所以∠COB+∠A'O'B'=180°(等量代换).20.解:因为AB⊥CD,所以∠AOF=90°- ∠FOD=90°- 28°=62°,所以∠AOE=180°- ∠AOF=118°.因为OG平分∠AOE,所以∠AOG=∠AOE=59°.21.解:因为∠5=∠6(已知),所以AB∥CE(内错角相等,两直线平行),所以∠4+∠2+∠5=180°(两直线平行,同旁内角互补).因为∠3=∠4,∠1=∠2(已知),所以∠3+∠1+∠5=180°(等量代换),所以AD∥BC(同旁内角互补,两直线平行).22.解:如图所示.23.解:因为AD⊥BC(已知),EF⊥BC(已知),所以∠ADC=∠EFC=90°(垂直定义),所以AD∥EF(同位角相等,两直线平行),所以∠1=∠DAC(两直线平行,同位角相等).又因为∠3=∠C(已知),所以AC∥GD(同位角相等,两直线平行),所以∠2=∠DAC(两直线平行,内错角相等),所以∠1=∠2(等量代换).24.解:(1)因为AB∥CD,所以∠1+∠2=180°(两直线平行,同旁内角互补). (2)如图(1)所示,过点E作EF平行于AB,因为AB∥CD,所以CD∥EF,所以∠1+∠AEF=180°,∠FEC+∠3=180°,所以∠1+∠2+∠3=360°. (3)如图(2)所示,过点E,F分别作EG,FH平行于AB,因为AB∥CD,所以AB∥EG∥FH∥CD,所以∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°,所以∠1+∠2+∠3+∠4=540°. (4)根据上述规律,显然作(n- 2)条辅助线,运用(n- 1)次两条直线平行,同旁内角互补,即可得到∠1+∠2+∠3+∠4+…+∠n=180°(n- 1).。
七年级数学第二学期期末考试试卷一、选择题:(本题共10小题,每题3分,共30分)1、下列运算正确的是( )。
A 、x 4+4= 4 x 4B 、x 4·x 2= x 8;C 、x 16÷x 2= x 8D 、(-x 4)2= x 8 .2、下面几条线段能构成三角形的是( )A 、3,1,5B 、5,12,14C 、7,2,4D 、1,2,33、等腰三角形的一个角为40°,则它的底角为( )A 、100°B 、40°C 、70°D 、70°或40°4、1纳米等于1米的10亿分之一,人的头发的直径约为6万纳米,用科学记数法表示一根头发的直径是( )米。
A 、6×10-7B 、6×10-6C 、6×10-5D 、6×10- 45、计算20231-⨯⎪⎭⎫ ⎝⎛的结果是( ) (A )34 (B )4- (C )34- (D )416、下列图形中,是轴对称图形的有( )个。
① 锐角; ②线段; ③等腰三角形; ④等边三角形;A.1个B.2个C. 3个D.4个7、下列语句正确的是 ( ) A 、近似数0.009精确到百分位.B.近似数800精确到个位,有一个有效数字C 近似数56.7万精确到千位有三个有效数字D.近似数510670.3⨯精确千分位8数字部分的概率都相等。
概率为( )A 、B 、C 、 9的报亭,母亲随即按原速返回,分钟返回家。
下面的图形中表示小明的父亲离家的时间与距离之间的关系是( )10(图1)左视图(B C D O 奇闻趣事其他投诉房产建设表演建议环境保护0 5% 10% 15%20% 25% 30% 35%道路交通10、如图,下列条件中不能判定AB ∥CD 的是( )(A ) ∠1+∠4=180°(B ) ∠2=∠6(C ) ∠5+∠6=180°(D ) ∠3=∠5二、填空题:(本题共20分,每小题2分)1、已知y kx n -是关于y x 、的一个单项式,且系数是5,次数是7,那么=k ,=n 。
七年级下学期数学期末考试试题(满分:150分时间:120分钟)一.单选题。
(共10小题,每小题4分,共40分)4.把20本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入a本,第二个抽屉放入b 本,则下列判断错误的是()A.20是变量B.a是变量C.b是变量D.20是常量5.如图,长方形ABCD沿线段EF折叠到EB’C’F’的位置,若∠EFC’=100°,则∠DFC’的度数是()A.20°B.30°C.40°D.50°(第5题图)(第6题图)(第8题图)6.如图,在△ABC中,AC=6,中线AD=10,则边AB的长可能是()A.30B.22C.14D.67.等腰三角形的周长是15cm,其中一边长为4cm,则该等腰三角形的底边长为()A.7cmB.4cmC.4cm或7cmD.5.5cm或4cmA.1:3B.2:3C.5:1D.1:5A.20分钟B.24分钟C.26分钟D.28分钟(第9题图)(第10题图)二.填空题。
(共6小题,每小题4分,共24分)11.如果(x2-a)x+x的展开式中只含有x3这一项,则a的值为.12.如图,AB∥EG,CD∥EF,BC∥DE,若x=50°,y=30°,则z的度数为.(第12题图)(第14题图)(第15题图)13.若x2+(m-2)x+16是一个完全平方式,则m的值是.14.把一转盘分成两个半圆,再把其中一个半圆等份三等份,并标上数字如图所示,任意转动转盘,当转盘停止时,指针落在奇数区域的概率是.15.小明从家门口骑车去图书馆,先走平路到达A,再走上坡路到达B,最后走下坡到达图书馆,所用的时间与路程的关系如图所示,回家时,如果他沿原路返回,且走平路,上坡路和下坡路的速度分别保持和去上班时一致,他从图书馆到家需要的时间是分钟. 16.如图,在△ABC中,BD,BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH⊥BE交BD于点G,交BC于点H,DE=DG,下列结论:①∠DBE=∠F;②∠BEF=1(∠BAF+∠2C);③∠F=1(∠BAC+∠C);④2DE+2BGEF,其中正确的是(只填序号).2三.解答题。
七年级数学第二学期期末考试试卷(一)(全卷满分:100分,考试时间:120分钟)注意:本卷为试题卷;考生必须在答题卷上作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效.一、选择题(每小题只有一个正确的选项,每小题3分,共计30分)1.下列图形中不是..正方体的展开图的是( )A B C D 2. 下列运算正确..的是( ) A .1055a aa =+ B .2446a a a =⨯ C .a a a =÷-10 D .044a a a =- 3. 下列结论中,正确..的是( ) A .若22b a ,b a ≠≠则 B .若22b a , b a >>则 C .若b a ,b a 22±==则 D .若b1a 1, b a >>则4. 如图,在△ABC 中,D 、E 分别是AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数是( ) A .15° B .20° C .25° D .30°5. 由四舍五入得到近似数3.00万( )A .精确到万位,有1个有效数字B . 精确到个位,有1个有效数字C .精确到百分位,有3个有效数字D .精确到百位,有3个有效数字 6. 观察一串数:0,2,4,6,….第n A .2(n -1) B .2n -1 C 7.下列关系式中,正确..的是( ) A .()222b a b a -=- B.(a +C .()222b a b a +=+ D.(a +8. 如图表示某加工厂今年前5则对这种产品来说,该厂( )A .1月至3月每月产量逐月增加,4、5两月产量逐月 减小B .1月至3月每月产量逐月增加,4、5两月产量与3月持平C .1月至3月每月产量逐月增加,4、5两月产量均停止 生产D . 1月至3月每月产量不变,4、5两月均停止生产 9.下列图形中,不一定...是轴对称图形的是( ) A .等腰三角形 B .线段 C .钝角 D .直角三角形 10. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )A .1B .2C . 3D .4二、填空题(每小题2分,共计20)11. 计算:32x x ⋅ = ;2ab b 4a 2÷= .12.如果1kx x 2++是一个完全平方式,那么k 13.如图,两直线a 、b 被第三条直线c 所截,若∠∠2=130°,则直线a 、b 的位置关系是 . 14. 时说,2006年中央财政用于“三农”的支出将达到万元,这个数据用科学记数法可表示为 万元15. 一只蝴蝶在空中飞行,然后随意落在如图所示的某一方格中(每个方格除颜色外完全相同),则蝴蝶停止在白色方格中的概率是 .16. 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 . 17. 如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC ≌△ADE ,还需要添加的条件是 .18.现在规定两种新的运算“﹡”和“◎”:a ﹡b=22b a +;a ◎(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= .9. 19、某物体运动的路程s (千米)与运动的时间t (小时)关系如图所示,则当t=3小时时,物体运动所经过的路程为 千米. 20.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图所示, 则该汽车的号码是 .三、计算题(21题3分,22题5分,共计8分)21.()()3426y y 2-;22.先化简()()()()1x 5x 13x 13x 12x 2-+-+--,再选取一个你喜欢的数代替x ,并求原代数式的值.四、作图题(23题4分,24题4分,共计8分)23.如图,某村庄计划把河中的水引到水池M 中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)理由是: .24.两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种?(至少设计四种)题小425.小丽和小芳都想当节目主持人,但现在只有一个名额.小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示.游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?26. 一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?六、生活中的数学(第27小题4分,第28小题5分,共计9分)27. 下面是我县某养鸡场2001~2006年的养鸡统计图:(1)从图中你能得到什么信息. (2)各年养鸡多少万只?(3)所得(2)的数据都是准确数吗?(4)这张图与条形统计图比较,有什么优点?28.某种产品的商标如图所示,O 是线段AC 、BD 的交点,并且AC =BD ,AB =CD .小明认为图中的两个三角形全等,他的思考过程是: 在△ABO 和△DCO 中⎪⎩⎪⎨⎧=∆≅∆−→−∠=∠=CD AB DCO ABO DOC AOB BD AC你认为小明的思考过程正确吗?如果正确,他用的是判定三 角形全等的哪个条件?如果不正确,请你增加一个条件,并 说明你的思考过程.七、探究拓展与应用(第29小题4分,第30小题7分,共计11分)29.如图所示,要想判断AB 是否与CD 平行,我们可以测量那些角;请你写出三种方案,并说明理由.30.乘法公式的探究及应用.(1)如左图,可以求出阴影部分的面积是 (写成两数平方差的形式); (2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式(用式子表达). (4)运用你所得到的公式,计算下列各题:①7.93.10⨯② )2)(2(p n m p n m +--+八、信息阅读题(6分)31.一农民朋友带了若干千克的土豆进城出售,为了方便,他带了一些零钱备用.按市场售出一些后,又降价出售.售出土豆千克数x 与他手中持有的钱数y (含备用零钱)的关系如图所示,结合图像回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余的土豆售完,这时他手中的钱(含备用的钱)是26元,问他一共带了多少千克的土豆?七年级数学第二学期期末考试试题答案(一)一、填空题(每小题只有一个正确的选项,每小题3分,共计30分)二、填空题(每题2分,共计20)11. 