介质光波导
- 格式:ppt
- 大小:1.40 MB
- 文档页数:134
导波光学教学大纲课程编号:课程名称:导波光学学时学分:48 (教学课时48)先修课程:光电子技术、电磁场理论、物理光学一.课程教学目标:本课程是信息工程(光电信息工程)专业的一门专业必修课。
要求学生学习和掌握波导波光学的基本原理,并对基本的波导结构利用所掌握的知识进行解算。
二.教学内容及基本要求:第一章介质光波导基础理论--电磁场基础知识回顾(4学时)1.1介质光波导(2学时)介绍介质光波导的基本概念、类型等1.2电磁场基本理论回顾(2学时)麦克斯韦方程的积分表达形式、微分表达形式、物理意义,坡印亭矢量及其物理意义、电磁场的波动方程的推导、物理意义第二章理想平板介质光波导(6学时)2.1平板光波导光波特征方程的推导及讨论(截止波长、模式)(2学时)2.2平板光波导的电磁理论求解(2学时)2.3平板光波导中的场分布、归一化参数,MTALAB仿真(2学时)第三章三层平板介质波导(8学时)3.1.用电磁场理论解释均匀三层波导中TE波、TM波的电磁场的分布情况(2学时)3.2.模式方程、模的介质条件、归一化参量(2学时)3.3.模式方程的解传播常数近似方程的推导课题练习(2学时)3.4.利用马卡梯里模型对两个独立的三层平板波导求解其波导方程,课堂讨论(2学时)第四章四层平板介质光波导(6学时)4.1 四层平板波导TE波和TM波的模式方程推导(2学时)4.2 分支波导(2学时)4.3 习题课(2学时)第五章光纤的基础知识(6学时)5.1 光纤传导基本原理,光纤衰减基本原理(2学时)5.2 单模光纤工作原理、高斯光束、结构、截止波长(2学时)5.3 光纤中的色散(从多模光纤的色散,到带宽分析)(2学时)掌握部分:光的导光条件,数值孔径、接收角的物理含义和计算方法、光纤衰减的计算方法和解决方案,光纤的色散机理和对抗措施,带宽与色散的关系第六章光纤的波导技术(12学时)6.1 光纤中的麦克斯韦方程及亥姆霍茨方程的推导(2学时)6.2 利用麦克斯韦方程求光纤中电磁场的分量(2学时)6.3 单模阶跃型折射率光纤中的各个模式及其物理意义的讨论(2学时)6.4 单模阶跃型折射率光纤中场分布及MATLAB数值仿真(2学时)6.5 多模光纤的特征方程及其MATLAB数值求解(2学时)6.6 多模光纤中的场分布及其MATLAB仿真(2学时)第七章光波导的调制(6学时)简要介绍光波调制的种类和基本概念,重点阐述电光调制的基本原理7.1 、7.2 光波调制的基本概念、调制器的性能(2学时)7.3 电光调制的基本原理(2学时)7.4 集成光波导在光纤陀螺中的应用(2学时)。
光纤通信的基本概念光导纤维,是一种介质光波导,能把光封闭其中并且使光沿轴向进行传播的导波结构。
由石英玻璃、合成树脂等材料制成的极细的纤维。
单模光纤:纤芯8-10um、包层125um多模光纤:纤芯51um、包层125um利用光导纤维传输光信号的通信方式称为光纤通信。
光波属于电磁波的范畴。
可见光的波长范围是390-760nm,大于760nm部分是红外光,小于390nm部分是紫外光。
光波的工作窗口(三个通信窗):光纤通信中应用的波长范围是在近红外区短波长区(可见光,肉眼看是一种橘黄色的光)850nm橘黄色的光长波长区(不可见光区)1310nm(理论上的色散最小点)、1550nm (理论上的衰减最小点)光纤的结构与分类1. 光纤的结构理想的光纤结构:纤芯、包层、涂覆层、护套构成。