5x ;2a . 12.±2. 13.平行. 14.3.397×10715.8316.26或22㎝ 17. AC=AE (或BC=DE ,∠E=∠C ,∠B=∠D) 18.-20 19. 45 20.B6395三、计算题(21题3分,22题5分,共计8分)21.解:=1212y 2y- =12y ……3分22.解:=5x 5x 19x 14x 4x 222-++-+-=29x +- …3分 当x=0时,原式四、作图题(23题4分,24题423.解:理由是: 垂线段最短 . ……2分 作图……2分24.解每作对一个给1分五、解答题(第25题小4分,第26小题6分,共计10分)25.解:不会同意. ……2分 因为转盘中有两个3,一个2,这说明小丽去的可能性是3162=,而小丽去的可能性是61,所以游戏不公平. ……2分 26.解:根据小王的设计可以设宽为x 米,长为(x +5)米,根据题意得2x +(x +5)=35解得x=10.因此小王设计的长为x +. ……2分 根据题意得2x +(x +2解得x=11.因此小王设计的长为x +2=11+此时鸡场的面积为11×13=143(平方米). ……2分 六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27.解:(1)2001年该养鸡场养了2万只鸡.(答案不唯一)(2)2001年养了2万只;2002年养了3万只;2003年养了4万只;2004年养了3万只;2005年养了4万只;2006年养了6万只.(3)近似数.(4)比条形统计图更形象、生动.(能符合即可) ………(每小题1分) 28.解:小明的思考过程不正确. …1分添加的条件为:∠B=∠C (或∠A=∠D 、或符合即可)…3分在△ABO 和△DCO 中DCO ABO CD AB DOC AOB C B ∆≅∆⇒⎪⎩⎪⎨⎧=∠=∠∠=∠ …… 5分(答案不唯一) 七、探究拓展与应用(第29小题4分,第30小题7分,共计11分)29. (1)∠EAB=∠C ;同位角相等,两直线平行.(2)∠BAD=∠D ;内错角相等,两直线平行 (3)∠BAC +∠C=180°;同旁内角互补两直线平行.……对1个给1分,全对给4分. 30.(1)22b a -.(2)()b a -,()b a + ,()()b a b a -+ . (3)()()b a b a -+=22b a -.(4): 评分标准:每空1分,(4)小题各1分八、信息阅读题(6分)31.(1)解:由图象可以看出农民自带的零钱为5元;(2)()元5.030520=- (3)()()千克,千克453015154.02026=+=-…各2分 答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是0.5元;他一共带了45千克的土豆. …… 第(1)问和答各1分,(2)、(3)各2分.DCBA DC B AFED C BA EDCBA 第2题图nmba70°70°110°第3题图CBA2112第六题图DCBA 七年级数学第二学期期末考试试卷(二)(全卷满分:100分,考试时间:120分钟)选择题(把你认为正确的答案的序号填入刮号内,每小题3分,共24分)、下列各式计算正确的是 ( )A . a 2+ a 2=a 4B. 211a a a =÷- C. 226)3(x x = D. 222)(y x y x +=+2、在“妙手推推推”游戏中,主持人出示了一个9位数,让参加者猜商品价格,被猜的价格是一个4位数,也就是这个9位数从左到右连在一起的某4个数字,如果参与者不知道商品的价格,从这些连在一起的所有4位数中,猜中任猜一个,他猜中该商品的价格的概率是 ( )A.91B. 61 C. 51 D. 31 3、一列火车由甲市驶往相距600㎞的乙市,火车的速度是200㎞/时,火车离乙市的距离s(单位:㎞)随行驶时间t (单位:小时) 变化的关系用图表示正确的是4、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是 ( )60m ²,它的百万分之一相当于 ( )A. 小拇指指甲盖的大小B. 数学书封面的大小C. 课桌面的大小D. 手掌心的大小6、如右图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( ) A. 110° B. 115° C.125° D. 130°7、平面上4条直线两两相交,交点的个数是 ( )A. 1个或4个B. 3个或4个C. 1个、4个或6个D. 1个、3个、4个或6个 8、如图,点E 是BC 的中点,AB ⊥BC , DC ⊥BC ,AE 平分∠BAD ,下列结论: ① ∠A E D =90° ② ∠A D E = ∠ C D E ③ D E = B E ④ AD =AB +CD ,四个结论中成立的是 ( )A. ① ② ④B. ① ② ③C. ② ③ ④D. ① ③ ④ 二、填空题(把你认为正确的答案填入横线上,每小题3分,共30分)9、计算)1)(1(+-x x = 。
北师大版七年级下数学期末总复习(培优)一.填空题(共32小题)1.已知m=,n=,那么2016m﹣n=.2.在学习整式乘法的时候,我们发现一个有趣的问题:将上述等号右边的式子的各项系数排成下表,如图:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3这个图叫做“杨辉三角”,请观察这些系数的规律,直接写出(a+b)5=,并说出第7排的第三个数是.3.已知x4﹣5x3+ax2+bx+c能被(x﹣1)2整除,则(a+b+c)2=.4.我们知道,同底数幂的乘法法则为:a m•a n=a m+n(其中a≠0,m,n为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)•h(n),请根据这种新运算填空:(1)若h(1)=,则h(2)=;(2)若h(1)=k(k≠0),那么h(n)•h(2017)=(用含n和k的代数式表示,其中n为正整数)5.已知(a﹣2017)2+(2018﹣a)2=5,则(a﹣2017)(a﹣2018)=6.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22﹣12,5=32﹣22,7=42﹣32,8=32﹣12,12=42﹣22,16=52﹣32,15=42﹣12,21=52﹣22,27=62﹣32……)从上面的例子中可以看到所有大于3的奇数都是智慧数,则2021是第个“智慧数”;第2021个“智慧数”是.7.如图,一个直角三角形与一个正方形在同一水平线上,此三角形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x,三角形与正方形重叠部分的面积为y,在下面的平面直角坐标系中,线段AB表示的是三角形在正方形内部移动的面积图象,C点表示的是停止运动后图象的结束点,下面有三种补全图象方案,正确的方案是.8.如图,△ABC的外角平分线CP和内角平分线BP相交于点P,若∠BPC=80°,则∠CAP=.9.如图,在△ABC中,点D,E,F分别在三边上,E是AC的中点,AD,BE,CF交于一点G,BC=3DC,S△GEC=3,S△GBD=8,则△ABC的面积是.10.如图,BP是△ABC的内角∠ABC的角平分线,交外角∠ACD的角平分线CP于点P,已知∠A=70°,则∠P的度数为.11.如图,在五边形ABCDE中,已知∠BAE=120°,∠B=∠E=90°,AB=BC=2,AE=DE=4,在BC、DE上分别找一点M、N,则△AMN的最小周长为.12.如图,在△ABC中,AB=6cm,AC=4cm,BD平分∠ABC,CD平分∠ACB,EF过点D且EF∥BC,则△AEF的周长是cm.13.已知(2021﹣a)2+(a﹣2019)2=7,则代数式(2021﹣a)(a﹣2019)的值为.14.计算:(﹣3)2013•(﹣)2011=.15.已知a﹣b=b﹣c=,a2+b2+c2=1,则ab+bc+ca的值等于.16.若m为正实数,且m﹣=3,则m2﹣=.17.已知a+=3,则a2+的值是.18.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是.19.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).20.在代数式a,π,ab,a﹣b,,x2+x+1,5,2a,中,整式有个;单项式有个,次数为2的单项式是;系数为1的单项式是.21.如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1﹣S2=.22.计算:2(1+)(1+)(1+)(1+)+=.23.多项式(mx+8)(2﹣3x)展开后不含x一次项,则m=.24.如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是.25.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=33°,则∠E=.26.如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1=.27.如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形纸片的两条直角边相交成∠1、∠2,则∠2﹣∠1=.28.如图,将一张长方形纸片ABCD折叠成如图所示的形状,∠EGC=26°,则∠DFG=.29.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=度.30.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置,若∠EFB=65°,则∠AED′等于°.31.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是.32.如图①是长方形纸带,∠DEF=α,将纸带沿EF折叠成图②,再沿BF折叠成图③,则图③中的∠CFE 的度数是.二.解答题(共23小题)33.阅读下列材料:一般地,n个相同的因数a相乘记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=,log216=,log264=.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M+log a N=;(a>0且a≠1,M>0,N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.34.已知5m=2,5n=4,求52m﹣n和25m+n的值.35.已知(x3+mx+n)(x2﹣3x+1)展开后的结果中不含x3和x2项.(1)求m、n的值;(2)求(m+n)(m2﹣mn+n2)的值.36.阅读下列解答过程:已知:x≠0,且满足x2﹣3x=1.求:的值.解:∵x2﹣3x=1,∴x2﹣3x﹣1=0∴,即.∴==32+2=11.请通过阅读以上内容,解答下列问题:已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7,求:(1)的值;(2)的值.37.某城市对用户的自来水收费实行阶梯水价,收费标准如下表所示:月用水量不超过12吨的部分超过12吨不超过18超过18吨的部分吨的部分收费标准(元/吨) 2.00 2.50 3.00(1)某用户5月份缴水费45元,则该用户5月份的用水量是多少?(2)某用户想月所缴水费控制在20元至30元之间,则该用户的月用水量应该如何控制?(3)若某用户的月用水量为m吨,请用含m的代数式表示该用户月所缴水费.38.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格.距离地面高度(千米)012345温度(℃)201482﹣4﹣10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你能猜出距离地面6千米的高空温度是多少吗?39.宁安市与哈尔滨市两地相距360千米.甲车在宁安市,乙车在哈尔滨市,两车同时出发,相向而行,在A地相遇.为节约费用(两车相遇并换货后,均需按原路返回出发地),两车换货后,甲车立即按原路返回宁安市.设每车在行驶过程中速度保持不变,两车间的距离y(千米)与时间x(小时)的函数关系如图所示.根据所提供的信息,回答下列问题:(1)求甲、乙两车的速度;(2)说明从两车开始出发到5小时这段时间乙车的运动状态.40.如图,AC、BD相交于O,BE、CE分别平分∠ABD、∠ACD,且相交于点E.求证:∠E=(∠A+∠D).41.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE =BD+CE.(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.42.已知△ABC,点D、F分别为线段AC、AB上两点,连接BD、CF交于点E.(1)若BD⊥AC,CF⊥AB,如图1所示,试说明∠BAC+∠BEC=180°;(2)若BD平分∠ABC,CF平分∠ACB,如图2所示,试说明此时∠BAC与∠BEC的数量关系;(3)在(2)的条件下,若∠BAC=60°,试说明:EF=ED.43.在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E.(1)如图1,连接EC,求证:△EBC是等边三角形;(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG与AD之间的数量关系;(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G.试探究ND,DG与AD数量之间的关系,并说明理由.44.如图,AB=50km,AB到沪渝高速公路直线X的距离分别为10km和40km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP与直线X 垂直,垂足为P),P到A、的距离之和S1=P A+PB,图(2)是方案二的示意图(点A关于直线X的对称点是A′,连接B′A′交直线X于点P),P到A、B的距离之和S2=P A+PB.(1)求S1、S2,并比较它们的大小;(2)请你说明S2=P A+PB的值为最小;(3)假设另外一条高速公路Y与沪渝高速公路垂直,如图(3),B到直线Y的距离为30km,请你在X 旁和Y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小.并求出这个最小值.45.如图(1),A、B两单位分别位于一条封闭街道的两旁(直线L1、L2是街道两边沿),现准备合作修建一座过街人行天桥.(1)天桥应建在何处才能使由A经过天桥走到B的路程最短?在图(2)中作出此时桥PQ的位置,简要叙述作法并保留作图痕迹.(注:桥的宽度忽略不计,桥必须与街道垂直).(2)根据图(1)中提供的数据计算由A经过天桥走到B的最短路线的长.(单位:米)46.把两个全等的直角三角板的斜边重合,组成一个四边形ACBD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,当∠MDN绕点D旋转时,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的条件下,若将M、N改在CA、BC的延长线上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)47.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A 点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?48.在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时=;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.49.如图,在等腰△ABC中,AB=AC=3cm,∠B=30°,点D在BC边上由C向B匀速运动(D不与B、C重合),匀速运动速度为1cm/s,连接AD,作∠ADE=30°,DE交线段AC于点E.(1)在此运动过程中,∠BDA逐渐变(填“大”或“小”);D点运动到图1位置时,∠BDA=75°,则∠BAD=.(2)点D运动3s后到达图2位置,则CD=.此时△ABD和△DCE是否全等,请说明理由;(3)在点D运动过程中,△ADE的形状也在变化,判断当△ADE是等腰三角形时,∠BDA等于多少度(请直接写出结果)50.如图,AC平分钝角∠BAE交过B点的直线于点C,BD平分∠ABC交AC于点D,且∠BAD+∠ABD=90°.(1)求证:AE∥BC;(2)点F是射线BC上一动点(点F不与点B,C重合),连接AF,与射线BD相交于点P.(ⅰ)如图1,若∠ABC=45°,AF⊥AB,试探究线段BF与CF之间满足的数量关系;(ⅱ)如图2,若AB=10,S△ABC=30,∠CAF=∠ABD,求线段BP的长.51.如图1,在△ABC中,BO⊥AC于点O,AO=BO=3,OC=1,过点A作AH⊥BC于点H,交BO于点P.(1)求线段OP的长度;(2)连接OH,求证:∠OHP=45°;(3)如图2,若点D为AB的中点,点M为线段BO延长线上一动点,连接MD,过点D作DN⊥DM 交线段OA延长线于N点,则S△BDM﹣S△ADN的值是否发生改变,如改变,求出该值的变化范围;若不改变,求该式子的值.52.已知点C是∠MAN平分线上一点,∠BCD的两边CB、CD分别与射线AM、AN相交于B,D两点,且∠ABC+∠ADC=180°.过点C作CE⊥AB,垂足为E.(1)如图1,当点E在线段AB上时,求证:BC=DC;(2)如图2,当点E在线段AB的延长线上时,探究线段AB、AD与BE之间的等量关系;(3)如图3,在(2)的条件下,若∠MAN=60°,连接BD,作∠ABD的平分线BF交AD于点F,交AC于点O,连接DO并延长交AB于点G.若BG=1,DF=2,求线段DB的长.53.【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D在直线L上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.【探究发现】(1)如图2,某数学兴趣小组运用从特殊到一般的数学思想,发现当点D移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;【数学思考】(2)如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程.54.如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.55.快车与慢车分别从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1h,然后按原路原速返回,快车比慢车晚1h到达甲地,快慢两车距各自出发地的路程y(km)与所用的时x(h)的关系如图所示.(1)甲乙两地之间的路程为km;快车的速度为km/h;慢车的速度为km/h;(2)出发h,快慢两车距各自出发地的路程相等;(3)快慢两车出发h相距150km.参考答案一.填空题(共32小题)1.1;2.a5+5a4b+10a3b2+10a2b3+5ab4+b5;15;3.16;4.;k n+2017;5.2;6.1514;2697;7.乙;8.10°;9.30;10.35°;11.4;12.10;13.﹣;14.9;15.﹣;16.3;17.7;18.6;19.ab;20.8;5;ab;a;21.﹣9;22.4;23.12;24.15°;25.82°;26.40°;27.90°;28.77°;29.80;30.50;31.55°;32.180°﹣3α;。
最新七年级数学第二学期期末复习水平测试(北师大版附答案)一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分) 1. 下面各式计算正确的是 ( )(A )527()a a =(A )22122xx -=(C )236326a a a =(D )826a a a ÷=2. 满足下列条件的△ABC ,其中是直角三角形的有( ).①∠A =2∠B =3∠C ; ②∠A =∠B =30°; ③∠A +∠B =∠C ; ④C B A ∠=∠=∠3121 ; ⑤∠A +∠B =2∠C . (A )1个 (B )2个 (C )3个 (D )4个3. 使两个直角三角形全等的条件是( ) (A )一个锐角对应相等 (B )两个锐角对应相等 (C )一条边对应相等 (D )两条直角边对应相等4. 下列说法中合理的是( ).(A )天气预报员说今天某地区下雨的概率是90%,由此可以断定今天该地区一定要下雨 (B )小莹在10次抛图钉的试验中发现3次钉尖朝上,据此他说钉尖朝上的概率一定是30%(C )某种福利彩票的中奖概率是1%,买一张这样的彩票不一定中奖,而买100张这样的彩票一定会中奖(D )在一次课堂上进行的试验中,甲、乙两组同学估计一枚硬币落地后正面朝上的概率分别为0.48和0.525.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是( )A.14B.15C.16D.17 6.下列说法中,正确的个数是( )①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的夹角对应相等的两个直角三角形全等;③一锐角和斜边对应相等的两个直角三角形全等; ④两个锐角对应相等的两个直角三角形全等(A) 1个 (B)2 个 (C)3个 (D)4个7.某地区植树造林2007年达到2万公顷,预计从2008年开始以后每年比前一年多植树1万公顷(2008年为第一年),则年植树面积y(万亩)与年数x(年)的关系是( ) (A) y=2+0.5x (B)y=2+x (C)y=2+2x (D) y=2x 8.下列四个图案中是轴对称图形的是( )(A)(1)(2)(3) (B)(1)(3)(4) (C)(2)(3)(4)(D)(1)(2)(4)9. 如图1,向高为H的圆柱形水杯中注水,已知水杯底面圆半径为1,那么注水量(x)与水深(y)的关系的图象可能是()(A)(B)(C)(D)图1 10. 如图2,在ΔABC中,∠A=52O,∠ABC 与∠ACB的角平分线交于点D1,∠ABD1与∠ACD1的角平分线交于点D2,依次类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是().(A)60 (B)56 (C)94 (D)68二、填一填,要相信自己的能力!(每小题3分,共30分)1.27x y-的系数是_________;次数是_________.若多项式34n nx x++-是六次三项式,则n=_______.2. 下岗职工购进一批苹果,到集贸市场零售,已知卖出的苹果数量x(千克)与售价y(元)的关系如下表:3. 若225a b+=,2ab=,则()2a b+值为___ ____.4. 若整式142++Qx是完全平方式,请你写一个满足条件的单项式Q是.5. 近似数61082.3⨯精确到位,有个有效数字,把3.9868保留二个有效数字的近似值是.6. 如图3,ABC△中,90ACB=∠,CD AB⊥于D,则图中所有与B∠互余的角是AB CD1D2_____.7. 光在真空中的速度大约为3×105千米/秒,太阳系以外的距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年,一年以3×107计算,比邻星与地球的距离约为____________________千米(保留三个有效数字)8. 探照灯、锅形天线、汽车灯以及其它很多灯具都可以反射光线.如图4所示是一探照灯灯 碗,侧面看上去,从位于O 点的灯泡发出的两束光线OB OC 、经灯碗反射以后平行射出.如果图中ABO DCO αβ∠=∠=,,则B O C∠的度数为 .9. 用7根火柴棒首尾顺次连接摆成一个..三角形,能摆成不同的三角形的个数为 .10. 如图5是淮口工业集中发展区中某厂房的平面图,请你指出,其中全等的有 组.三、做一做,要注意认真审题呀!(本大题共36分) 1. (6分)先化简后求值:2[()()()]2x y x y x y x -++-÷,其中3 1.5x y ==,. 2.(10分) 如图6,AB ∥CD ,直线EF 分别交AB 、CD 点E 、F ,EG 平分∠AEF ,∠1=40°,求∠2的度数.3. (10分)某小商店开展购物摸奖活动,声明:购物时每消费2元可获得一次摸奖机会,每次..摸奖时,购物者从标有数字1,2,3,4,5的5个小球(小球之间只有号码不同)中摸出一球,若号码是2就中奖,奖品为一张精美图片.