纤芯和包层用石英材料制作,机械性能比较脆弱,容易断,故一般会加两层涂覆层,一层树脂型、一层尼龙型,使得光纤柔性性能达到工程实际运用的要求。
2.光纤的分类(1)光纤按照光纤横截面的折射率分布划分:分为阶跃型光纤(均匀光纤)和渐变型光纤(非均匀光纤)。
假设,纤芯折射率为n1,包层折射率为n2为了使纤芯能够远距离传光,构成光纤的必要条件是n1>n2均匀光纤的折射率分布是个常数非均匀光纤的折射率分布规律:其中,△——相对折射率差α——折射指数,α=∞——阶跃型折射率分布光纤,α=2——平方律折射率分布光纤(一种渐变型光纤)这种光纤比起其他渐变型光纤,模式色散最小最优(2)按纤芯中所传输的模式数量来划分:分为多模光纤和单模光纤这里的模式是指:在光纤中所传输的光线的一种电磁场的分布,不同的场分布就是一种不同的模式。
单模(光纤中只传输一种模式)、多模(光纤中同时传输多种模式)目前由于对传输的速率要求越来越高、传输的数量要求越来越多,城域网向高速大容量方向发展,所以采用的多是单模阶跃型光纤。
(本身传输特性优于多模光纤)(3)光纤的特性:①光纤的损耗特性:光波在光纤中传输,随着传输距离的增加而光功率逐渐下降。
光波导技术基础光波导技术基础一、光波导的概念与分类光波导是一种利用光的全反射原理进行光信号传输的技术。
根据传输介质的不同,光波导可以分为光纤和光平板两种形式。
光纤波导是采用纤维材料进行传输,而光平板波导则利用具有高折射率的平板材料进行传输。
二、光波导技术的优点1. 大容量传输:光波导技术可以实现大容量的光信号传输,远远超过以往的传输方式。
这是因为光波导中的光信号可以在光纤或光平板中进行不断的全反射,几乎没有信号损失。
2. 抗干扰能力强:光波导传输的光信号在传输过程中不会受到外界电磁干扰的影响,从而保证了传输质量的稳定性。
3. 低衰减率:光波导技术中的光信号衰减率很低,可以减少信号在传输过程中的能量损耗,提高传输距离。
4. 高速传输:由于光波导中的光信号传输速度快,可达到光速的75%以上,因此光波导技术被广泛应用于高速通信领域。
三、光纤波导技术的基本原理光纤波导是利用纤维材料的全反射原理进行光信号传输的技术。
光纤是由内心区域(称为纤芯)和外层(称为包层)组成的。
光信号可以通过纤芯中的光波引导到目的地。
光纤波导的基本原理源于光的全反射现象。
当光从光纤的一端进入时,如果光线入射角度小于临界角,光会被光纤的纤芯全反射,然后沿着纤芯继续传输。
这种全反射的现象可以保证光信号不会损失,从而实现光信号在光纤中的传输。
四、光平板波导技术的基本原理光平板波导技术是利用具有高折射率的平板材料进行光信号传输的技术。
平板材料可以是晶体或者其他具有高折射率的材料,例如硅。
光平板波导的基本原理是将光信号引导在平板材料的表面上,形成一条被限制在平板内传播的光波。
当光信号被平板表面反射时,会发生总反射现象,并且沿着平板表面传播。
平板的结构和特殊设计可以控制光信号的传输路径和传输效果。
五、光波导技术的应用领域光波导技术在通信、光学传感、生物医学和光学计算等领域具有广泛的应用。
在通信领域,光波导技术被广泛应用于光纤通信和光纤传感领域。
什么是光波导_传输特征光波导是引导光波在其中传播的介质装置,又称介质光波导。
那么你对光波导了解多少呢?以下是由店铺整理关于什么是光波导的内容,希望大家喜欢!什么是光波导光波导(optical waveguide)是引导光波在其中传播的介质装置,又称介质光波导。
光波导有两大类:一类是集成光波导,包括平面(薄膜)介质光波导和条形介质光波导,它们通常都是光电集成器件(或系统)中的一部分,所以叫作集成光波导;另一类是圆柱形光波导,通常称为光纤 (见光学纤维)。