(1)摸奖一次时,得到一张精美图片的概率是多少?得不到精美图片的概率是多少? (2)一次,小聪购买了10元钱的物品,前4次摸奖都没有摸中,他想:“第5次摸奖DAB1 2CADA B EC G FD ) 1 2 ) 图6我一定能摸中”,你同意他的想法吗?说说你的想法.4.(10分)如图7是小明用棋子摆成的字母“T”,它的主要特点是轴对称图形.请你再用棋子摆出两个轴对称图形的字母(用○代表棋子).四、拓广探索(本大题共24分)1.(12分)如图8①,AB∥CD,EO和FO交于点O.(1)试猜想∠1,∠2,∠3的大小关系,并说明理由.(2)如图8②,直线l1∥l2,AB⊥l1,垂足为O,BC与l2,相交于点E,若∠1=300,则∠B= .(3)如图8③,AB∥CD,图中∠1,∠2,∠3,…,∠2n-1,∠2n之间有什么关系?图8 ①图8 ②图8 ③2.(12分)司机小王开车从A地出发去B地送信,其行驶路s与行驶时间t之间的关系如图9所示,当汽车行驶若干小时到达C地时,汽车发生了故障,需停车检修,修理了几小时后,为了按时赶到B地,汽车加快了速度,结果正好按时赶到,根据题意结合图回答下列问题:①上述问题中反映的是哪两个变量之间的关系?指出自变量和因变量.②汽车从A地到C地用了几小时?平均每小时行驶多少千米?③汽车停车检修了多长时间?车修好后每小时走多少千米?图9参考答案:一、1.D ;2.B ;3.D ;4.D ;5.B 6.B 7.A 8.B 9.A ;10.B ;二、1. 17-,3,3; 2. y=2.1x; 3. 9; 4. 44x 或24x -或4x ±或1-; 5. 万,3,4.0 6. A ∠和2∠; 7. 3.80×1013;8. αβ+; 9. 2个; 10.2;三、1. 原式x y =-. 当3 1.5x y ==,时,3 1.5 1.5x y -=-=. 2.因为AB ∥CD ,∠AEG=∠1=40°,又因为EG 平分∠AEF 所以∠AEF=2∠AEG=80°,所以∠2=180°-80°=100° .3. (1)得到一张精美图片的概率是15P =;得不到一张精美图片的概率是45P =; (2)不同意,因为小聪第5次得到一张精美图片的概率仍是15,所以他第5次不一定中奖.4.略.四、1. (1)∠2=∠1+∠3.理由略.(2)由(1)中的结论有:∠B=∠MOB+∠BEN=∠MOB+∠1=900+300=1200. (3)∠1+∠3+…+∠2n-1=∠2+∠4+…+∠2n .理由略. 2. ①路程与时间之间的关系.自变量是时间,因变量是路程.②3小时,50千米/小时③检修了1小时,修后的速度为75千米/小时.。
第二学期期末达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.下列四个汉字中,可以看作是轴对称图形的是()2.某种芯片每个探针单元的面积为0.000 001 68 cm2,则0.000 001 68用科学记数法可表示为()A.1.68×10-5B.1.68×10-6C.0.168×10-7D.0.168×10-5 3.小华同学喜欢锻炼,周六他先从家跑步到新华公园,在那里与同学打一会儿羽毛球后又步行回家,下面能反映小华离家距离y与所用时间x之间关系的图象是()4.已知十个数据如下:63,65,67,69,66,64,66,64,65,68,将这些数据绘制成频率分布表,其中64.5~66.5这组的频率是()A.0.4 B.0.5 C.4 D.55.下面的说法中,不正确的是()A.两直线平行,同位角相等B.若∠α=∠β,则∠α和∠β是一对对顶角C.若∠α与∠β互为补角,则∠α+∠β=180°D.如果一个角的补角是130°,那么这个角的余角等于40°6.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=9 cm,则△DEB的周长是()A.6 cm B.7 cm C.8 cm D.9 cm(第6题)(第7题)7.如图,在△ABC和△DEF中,点B,F,C,D在同一条直线上,已知∠A=∠D,AB=DE,添加以下条件,不能判定△ABC≌△DEF的是()A.∠B=∠E B.AC=DFC.∠ACD=∠BFE D.BF=CD8.如图,在Rt△ABC中,∠ACB=90°,点M为BA延长线上一点,∠ABC的平分线BE和∠CAM的平分线AD相交于点P,分别交AC和BC的延长线于E,D两点.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF,并延长交DH于点G,则下列结论:①∠APB=45°;②PF=P A;③BD-AH=AB,其中正确的是()A.①B.①②C.①②③D.②③(第8题)(第9题)(第13题)二、填空题(共5小题,每小题3分,计15分)9.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2 cm的正方形区域内,图中黑色部分的总面积为2 cm2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_________________________.10.规定a*b=2a×2b,如2*3=22×23=25=32.若2*(x+1)=16,则x的值为________.11.一个三角形的三条边的长分别是5,7,10,另一个三角形的三条边的长分别是5,3x-2,2y+1,若这两个三角形全等,则x+y的值是__________.12.为了加强公民的节水意识,某市制定了如下用水收费标准:①每户每月的用水不超过10立方米时,水价为每立方米2.2元;②超过10立方米时,超出部3 分按每立方米3.8元收费,该市每户居民6月份用水x 立方米(x >10),应交水费y 元,则y 与x 的关系式为________________.13.如图,在△ABC 中,AB =AC ,D 是BC 边的中点,EF 垂直平分AB 边,动点P 在直线EF 上,若BC =12,S △ABC =84,则线段PB +PD 的最小值为____________.三、解答题(共13小题,计81分,解答应写出过程) 14.(5分)计算:(π-3)0+⎝ ⎛⎭⎪⎫-12-2+⎝ ⎛⎭⎪⎫142 023×(-4)2 024.15.(5分)化简:[(a +2b )(a -2b )-(a -2b )2]÷(-2b ).16.(5分)先化简,再求值:[(3x -2y )2-(x -y )(9x +2y )]÷⎝ ⎛⎭⎪⎫-12y ,其中x =1,y =-2.17.(5分)已知:如图,DG ⊥BC ,AC ⊥BC ,∠1=∠2.试说明EF ∥CD . 小明给出了如下不完整的解题过程,请你帮助小明完成.(第17题)解:∵DG ⊥BC ,AC ⊥BC (已知),∴∠DGB =∠ACB =90°( ), ∴DG ∥AC ( ), ∴∠2=________( ), ∵∠1=∠2(已知),∴∠1=________(等量代换),∴EF ∥CD ( ). 18.(5分)尺规作图(不写作法,请保留作图痕迹).已知:如图,△ABC ,求作:在BC 边上求作点D ,使得S △ABD =S △ACD .(第18题)19.(5分)如图,AC 平分∠BAD ,CB ⊥AB ,CD ⊥AD ,垂足分别为B ,D .(第19题)(1)试说明△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.20.(5分)一个不透明的袋子中装有9个红球和2个白球,这些球除颜色外都相同,从中任意摸出一个球.(1)“摸到红球”是________事件,“摸到黑球”是________事件;(填“不可能”或“必然”或“随机”)(2)如果要使摸到红球的概率为35,需要往袋子里再放入多少个白球?21.(6分)在高铁站广场前有一块长为(2a+b)m,宽为(a+b)m的长方形空地(如图).计划在中间留两个长方形喷泉(图中阴影部分),两喷泉及周边留有宽度为b m的人行通道.(第21题)(1)请用代数式表示广场面积并化简;(2)请用代数式表示两个长方形喷泉(图中阴影部分)的面积并化简.522.(7分)如图,点O在直线AB上,OC⊥OD,∠D与∠1互余,F是DE上一点,连接OF.(第22题)(1)试说明:ED∥AB;(2)若OF平分∠COD,∠OFD=70°,求∠1的度数.23.(7分)如图,点P关于OA,OB轴对称的对称点分别为C,D,连接CD,交OA于M,交OB于N.(第23题)(1)若CD的长为18 cm,求△PMN的周长;(2)若∠CPD=131°,∠C=21°,∠D=28°,求∠MPN.24.(8分)小明家、新华书店、学校在一条笔直的公路旁,某天小明骑车上学,当他骑了一段后,想起要买某本书,于是又返回到刚经过的新华书店,买到书后继续骑车去学校,他本次骑车上学的过程中离家距离与所用的时间的关系如图所示,请根据图象提供的信息回答下列问题:(1)小明家到学校的距离是________米;小明在书店停留了________分;(2)如果骑车的速度超过了300米/分就超越了安全限度,小明买到书后继续骑车到学校的这段时间的骑车速度在安全限度内吗?请说明理由;(第24题)(3)小明出发后多长时间离家的距离为900米?725.(8分)如图,AB=AC=16 cm,BC=10 cm,点D为AB的中点,点P在边BC上以每秒2 cm的速度由点B向点C运动,同时,点M在边CA上由点C 向点A匀速运动.(1)若点M的运动速度与点P的运动速度相同,经过1 s后,△BPD与△CMP是否全等?请说明理由;(2)若点M的运动速度与点P的运动速度不相等,当点M的运动速度为多少时,能够使△BPD与△CMP全等?(第25题)26.(10分)【问题发现】(1)如图①,在△ABC与△CDE中,∠B=∠E=∠ACD =90°,AC=CD,B,C,E三点在同一直线上,AB=3,ED=4,则BE=________;【问题提出】(2)如图②,在Rt△ABC中,∠ABC=90°,BC=4,过点C作CD⊥AC,且CD=AC,求△BCD的面积;【问题解决】(3)如图③,在四边形ABCD中,∠ABC=∠CAB=∠ADC=45°,△ACD的面积为12且CD的长为6,求△BCD的面积.(第26题)9答案一、1.A 2.B 3.B 4.A 5.B6.D 点拨:因为AD 平分∠CAB ,∠C =90°,DE ⊥AB ,所以∠CAD =∠BAD ,∠C =∠AED =90°.在△CAD 和△EAD 中,⎩⎨⎧∠C =∠DEA ,∠CAD =∠EAD ,AD =AD ,所以△CAD ≌△EAD ,所以AC =AE ,CD =DE . 因为AC =BC ,所以BC =AE .所以△DEB 的周长为DB +DE +BE =DB +CD +BE =CB +BE =AE +BE =AB =9 cm. 故选D. 7.D8.C 点拨:由题意可设∠MAP =∠P AC =x ,∠ABP =∠PBD =y ,则有⎩⎨⎧x =y +∠APB ,2x =2y +∠ACB , 可得∠APB =12∠ACB =45°,故①正确; 因为PF ⊥AD ,所以∠APF =90°, 所以∠APB =∠FPB =45°.在△PBA 和△PBF 中,⎩⎨⎧∠APB =∠FPB ,PB =PB ,∠ABP =∠FBP ,所以△PBA ≌△PBF ,所以P A =PF ,BA =BF ,故②正确;因为∠DPF =∠HCF =90°,∠DFP =∠HFC , 所以∠PDF =∠PHA .在△DPF 和△HP A 中,⎩⎨⎧∠DPF =∠HP A =90°,∠PDF =∠PHA ,PF =P A ,所以△DPF ≌△HP A ,所以DF =AH .11所以BD -AH =BD -DF =BF ,又因为BF =AB ,所以BD -AH =AB ,故③正确.所以其中正确的是①②③.故选C.二、9.0.5 10.1 11.152或712.y =3.8x -1613.14 点拨:连接AD ,AP .因为AB =AC ,D 是BC 边的中点,所以AD ⊥BC ,又因为BC =12,S △ABC =84,所以12×12×AD =84, 所以AD =14.因为EF 垂直平分AB ,所以P A =PB ,所以PB +PD =P A +PD ,所以当点A ,P ,D 在同一直线上时,PB +PD =P A +PD =AD ,即AD 的长度=PB +PD 的最小值,所以PB +PD 的最小值为14.三、14.解:原式=1+4+⎝ ⎛⎭⎪⎫-14×42 023×(-4) =1+4+(-1)×(-4)=1+4+4=9.15.解:原式=(a 2-4b 2-a 2+4ab -4b 2)÷(-2b )=(4ab -8b 2)÷(-2b )=-2a +4b .16.