光波导由光透明介质(如石英玻璃)构成的传输光频电磁波的导行结构。
光波导的传输原理不同于金属封闭波导,在不同折射率的介质分界面上,电磁波的全反射现象使光波局限在波导及其周围有限区域内传播。
多模和单模光纤已成功地应用于通信。
光纤的传输特性对外界的温度和压力等因素敏感,因而可制成光纤传感器,用于测量温度、压力、声场等物理量。
平面介质光波导是最简单的光波导,它是用折射率为n2的硅(或砷化镓,或玻璃)作基片,用微电子工艺在它上面镀一层折射率为n1的介质膜,再加上折射率为n3的覆盖层制成。
通常取n1>n2>n3,以便将光波局限在介质膜内传播。
条形介质光波导是在折射率为n2的基体中产生一个折射率为n1的长条,取n1>n2,以便将光波局限在长条内传播。
这种光波导常用作光的分路器、耦合器、开关等功能器件。
光波导的横向尺寸比光的波长大很多时,光的波动性所产生的衍射现象一般可略去不计,可用几何光学定律来处理光在其中的传播问题。
如集成光波导和阶跃折射率光纤中,都是利用入射角大于临界角使光在边界上发生全反射,结果光便沿折线路径在其中传播。
梯度折射率光纤中,则利用光逐渐往折射率大的方向弯曲的规律,使光线沿曲线路径在其中传播。
光波导的横向尺寸与光的波长相差不大时,光的波动性所产生的衍射现象便不能略去,需用光的电磁理论来处理光在其中的传播问题。
即由麦克斯韦方程组出发,列出边界条件,求解光波的电场和磁场在光波导内的分布和传播特性,从而解决有关问题。
§2.2 介质光波导中的色散一、)(~λωβ或关系由特征方程可以看出,当给定波导参数和工作波长时,模阶数m 越大则θ1越小,因而传输常数β越小。
在所有导模中,最低阶模TE 0、TM 0的β值最大。
对于给定的模式,β值是随角频率ω(或工作波长λ)而变化的,即)(sin 01ωβθβm m m k n ==。
ω越小,k 0越小,θm 越小,因而β也越小。
所以,特征方程实际给出了β与ω(或λ)的关系,因此,称为色散方程。
下图给出了几个较低阶模式的ω-β曲线。
波导中模式的群速度βωd d v g = 上图中任一点ω处的斜率βωd d 即是群速度。
对于所有的波导模式,βωd d 只能在c/n 1和c/n 2内取值,因此在色散图中,所有可能的传输模式都应在c/n 1和 c/n 2形成的包络中。
c/n 1对应于090=θ,01k n =β;c/n 2对应于截止条件, c θθ=,02k n =β。
当光频率一定时,不同模式的光群速度不同。
当模式一定时,不同光频率的光群速度不同。
二、模式色散(intermodal dispersion )当波导中能够传输多个模式时,低阶模与高阶模的群速度不同。
最低阶模的群速度最小,接近于c/n 1,最高阶模的群速度最大。
这是因为高阶模渗透到包层中的能量较多,而包层的折射率小,因此传输快。
此现象称为模式色散(或模间色散)。
长距离传输时,将导致输出端的信号脉冲展宽。
脉冲展宽的大小取决于各个模式在波导中传输的时间差τ∆。
设传输距离为L ,模式色散量定义为g m a n g v L v L-∆m i n =τv gmin 是最慢模式的群速度,v gman 是最快模式的群速度。
估算:由上图,v gmin ≈ c/n 1,v gmax 不超过c/n 2,近似得传输单位长度的色散量 cn n L 21-≈∆τ n 1= 1.48, n 2= 1.46,km ns m s L /67/107.611=⨯≈∆-τ。