解:[(3x -2y )2-(x -y )(9x +2y )]÷⎝ ⎛⎭⎪⎫-12y =(9x 2-12xy +4y 2-9x 2-2xy +9xy +2y 2)÷⎝ ⎛⎭⎪⎫-12y =(-5xy +6y 2)÷⎝ ⎛⎭⎪⎫-12y =10x -12y .当x =1,y =-2时,原式=10×1-12×(-2)=34.17.垂直的性质;同位角相等,两直线平行;∠ACD ;两直线平行,内错角相等;∠ACD ;同位角相等,两直线平行18.解:如图,点D 即为所求.(第18题)19.解:(1)因为AC 平分∠BAD ,所以∠BAC =∠DAC .因为CB ⊥AB ,CD ⊥AD ,所以∠B =∠D =90°.在△ABC 和△ADC 中,⎩⎨⎧∠B =∠D ,∠BAC =∠DAC ,AC =AC ,所以△ABC ≌△ADC .(2)由(1)知:△ABC ≌△ADC ,所以BC =CD =3,S △ABC =S △ADC ,所以S △ABC =12AB ·BC =12×4×3=6,所以S △ADC =6,所以S 四边形ABCD =S △ABC +S △ADC =12.20.解:(1)随机;不可能(2)设需要往袋子里再放入x 个白球,根据题意,得35×(9+2+x )=9,解得x =4, 则需要往袋子里再放入4个白球.21.解:(1)广场面积为(a +b )(2a +b )=(2a 2+3ab +b 2)(m 2).(2)两个长方形喷泉(图中阴影部分)的面积为(a +b -2b )(2a +b -3b )=(a -b )(2a -2b )=(2a 2-4ab +2b 2)(m 2).22.解:(1)因为OC ⊥OD ,所以∠COD =90°,因为∠1+∠COD +∠BOD =180°,所以∠1+∠BOD =90°,因为∠D与∠1互余,所以∠1+∠D=90°,所以∠D=∠BOD,所以ED∥AB.(2)因为OF平分∠COD,∠COD=90°,所以∠FOD=45°,因为∠OFD=70°,所以∠D=180°-∠OFD-∠FOD=65°,因为∠1+∠D=90°,所以∠1=25°.23.解:(1)由题意知PM=CM,ND=NP.所以PN+PM+MN=CM+MN+ND=CD=18 cm,所以△PMN的周长为18 cm.(2)因为PM=CM,PN=ND,所以∠C=∠CPM=21°,∠D=∠DPN=28°,所以∠MPN=∠CPD-∠CPM-∠DPN=131°-21°-28°=82°.24.解:(1)1 500;4(2)由图象可知:12~14分时,平均速度=1 500-60014-12=450(米/分),因为450>300,所以小明买到书后继续骑车到学校的这段时间的骑车速度不在安全限度内.(3)从图象上看,小明出发后离家距离为900米时,一共有三个时间:①在0~6分时,平均速度为1 2006=200(米/分),设距家900米的时间为t1,则t1=900÷200=4.5(分);②在6~8分内,平均速度为1 200-6008-6=300(米/分),设距家900米的时间为t2,则1 200-300(t2-6)=900,解得t2=7;13③在12~14分内,平均速度为450米/分,设距家900米的时间为t 3,则600+450(t 3-12)=900,解得t 3=1223.综上,小明出发后4.5分或7分或1223分离家的距离为900米.25.解:(1)△BPD 与△CMP 全等.理由如下:经过1 s 后,BP =2 cm ,CM =2 cm ,BD =12AB =8 cm ,CP =10-2=8(cm),所以BP =CM ,BD =CP .因为AB =AC ,所以∠B =∠C ,在△BDP 和△CPM 中,⎩⎨⎧BD =CP ,∠B =∠C ,BP =CM ,所以△BDP ≌△CPM .(2)由题意知△BPD 与△CMP 全等,因为CM ≠PB ,所以CM =BD =8 cm ,PC =PB =5 cm ,所以点M 的运动速度为8÷52=165(cm/s).26.解:(1)7(2)过点D 作DE ⊥BC 交BC 的延长线于E ,如图①.因为DE ⊥BC ,CD ⊥AC ,所以∠E =∠ACD =90°,所以∠ACB =90°-∠DCE =∠CDE .在△ABC 和△CED 中,⎩⎨⎧∠ABC =∠E =90°,∠ACB =∠CDE ,AC =CD ,所以△ABC ≌△CED ,所以BC =ED =4,15所以S △BCD =12BC ·DE =8.(第26题) (3)过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 交DC 的延长线于点F ,如图②.因为△ACD 的面积为12且CD 的长为6,所以12×6×AE =12,所以AE =4.因为∠ADC =45°,AE ⊥CD ,所以△ADE 是等腰直角三角形,所以DE =AE =4,所以CE =CD -DE =2,因为∠ABC =∠CAB =45°,所以∠ACB =90°,AC =BC ,所以∠ACE =90°-∠BCF =∠CBF .在△ACE 和△CBF 中,⎩⎨⎧∠AEC =∠F =90°,∠ACE =∠CBF ,AC =BC ,所以△ACE ≌△CBF ,所以BF =CE =2,所以S △BCD =12CD ·BF =6.。
北师大版七年级第二学期期末数学试卷及答案一、选择题(共9小题).1.(2分)下列计算正确的是()A.a3•a3=2a3 B.3a3﹣a3=2a6C.a6÷a3=a2 D.(﹣2a3)2=4a62.(2分)下列图案不是轴对称图形的是()A.B.C.D.3.(2分)下列各式中,能用平方差公式进行计算的是()A.(﹣2x﹣y)(2x﹣y)B.(﹣2x﹣y)(2x+y)C.(2x﹣y)(y﹣2x)D.(2x﹣y)(2x﹣y)4.(2分)“a是实数,a2≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件5.(2分)如图,AB∥CD,∠ACB=90°,CE⊥AB,垂足为E,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个6.(2分)如图,在△ABC中,BD是AC边上的高,AE平分∠CAB,交BD于点E,AB=8,DE=3,则△ABE 的面积等于()A.15B.12C.10D.147.(2分)已知多项式x﹣a与x2+2x﹣1的乘积中不含x2项,则常数a的值是()A.﹣1B.1C.2D.﹣28.(2分)小明从家出发走了10分钟后到达了离家800米的书店买书,在书店停留了10分钟,然后用15分钟返回到家,下列图象能表示小明离家y(米)与时间x(分)之间关系的是()A.B.C.D.9.(2分)如图,AB∥CD,则下列等式正确的是()A.∠1=∠2+∠3B.∠1﹣∠2=180°﹣∠3C.∠1﹣∠3=180°﹣∠2D.∠1+∠2+∠3=180°二、填空题(每小题2分,共18分)10.(2分)医学家发现新冠病毒直径约为0.00000006米,数据0.00000006用科学记数法表示为.11.(2分)若b m=8,b n=5,则b m+n=.12.(2分)一个等腰三角形的两边长分别是4和9,则周长是.13.(2分)已知x+y=5,xy=﹣24,则x2+y2=.14.(2分)一个等腰三角形的周长是60cm,腰为xcm,底为ycm,请列出y与x之间的关系式为.15.(2分)一个袋子里有n个除颜色外完全相同的小球,其中有8个黄球,每次摸球前先将袋子里的球摇匀,任意摸出一球记下颜色后放回,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.4,那么可以推算出n大约是.16.(2分)已知△ABC≌△DEF,BC=EF=5cm,△ABC的面积是20cm2,那么△DEF中EF边上的高是cm.17.(2分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点N,交AC于点M,连接BM,则∠MBC=度.18.(2分)如图,△ABC的面积为S,BD=BC,AE=AC,连接AD和BE交于点O,连接CO,则△ABO 的面积为.若BD=BC,AE=AC,则△ABO的面积为.三、计算(19题每小题8分,共8分;20题8分)19.(8分)(1)()0÷(4)﹣2(2)4xy•(﹣xy2z3)÷(2x2y3)20.(8分)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中a=,b=﹣25.四、(21题6分,22题8分)21.(6分)如图,点B在线段AC上,点E在线段DF上,连接DB,EC,AF,若∠A=∠F,DB∥EC,下面写出了说明“∠C=∠D”的过程,请将说明过程补充完整.∵∠A=∠F(已知)∴DF∥.()∴∠DEC+∠C=180°.()∵DB∥EC(已知)∴∠DEC+∠=180°.()∴∠C=∠D.()22.(8分)现有除数字外完全相同的10张卡片,上面分别标有1,2,3,4,5,6,7,8,9,10.小明和小亮两人合作完成一个游戏,规则是小明先随意抽取1张卡片,然后由小亮猜这张卡片上标的数,如果小亮猜对了,则小亮获胜,如果猜错了,则小明获胜.(1)这个游戏对双方公平吗?(2)下面这几个游戏规则,你认为对双方公平的是哪几个?(只写出序号即可)①猜奇数还是偶数;②猜不是3的倍数;③猜是3的倍数;④猜大于5的数;⑤猜不大于5的数.(3)如果你是小亮,为了获胜,你想选择上面(2)中的哪一个猜法?并说明理由.五、(本题6分)23.(6分)校园的一角如图所示,其中线段AB,BC,CD表示围墙,围墙内是学生的一个活动区域,小明想在图中的活动区域中找到一点P,使得点P到三面围墙的距离都相等.请在图中找出点P.(用尺规作图,不用写作法,保留作图痕迹)六、(本题8分)24.(8分)某路公交车每月有x人次乘坐,每月的收入为y元,每人次乘坐的票价相同,下面的表格是y与x的部分数据.(1)下表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)请将表格补充完整.x/人次50010001500200025003000…y/元1000200040006000…(3)若该路公交车每月的支出费用为4000元,如果该路公交车每月的利润要达到10000元,则每月乘坐该路公交车要达到多少人次?(利润=收入﹣支出费用)七、(本题10分)25.(10分)(1)如图1,已知射线BC,MA⊥BC,DF⊥BC,垂足分别为E和F,若∠BAM+∠D=180°,请判断AB和CD的位置关系,并说明理由.(2)在(1)的条件下,连接DE,直接写出∠BAE,∠EDC,∠AED之间的数量关系.(3)如图2,AB∥CD,EF∥CG,若∠A=32°,∠E=60°,请求出∠C的度数.八、(本题10分)26.(10分)已知:如图1,在△ABC和△ADE中,∠C=∠E,∠CAE=∠DAB,BC=DE.(1)请说明△ABC≌△ADE.(2)如图2,连接CE和BD,DE,AD与BC分别交于点M和N,∠DMB=56°,求∠ACE的度数.(3)在(2)的条件下,若CN=EM,请直接写出∠CBA的度数.参考答案一、选择题(下列各题的备选答案中,只有一一个是正确的.每小题2分,共18分)1.(2分)下列计算正确的是()A.a3•a3=2a3B.3a3﹣a3=2a6C.a6÷a3=a2D.(﹣2a3)2=4a6解:A.a3•a3=a6,故本选项不合题意;B.3a3﹣a3=2a3,故本选项不合题意;C.a6÷a3=a3,故本选项不合题意;D.(﹣2a3)2=4a6,故本选项符合题意.故选:D.2.(2分)下列图案不是轴对称图形的是()A.B.C.D.解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意;故选:C.3.(2分)下列各式中,能用平方差公式进行计算的是()A.(﹣2x﹣y)(2x﹣y)B.(﹣2x﹣y)(2x+y)C.(2x﹣y)(y﹣2x)D.(2x﹣y)(2x﹣y)解:(﹣2x﹣y)(2x﹣y)=﹣(2x+y)(2x﹣y),能用平方差公式进行计算;(﹣2x﹣y)(2x+y)=﹣(2x+y)2,不能用平方差公式进行计算;(2x﹣y)(y﹣2x)不能用平方差公式进行计算;(2x﹣y)(2x﹣y)=(2x﹣y)2,不能用平方差公式进行计算.故选:A.4.(2分)“a是实数,a2≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件解:a为实数,a2≥0,是一定成立的问题,是必然事件.故选:A.5.(2分)如图,AB∥CD,∠ACB=90°,CE⊥AB,垂足为E,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个解:∵CE⊥AB于点E,∴∠CEA=90°,∴∠CAB+∠ACE=90°,∵∠ACB=90°,∴∠CAB+∠ABC=90°,∵AB∥CD,∴∠ABC=∠DCB,∴∠DCB+∠CAB=90°,由上可得,图中与∠CAB互余的角有∠ACE、∠ABC、∠DCB,即图中与∠CAB互余的角有3个,故选:C.6.(2分)如图,在△ABC中,BD是AC边上的高,AE平分∠CAB,交BD于点E,AB=8,DE=3,则△ABE 的面积等于()A.15B.12C.10D.14解:过点E作EF⊥AB于点F,如图:∵BD是AC边上的高,∴ED⊥AC,又∵AE平分∠CAB,DE=3,∴EF=3,∵AB=8,∴△ABE的面积为:8×3÷2=12.故选:B.7.(2分)已知多项式x﹣a与x2+2x﹣1的乘积中不含x2项,则常数a的值是()A.﹣1B.1C.2D.﹣2解:(x﹣a)(x2+2x﹣1)=x3+2x2﹣x﹣ax2﹣2ax+a=x3+2x2﹣ax2﹣x﹣2ax+a=x3+(2﹣a)x2﹣x﹣2ax+a令2﹣a=0,∴a=2故选:C.8.(2分)小明从家出发走了10分钟后到达了离家800米的书店买书,在书店停留了10分钟,然后用15分钟返回到家,下列图象能表示小明离家y(米)与时间x(分)之间关系的是()A.B.C.D.解:根据题意,在前10分钟,离家的距离随时间增加而增加,当时间为10分钟,距离达到离家800米,在书店停留了10分钟,离家的距离仍为800米不变,然后用15分钟离家的距离由800米逐渐减少到0米,返回到家,故选:D.9.(2分)如图,AB∥CD,则下列等式正确的是()A.∠1=∠2+∠3B.∠1﹣∠2=180°﹣∠3C.∠1﹣∠3=180°﹣∠2D.∠1+∠2+∠3=180°解:如右图所示,∵CD∥AB,∴∠4=∠3,∵∠4=∠2+(180°﹣∠1),∴∠3=∠2+(180°﹣∠1),∴∠1﹣∠2=180°﹣∠3,故选:B.二、填空题(每小题2分,共18分)10.(2分)医学家发现新冠病毒直径约为0.00000006米,数据0.00000006用科学记数法表示为6×10﹣8.解:0.00000006=6×10﹣8.故答案为:6×10﹣8.11.(2分)若b m=8,b n=5,则b m+n=40.解:∵b m=8,b n=5,∴b m+n=b m×b n=8×5=40.故答案为:40.12.(2分)一个等腰三角形的两边长分别是4和9,则周长是22.解:当等腰三角形的腰为4时,三边为4,4,9,4+4<9,三边关系不成立,当等腰三角形的腰为9时,三边为4,9,9,三边关系成立,周长为4+9+9=22.故答案为:22.13.(2分)已知x+y=5,xy=﹣24,则x2+y2=73.解:∵x+y=5,xy=﹣24,∴x2+y2=(x+y)2﹣2xy=52﹣2×(﹣24)=73.故答案为73.14.(2分)一个等腰三角形的周长是60cm,腰为xcm,底为ycm,请列出y与x之间的关系式为y=﹣2x+60.解:依题意得2x+y=60,即y=﹣2x+60;故答案为:y=﹣2x+60.15.(2分)一个袋子里有n个除颜色外完全相同的小球,其中有8个黄球,每次摸球前先将袋子里的球摇匀,任意摸出一球记下颜色后放回,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.4,那么可以推算出n大约是20.解:根据题意得:=0.4,解得:n=20,则n大约是20个;故答案为:20.16.(2分)已知△ABC≌△DEF,BC=EF=5cm,△ABC的面积是20cm2,那么△DEF中EF边上的高是8cm.解:∵△ABC≌△DEF,BC=EF=5cm,△ABC的面积是20cm2,∴BC•h=20,即h=8,则△DEF中EF边上的高是8cm,故答案为:8.17.(2分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点N,交AC于点M,连接BM,则∠MBC=30度.解:∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=×(180°﹣40°)=70°,∵AB的垂直平分线交AB于点N,交AC于点M,∴∠ABM=40°,∴∠MBC=∠ABC﹣∠ABM=70°﹣40°=30°.故答案为:30.18.(2分)如图,△ABC的面积为S,BD=BC,AE=AC,连接AD和BE交于点O,连接CO,则△ABO 的面积为.若BD=BC,AE=AC,则△ABO的面积为.解:∵BD=BC,AE=AC,∴S△ABD=S△ACD,S△OBD=S△OCD,∴S△ABO=S△ACO,同理:S△ABO=S△BCO,∴S△ABO=S△ACO=S△BCO,∵S△ABO+S△ACO+S△BCO=S△ABC,∴S△ABO=;若BD=BC,AE=AC,∴S△ABO+S BDO=S,S△ABO+S△AEO=,S△BCO=3S△BDO,S△ACO=3S△AEO,∴S△AEO=﹣S△ABO,S△BDO=S△AEO,∴S△ABO+6S△AEO=S,即S△ABO+6(﹣S△ABO)=S,∴S△ABO=,故答案为,.三、计算(19题每小题8分,共8分;20题8分)19.(8分)(1)()0÷(4)﹣2(2)4xy•(﹣xy2z3)÷(2x2y3)解:(1)==16;(2)4xy•(﹣xy2z)3÷(2x2y3)=4xy•(﹣x3y6z3)÷(2x2y3)=﹣4x4y7z3÷(2x2y3)=﹣2x2y4z3.20.(8分)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中a=,b=﹣25.解:a(a+2b)﹣(a+1)2+2a=a2+2ab﹣(a2+2a+1)+2a=2ab﹣1,当,b=﹣25时,原式==﹣3.四、(21题6分,22题8分)21.(6分)如图,点B在线段AC上,点E在线段DF上,连接DB,EC,AF,若∠A=∠F,DB∥EC,下面写出了说明“∠C=∠D”的过程,请将说明过程补充完整.∵∠A=∠F(已知)∴DF∥AC.(内错角相等,两直线平行)∴∠DEC+∠C=180°.(两直线平行,同旁内角互补)∵DB∥EC(已知)∴∠DEC+∠D=180°.(两直线平行,同旁内角互补)∴∠C=∠D.(同角的补角相等)解:∵∠A=∠F(已知)∴DF∥AC.(内错角相等,两直线平行),∴∠DEC+∠C=180°.(两直线平行,同旁内角互补),∵DB∥EC(已知)∴∠DEC+∠D=180°.(两直线平行,同旁内角互补),∴∠C=∠D(同角的补角相等).故答案为:AC;内错角相等,两直线平行;两直线平行,同旁内角互补;D;两直线平行,同旁内角互补;同角的补角相等.22.(8分)现有除数字外完全相同的10张卡片,上面分别标有1,2,3,4,5,6,7,8,9,10.小明和小亮两人合作完成一个游戏,规则是小明先随意抽取1张卡片,然后由小亮猜这张卡片上标的数,如果小亮猜对了,则小亮获胜,如果猜错了,则小明获胜.(1)这个游戏对双方公平吗?(2)下面这几个游戏规则,你认为对双方公平的是哪几个?(只写出序号即可)①猜奇数还是偶数;②猜不是3的倍数;③猜是3的倍数;④猜大于5的数;⑤猜不大于5的数.(3)如果你是小亮,为了获胜,你想选择上面(2)中的哪一个猜法?并说明理由.解:(1)不公平,小明获胜的概率为,小亮获胜的概率仅为,小明获胜概率大于小刚的,所以不公平.(2))①公平,猜奇数或偶数的概率都是0.5,概率相等,所以是公平的;②③不公平,P(3的倍数)=,P(不是3的倍数)=,两者不相等,所以不公平;④⑤公平,P(大于5)==P(不大于5)=,所以是公平的;则双方公平的是①④⑤;(3)选择②,理由:不是3的倍数的数字有1,2,4,5,7,8,10共有7种情况,所以P(不是3的倍数)=>,获胜可能性大.五、(本题6分)23.(6分)校园的一角如图所示,其中线段AB,BC,CD表示围墙,围墙内是学生的一个活动区域,小明想在图中的活动区域中找到一点P,使得点P到三面围墙的距离都相等.请在图中找出点P.(用尺规作图,不用写作法,保留作图痕迹)解:如图,点P即为所求.六、(本题8分)24.(8分)某路公交车每月有x人次乘坐,每月的收入为y元,每人次乘坐的票价相同,下面的表格是y与x的部分数据.(1)下表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)请将表格补充完整.x/人次50010001500200025003000…y/元100020003000400050006000…(3)若该路公交车每月的支出费用为4000元,如果该路公交车每月的利润要达到10000元,则每月乘坐该路公交车要达到多少人次?(利润=收入﹣支出费用)解:(1)表格中反映了收入y(元)与人次x(人)两个变量之间的变化关系,其中人次x是自变量,y是因变量;(2)补全表格如下:x/人次50010001500200025003000…y/元y/元100020003000400050006000…故答案为:3000、5000;(3)每人次乘坐的票价为:1000÷500=2(元),由题意得,2x=4000+10000,解得,x=7000,答:每月乘坐该路公交车要达到7000人次.七、(本题10分)25.(10分)(1)如图1,已知射线BC,MA⊥BC,DF⊥BC,垂足分别为E和F,若∠BAM+∠D=180°,请判断AB和CD的位置关系,并说明理由.(2)在(1)的条件下,连接DE,直接写出∠BAE,∠EDC,∠AED之间的数量关系.(3)如图2,AB∥CD,EF∥CG,若∠A=32°,∠E=60°,请求出∠C的度数.解:(1)AB∥CD,理由如下:∵∠BAM+∠D=180°,又∵∠BAM+∠BAE=180°,∴∠D=∠BAE,∵MA⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,∴∠BAE+∠B=90°,∠D+∠DCF=90°,∴∠B=∠DCF,∴AB∥CD;(2)∵AB∥CD,∴∠DCF=∠B,∵∠DCF=∠DEC+∠EDC,∴∠B=∠DEC+∠EDC,∵∠AEB=∠AEC=90°,∴∠BAE=90°﹣∠B,∵∠DEC=90°﹣∠AED,∴90°﹣∠BAE=∠EDC+∠90°﹣∠AED,∴∠BAE+∠EDC=∠AED;(3)延长CD至点N交EF于点H,过E作EM∥CN,∵EM∥CN,∴∠MEF=∠EHC,∵AB∥CD,∴AB∥EM,∴∠A=∠AEM,∵∠AEF=∠AEM+∠MEF,∴∠AEF=∠A+∠EHC,∴∠EHC=60°﹣32°=28°,∵EF∥CG,∴∠C=∠EHC=28°.八、(本题10分)26.(10分)已知:如图1,在△ABC和△ADE中,∠C=∠E,∠CAE=∠DAB,BC=DE.(1)请说明△ABC≌△ADE.(2)如图2,连接CE和BD,DE,AD与BC分别交于点M和N,∠DMB=56°,求∠ACE的度数.(3)在(2)的条件下,若CN=EM,请直接写出∠CBA的度数.解:(1)∵∠CAE=∠DAB,∴∠CAE+∠CAD=∠DAB+∠CAD,即∠CAB=∠EAD,在△ABC和△ADE中,∴△ABC≌△ADE(AAS);(2)∵△ABC≌△ADE,∴∠CBA=∠EDA,AC=AE,在△MND和△ANB中,∵∠EDA+∠MND+∠DMB=180°,∠CBA+∠ANB+∠DAB=180°,又∵∠MND=∠ANB,∴∠DAB=∠DMB=56°,∴∠CAE=∠DAB=56°,∵AC=AE,∴∠ACE=∠AEC=,∴∠ACE=62°;(3)连接AM,由图(1)的∠A=∠C得∠MEA=∠ACN,而AE=AC,CN=EM,∴△AME≌△ANC(SAS),∴AM=AN,∠EAM=∠CAN,∵∠EAM=∠CAN,∴∠MAD=∠EAC=56°,∵AM=AN,∴∠AMN=∠ANM=(180°﹣∠MAD)=(180°﹣56°)=62°=∠BND,由(2)知∠DAB=56°,∴∠CBA=∠BND﹣∠DAB=62°﹣56°=6°.。
2016-2017学年北师大版七年级数学下册期末试题及答案2016-2017学年度第二学期期末测试题七年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分。
本试题共8页,满分为120分。
考试时间为120分钟。
答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置。
考试结束后,将本试卷和答题卡一并交回。
本考试不允许使用计算器。
第Ⅰ卷(选择题共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案写在试卷上无效。
一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列各式计算正确的是()A.x+x=2xB.xy^4/48=x^3yC.x^2=x^5D.(-x)^5=(-x)^82.下列各式中,不能用平方差公式计算的是( )A.(4x-3y)(-3y-4x)B.(2x-y)(2x+y)C.(a+b-c)(-c-b+a)D.(-x+y)(x-y)3.PM2.5是大气压中直径小于或等于0.xxxxxxxm的颗粒物,将0.xxxxxxx用科学记数法表示为()A.0.25×10^-5B.0.25×10^-6C.2.5×10^-5D.2.5×10^-64.如图,∠1与∠2互补,∠3=135°,则∠4的度数是()A、45°B、55°C、65°D、75°5.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间t(时)变化的图象(全程)如图所示。
有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时甲跑了10千米,乙跑了8千米;③乙的行程y与时间t的关系式为y=10t;④第1.5小时,甲跑了12千米。
七年级第二学期期末数学试卷含答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填在答题卷中)1.下列运算正确的是()A.a4+a5=a9B.a4∙a2=a8C.a3÷a3=0D.(﹣a2)3=﹣a62.下列各式中,相等关系一定成立的是()A.(x+6)(x﹣6)=x2﹣6B.(x﹣y)2=(y﹣x)2C.(x﹣2)(x﹣6)=x2﹣2x﹣6x﹣12D.(x+y)2=x2+y23.变量x与y之间的关系式y=x2﹣2,当自变量x=2时,因变量y的值是()A.﹣2B.﹣1C.0D.14.下列事件中,是必然事件的是()A.打开电视,它正在播广告B.抛掷一枚硬币,正面朝上C.打雷后会下雨D.367人中有至少两人的生日相同5.下列说法:①同位角相等;②对顶角相等;③等角的补角相等;④两直线平行,同旁内角相等,正确的个数有()A.1 个B.2 个C.3 个D.4 个6.如图,用尺规作一个角等于已知角,其作图原理是:由△ODC≌△O′D′C′得∠AOB=∠A′O′B′,其依据的定理是()A.SSS B.SAS C.ASA D.AAS7.如图,下列推理错误的是()A.∵∠1=∠3∴a∥b B.∵∠1=∠2∴a∥bC.∵∠3=∠5∴c∥d D.∵∠2+∠4=180°∴c∥d8.已知点P在直线MN外,点A、B、C均在直线MN上,PA=3cm,PB=3.5cm,PC=2cm,则点P到直线MN的距离()A.等于3cm B.等于2cm C.等于3.5cm D.不大于2cm9.小明做了6次掷质地均匀硬币的试验,在前5次试验中,有2次正面朝上,3次正面朝下,那么第6次试验,硬币正面朝上的概率是()A.1B.0C.0.5D.不稳定10.如图,它表示甲乙两人从同一个地点出发后的情况.根据图象判断,下列说法错误的是()A.甲是8点出发的B.乙是9点出发的,到10点时,他大约走了10千米C.到10点为止,乙的速度快D.两人在12点再次相遇二、填空题(本题共6小题,每小题3分,满分18分)11.用科学记数法表示0.0000123得.12.在直角三角形中,一个锐角比另外一个锐角的3倍还多10°,则这两个角分别为13.等腰三角形的顶角和一个底角的度数的比是4:1,则底角的度数为.14.已知△ABC中,AB=2,BC=5,且AC的长为偶数,则AC的长为.15.计算:(x3﹣2x)÷(x)=.16.如果将(a+b)n(n为非负整数)的每一项按字母a的次数由大到小排列,可以得到下面的等式(1),然后将每个式子的各项系数排列成(2):(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4根据规律可得:(a+b)5=.三.解答题(一)(本大题3小题,每小题6分,共18分)17.计算:2﹣2﹣|﹣2|﹣2+(π﹣3.14)018.如图,已知AB∥DC,AB=DC,则AD∥BC吗?说明理由.19.如图,假设可以随机在图中取点(1)这个点取在阴影部分的概率是.(2)在保留原阴影部分情况下,请你重新设计图案(直接在图上涂阴影),使得这个点取在阴影部分的概率为.四、解答题(二)(本大题3小题,每小题7分,共21分)20.先化简,再求值:(a﹣2)2+(2a﹣1)(a+4),其中a=﹣2.21.图a是一个长为2m、宽为2n的长方形,沿图中实现用剪刀均分成四块小长方形,然后按图b 的形状拼成一个正方形.(1)图b中,大正方形的边长是.阴影部分小正方形的边长是;(2)观察图b,写出(m+n)2,(m﹣n)2,mn之间的一个等量关系,并说明理由.22.如图,△ABC中(1)尺规作图:作AB的垂直平分线DE,交AC于点D,交AB于点E.(2)在(1)图中连DB,如果AC=10,BC=6,求△DBC的周长.五、解答题(三)(本大题3小题,每小题9分,共27分)23.已知某弹簧长度的最大挂重为25千克,在弹性限度内,用x表示的物体的质量,用y表示弹簧的长度,其关系如表:(1)弹簧不挂物体时的长度是cm;(2)随着x的变化,y的变化趋势是:;(3)根据表中数据的变化关系,写出y与x的关系式,并指出自变量的取值范围是.24.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,延长AE交BC的延长线于点F.(1)△DAE和△CFE全等吗?说明理由;(2)若AB=BC+AD,说明BE⊥AF;(3)在(2)的条件下,若EF=6,CE=5,∠D=90°,你能否求出E到AB的距离?如果能请直接写出结果.25.如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.如果点P在线段BC上以1cm/s的速度由B点向C点运动,同时,点Q在线段CA上有C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?参考答案一、选择题1.D.2.B.3.C.4.D.5.B.6.A.7.A.8.D.9.C.10.B.二、填空题11.1.23×10﹣5.12.20°、70°.13.30°.14.4或6.15.2x2﹣4x.16.a5+5a4b+10a3b2+10a2b3+5ab4+b5.三.解答题(一)17.解:原式=﹣2﹣2+1=﹣2.18.解:AD∥BC,理由如下:∵AB∥DC,∴∠BAC=∠DCA,在△ABC和△ACD中,,∴△ABC≌△CDA(SAS)∴∠ACB=∠DAC,∴AD∥BC.19.解:(1)设阴影部分的面积是x,则整个图形的面积是7x,则这个点取在阴影部分的概率是=,故答案为:.(2)如图所示:四、解答题(二)20.解:原式=a2﹣4a+4+2a2+8a﹣a﹣4=3a2+3a,当a=﹣2时,原式=3×(﹣2)2+3×(﹣2)=12﹣6=6.21.解:(1)由图b可得,大正方形的边长是m+n,阴影部分小正方形的边长是m﹣n;故答案为:m+n;m﹣n;(2)(m﹣n)2=(m+n)2﹣4mn.理由如下:右边=(m+n)2﹣4mn=m2+2mn+n2﹣4mn=m2﹣2mn+n2=(m﹣n)2=左边,所以结论成立.22.解:(1)如图,DE为所作;(2)∵DE是AB的垂直平分线,∴AD=BD,∴△BCD的周长=BD+BC+CD=AD+CD+BC=AC+BC=10+6=16.五、解答题(三)23.解:(1)12;(2)随着x的变化,y的变化趋势是:x每增加1千克,y增加0.5cm;故答案为:x每增加1千克,y增加0.5cm;(3)y与x的关系式是:y=0.5x+12,自变量的取值范围是:0≤x≤25.故答案为:y=0.5x+12,0≤x≤25.24.证明:(1)△DAE≌△CFE理由如下:∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,∴△ADE≌△FCE(ASA);(2)由(1)知△ADE≌△FCE,∴AE=EF,AD=CF,∵AB=BC+AD,∴AB=BC+CF,即AB=BF,在△ABE与△FBE中,,∴△ABE≌△FBE(SSS),∴∠AEB=∠FEB=90°,∴BE⊥AE;(3)在(2)的条件下有△ABE≌△FBE,∴∠ABE=∠FBE,∴E到BF的距离等于E到AB的距离,∵CE⊥BF,CE=5,∴点E到AB的距离为5.25.解:(1)全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CPQ;(2)假设△BPD≌△CPQ,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t==2秒,∴v Q===1.5cm/s;(3)设经过x秒后点P与点Q第一次相遇,由题意,得1.5x=x+2×6,解得x=24,∴点P共运动了24×1cm/s=24cm.∵24=16+4+4,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.。
2017-2018 北师大版七年级数学下册 第三章 变量之间的关系 单元测试题(检测时间:120分钟 满分:120分)一、选择题(3分×10=30分)1.某超市某种商品的单价为70元/件,若买x 件该商品的总价为y 元,则其中的常量是( ) A .70 B .x C .yD .不确定2.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( ) A .太阳光强弱 B .水的温度 C .所晒时间 D .热水器 3.变量x 与y 之间的关系是y =2x -3,当因变量y =6时,自变量x 的值是( )A .9B .15C .D . 4.某种签字笔的单价为2元,购买这种签字笔x 支的总价为y 元.则y 与x 之间的关系式为( ) A .y =-12xB .y =12xC .y =-2xD .y =2x 5.为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗,下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系( )6.根据图示的程序计算变量y 的对应值,若输入变量x 的值为-1,则输出的结果为( ) A .-2 B .2 C .-1D .0 7.某大剧场地面的一部分为扇形,观众席的座位数按下列方式设置:y 是自变量;③y =50+3x ;④y =47+3x ,其中正确的结论有( ) A .1个 B .2个 C .3个D .4个8.李大爷要围成一个长方形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的长方形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的关系式是( )A .y =-2x +24(0<x <12)B .y =-12x +12(0<x <24)C .y =2x -24(0<x <12)D .y =12x -12(0<x <24)9.在关系式y =5x +3中,有下列说法:①x 是自变量,y 是因变量;②x 的数值可以任意选择;③y 是变量,它的值与x 的值无关;④用关系式表示的,不能用图象表示;⑤y 与x 的关系还可以用列表如图象法表示.其中,正确的是( ) A .①②③ B .①②④ C .①②⑤D .①④⑤10.一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的路程s (千米)与行驶时间t (小时)的关系如图所示,则下列结论中错误的是( )A .甲、乙两地的路程是400千米B .慢车行驶速度为60千米/小时C .相遇时快车行驶了150千米D .快车出发后4小时到达乙地二、填空题(3分×8=24分)11.在求补角的计算公式y =180°-x 中,变量是 ,常量是 .12.“早穿皮袄,午穿纱,围着火炉吃西瓜”这句谚语反映了我国新疆地区一天中, 随 变化而变化,其中自变量是 ,因变量是 .13.若一个长方体底面积为60cm 2,高为h cm ,则体积V (cm 3)与h (cm)的关系式为 ,若h 从1cm 变化到10cm 时,长方体的体积由 cm 3变化到 cm 3.14.李老师带领x 名学生到某动物园参观,已知成人票每张20元,学生票每张10元.设门票的总费用为y 元,则y = .15.如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8点从同一地点出发,请你根据图中给出的信息,算出乌龟在 点追上兔子.16.某种储蓄的月利率是%,存入100元本金后,不扣除利息税,本息和y (元)与所存月数x (x 为正整数)之间的关系为 ,4个月的本息和为 .17.如图是小明从学校到家里行进的路程s (米)与时间t (分)的图象,观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有 (填序号).18.如图(1),在直角梯形ABCD 中,动点P 从点B 出发,沿BC 、CD 运动至点D 停止.设点P 运动的路程为x ,三角形ABP 的面积为y ,如果y 关于x 的函数图象如图(2)所示,则三角形BCD 的面积是 .三、解答题(共66分)19.(8分)某商场经营一批进价为a元/台的小商品,经调查得如下数据:(1)(2)用语言描述日销售量y和日销售额t随销售价x变化而变化的情况.20.(8分)温度的变化是人们经常谈论的话题,请根据图象与同伴讨论某天温度变化的情况.(1)这一天的最高温度是多少是在几时到达的最低温度呢(2)这一天的温差是多少从最低温度到最高温度经过多长时间(3)在什么时间范围内温度在上升在什么时间范围内温度在下降21.(8分)科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关:当气温是0℃时,音速是331米/秒;当气温是5℃时,音速是334米/秒;当气温是10℃时,音速是337米/秒;当气温是15℃时,音速是340米/秒;当气温是20℃时,音速是343米/秒;当气温是25℃时,音速是346米/秒;当气温是30℃时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系哪个是自变量哪个是因变量(3)当气温是35℃时,估计音速y可能是多少(4)能否用一个式子来表示两个变量之间的关系22.(10分)汽车在山区行驶过程中,要经过上坡、下坡、平路等路段,在自身动力不变的情况下,上坡时速度越来越慢,下坡时速度越来越快乐,平路上保持匀速行驶,如图表示了一辆汽车在山区行驶过程中,速度随时间变化的情况.(1)汽车在哪些时间段保持匀速行驶时速分别是多少(2)汽车遇到了几个上坡路段几个下坡路段在哪个下坡路段上所花时间最长(3)用自己的语言大致描述这辆汽车的行驶情况,包括遇到的山路,在山路上的速度变化情况等.23.(10分)某机动车出发前油箱内有油42L.行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示,根据图象回答问题.(1)机动车行驶几小时后加油(2)中途加油________L;(3)如果加油站距目的地还有240km,车速为40km/h,要到达目的地,油箱中的油是否够用并说明原因.24.(10分)如图棱长为a的小正方体,按照下图的方法继续摆放,自上而下分别叫第一层、第二层…第n层,第n层的小正方体的个数记为S.解答下列问题:(1)按要求填写上表:(2)研究上表可以发现S随n的变化而变化,且S随n的增大而增大有一定的规律,请你用式子来表示S与n的关系,并计算当n=10时,S的值为多少25.(12分)从有关方面获悉,在我市农村已经实行了农村新型合作医疗保险制度.享受医保的农民可在规定的医院就医并按规定标准报销部分医疗费用.下表是医疗费用报销的标准:报销、15000元按40%报销、余下的10000元按50%报销;题中涉及的医疗费均指允许报销的(1)某农民2016年在门诊看病共报销医疗费180元,则他在这一年中门诊医疗费用共________元;(2)设某农民一年中住院的实际医疗费用为x元(5001≤x≤20000),按标准报销的金额为y元,试求出y与x的关系式;(3)若某农民一年内本人自付住院医疗费17000元(自付医疗费=实际医疗费-按标准报销的金额),则该农民当年实际医疗费用共多少元答案:一、1---10 ABCDA BBBCC二、11. x和y 180°12. 温度时间时间温度13. V=60h 60 60014. 10x+2015. 1816. y=100+元17. ①②④18. 3三、19. 解:(1)42,12,1995,1215(从上到下);(2)y随x的增大而减小,t随x的增大而减小.20. 解:(1)37℃,15时,23℃;(2)14℃,12小时;(3)从0时到3时气温在下降,从3时到15时气温在上升,15时以后气温下降.21. 解:(1)(2)(3)352米/秒;(4)y=331+3 5 x.22. 解:(1)汽车在~,~,及~1h三个时间段保持匀速行驶,速度分别是70km/h,80km/h 和70km/h;(2)汽车遇到CD、FG两个上坡路段,AB、DE、GH三个下坡路段,在AB下坡路段上所花时间(3)汽车下坡行驶后转入平路行驶至,转入上坡行驶至,接着转入下坡行驶至,转入平路行驶至后又上坡行驶至,紧接着转入下坡行驶至,最后平路行驶至1h 结束. 23. 解:(1)5小时 (2)24(3)机动车每小时耗油42-125=6(L ),∴24040×6=36(L ),∴油箱中的油刚好够用. 24. 解:(1)6,10 (2)S =n n +12;当n =10时,S =n n +12=55.25. 解:(1)600 (2)y =-500(3)依题意得,17000+5000×30%+15000×40%+50%(x -20000)=x ,解得x =29000(元).。
2017---2018学年下期期末考试 七年级
数学试卷
总分
23
22
2120191817169~151~8得分
题号三二
一
一、精心选一选 (每小题3分,共30分)
下列各小题均有四个答案,其中只有一个是正确的,将正确 答案的代号字母填入题后括号内
1.下列各组数中互为相反数的一组是 【 】 A . -2
B .
-2C .-2与1
2
- D . 2-与2
2.下列条件中,可能得到平行线的是 【 】 A .对顶角的角平分线 B .邻补角的角平分线
C .同位角的角平分线
D .同旁内角的角平分线
3.不等式组50
31x x +≥⎧⎨
->⎩的解集在数轴上表示为 【 】
4.已知12x y =⎧⎨=⎩是二元一次方程组321x y m
nx y +=⎧⎨
-=⎩ 的解,则m n - 的值是 【 】 A .1 B .2 C .3 D .4
5.下列四种调查:①调查某批汽车的抗撞击能力;②调查某城市的空气质量;③调查某风景区全年的游客流量;④调查某班学生的身高情况.其中适合用
D
C
200-5
-5
2
B
A
202
-50-5
全面调查方式的是【 】 A .① B .② C .③ D .④
6.如图,a ∥b ,∠1 = 100°,∠2 = 140°,则∠3等于【 】 A .40° B .50° C .60° D .70°
7.以方程组1
2y x y x -=⎧⎨
+=⎩ 的解为坐标的点(x ,y )在 【 】 A .第一象限 B .第二象限 C .第三象限 D .第四象限
8.已知点P (m+2,2m+4)向右平移1个单位长度到点Q ,且点Q 在y 轴上,那么点Q 的坐标是 【 】 A .(-2,0) B .(0, -2) C .(1,0) D .(0,1) 9.将一张面值100元的人民币,兑换成10元或20元的零钱, 兑换方案有 【 】 A .6种 B .7种 C .8种 D .9种
10.若关于x 的不等式组()5
32223x x x x a +⎧≥-⎪
⎨⎪+<+⎩
恰好只有四个整数解,则a 的取值范
围是 【 】
A .53a <-
B .54
33
a -≤<-
C .523a -<≤-
D .5
23
a -<<-
二.用心填一填(每小题3分,共15分)
11.如图,将△ABC 水平向右平移了a cm 后,得到△A 'B 'C ',
已知BC = 6cm ,B C '=17cm ,
那么a = cm .
(6题图)
3
2
1b
a
(11题图)
C '
B 'A '
C B A
12.已知222m x y --与423m n x y + 是同类项,则m -3n 的平方根是 .
13.如图,AB ∥CD ,OM 平分∠BOF ,∠2 = 65°,
则∠1 = 度.
14.已知(
)2
30x y -++=,
则x ﹢y = .
15.已知线段AB = 8cm ,在直线AB 上有一点C ,且BC = 4cm ,M 是线段AC 的中点,则线段AM 的长 .
三解答题
16.解下列方程组:(8分):
(1) 4,25;x y x y +=⎧⎨-=⎩ (2)23,
3511;x y x y +=⎧⎨
-=⎩
O
(13题图)
21
M
F
E
D
C
B A
17.(9分)解不等式组
4(1)710
8
5
3
x x
x
x
+≤+
⎧
⎪
-
⎨
-<
⎪⎩
,并写出它的所有非负整数解.
18.(9分)已知点P(2m+4,m-1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;
(2)点P的纵坐标比横坐标大3;
(3)点P在过点A(2,-4)且与y轴平行的直线上.
19.(9分)甲、乙两名同学在解方程组
5
213
mx y
x ny
+=
⎧
⎨
-=
⎩
时,甲解题时看错了m,
解得
7
2
2
x
y
⎧
=
⎪
⎨
⎪=-
⎩
;乙解题时看错了n,解得
3
7
x
y
=
⎧
⎨
=-
⎩
.请你以上两种结果,求
出原方程组的正确解.
20.(9分)如图,已知AD ∥BC ,∠1 = ∠2,试说明
∠A = ∠C .
21.(9分)一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A (不喜欢)、B (一般)、C (比较喜欢)、D (非常喜欢)四个等级对食品进行评价,图1和图2是该公司采集数据后,绘制的两幅不完整的统计图.
请你根据以上统计图提供的信息,回答下列问题:
(20题图)
2
1
E
D
C
B
A
21题图2
21题图132%
10%23%a%
等级
D C B
A
(1)本次调查的人数为人;
(2)图1中,a = ,C等级所占的圆心角的度数为度;(3)请直接在图中补全条形统计图.
22.(10分)已知关于x的方程组
31
33
x y k
x y
+=+⎧
⎨
+=
⎩
(1)如果该方程组的解互为相反数,求k的值;
(2)若x为正数,y为负数,求k的取值范围.
23.(12分)希望中学计划从荣威公司买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型
小黑板和购买4块B型小黑板共需820元.
(1)求购买一块A型小黑板,一块B型小黑板各需要多少元?
(2)根据希望中学实际情况,需从荣威公司买A,B两种型号的小黑板共60块,要求购买A、B两种型号的小黑板的总费用不超过5240元,并且购买A型
小黑板的数量应大于购买A、B两种型号的小黑板总数量的1
3
,请你通过计
算,求出希望中学从荣威公司买A、B两种型号的小黑板有哪几种方案?
2017---2018学年七年级数学下期末答案
一选择题
1 A
2 C
3 B
4 D
5 D
6 C
7 A
8 B 9A 10 C
二填空题
11 11 12±613 130 14 1 154cm或6cm 三解答题
16 过程略:(1)
3
1
x
y
=
⎧
⎨
=
⎩
(2)
2
9
x
y
=
⎧
⎨
=
⎩
17
7 2
2
x
-≤<
表示略
18过程略:(1)m=1
(2)m = -8
(3)m = -1
19解:过程略:解得n = 3 , m = 4
原方程组的解是
2
3 x
y
=
⎧
⎨
=-⎩
20证明:∵AD∥BC
∴∠A =∠CBE
又∵∠1 = ∠2
∴D C∥AE
∴∠CBE = ∠C
∴∠A = ∠C
21解(1)200
(2)35 126
(3)如图
70
46
21题图2
等级人数/人
D
C
B
A
64
80
60
40
20
20
22.解:(1) 由题意可得,
4
4
k
x y
+
+==,
解得k = 4
. (2)解方程组得
3
8
8
8 x k
k y
⎧
=
⎪⎪
⎨
-⎪=
⎪⎩
又x ﹥0,y﹤0 ,
即
3
8
8
8
k
k
y
⎧
>
⎪⎪
⎨
-
⎪=<
⎪⎩
,解得k > 8
23 解:过程略(1)A型一块100元,B型一块80元;
(2)方案一:A型21块,B型39块;
方案二:A型22块,B型38块。