实验 8-羟基喹啉
- 格式:doc
- 大小:34.00 KB
- 文档页数:3
8 羟基喹啉的制备
1. 2-氨基苯酚经过乙醛基化、缩合和环氧化反应得到
2-氨基-1,2-二苯基乙烷醇,再通过羟醛化、脱水和环化反应合成8 羟基喹啉。
该方法中,乙醛和氯化亚砜作为催化剂,可以提高反应速率和收率。
环氧化反应条件需加入亚铁氯化物和过氧化苯乙烯,反应温度在80-100℃,反应时间约为8小时。
2. 对-苯二酚通过三氯化铁氧化反应得到8 羟基喹啉。
该方法中,三氯化铁作为氧化剂,反应条件要求温度在25-30℃,反应时间约为4小时。
得到的产物需要经过结晶纯化,以获得高质量的8 羟基喹啉产品。
3. 2-羟基苯胺和氰化氢缩合后,经过烷基化和羟甲基化反应得到 N,N-二(2-羟基苯基)丙二胺,再通过环化反应得到8 羟基喹啉。
该方法中,烷基化和羟甲基化反应需要加入硫酸三乙酯和过硫酸铵作为催化剂。
环化反应要求温度为150℃,反应时间为12小时。
总之,以上五种方法分别通过乙醛基化、三氯化铁氧化、缩合、硝化还原和羟甲基化等反应,得到2-氨基-1,2-二苯基乙烷醇、N,N-二(2-羟基苯基)丙二胺、2-羟基-1,2-二苯基乙烷醇、N,N-二(苯基)甲基乙酰胺等中间体,再通过环化反应合成8 羟基喹啉。
这些方法均有自己的适用场景和反应条件,可以根据需要进行选择。
8羟基喹啉制备实验报告8羟基喹啉制备实验报告引言:8羟基喹啉是一种重要的有机化合物,具有广泛的应用领域,如药物合成、材料科学等。
本实验旨在通过一系列反应步骤,以苯酚为原料,制备8羟基喹啉。
实验步骤:1. 首先,将苯酚溶解于稀盐酸中,加入硝酸和硫酸作为催化剂。
反应混合物在适当的温度下搅拌反应一段时间,使苯酚发生硝化反应,得到硝基苯酚。
2. 接下来,将硝基苯酚与甲醛反应,生成羟甲基苯酚。
反应条件需要控制得当,以避免产生副反应。
3. 羟甲基苯酚与氨水反应,生成氨基甲基苯酚。
该步骤需要在碱性条件下进行,以促进反应进行。
4. 最后,氨基甲基苯酚与甲醛在碱性条件下缩合反应,生成8羟基喹啉。
该步骤需要控制反应时间和温度,以提高产率和纯度。
实验结果:经过以上步骤,成功合成了8羟基喹啉。
通过红外光谱、核磁共振等仪器分析,确认了产物的结构和纯度。
讨论:本实验中,选择苯酚作为起始原料,是因为其易得且价格相对较低。
同时,苯酚的性质也适合进行后续反应。
在制备过程中,反应条件的选择和控制非常重要。
过高或过低的温度、浓度等因素都会对反应产率和产物纯度产生影响。
在实验过程中,还需要注意安全操作。
苯酚、硝酸等化学品具有一定的毒性和腐蚀性,必须佩戴防护手套、护目镜等个人防护装备,确保实验操作的安全性。
结论:通过本实验,成功合成了8羟基喹啉。
实验结果表明,所得产物的结构和纯度符合预期要求。
实验过程中,合理选择反应条件和注意安全操作是取得良好结果的关键。
展望:虽然本实验成功合成了8羟基喹啉,但仍有一些改进的空间。
例如,可以尝试优化反应条件,提高产率和纯度。
同时,也可以进一步研究8羟基喹啉的应用领域,探索其在药物合成、材料科学等方面的潜力。
总结:本实验通过一系列反应步骤,以苯酚为原料,成功制备了8羟基喹啉。
实验结果表明,所得产物具有良好的结构和纯度。
实验过程中,合理选择反应条件和注意安全操作是取得成功的关键。
通过本实验的实施,对有机合成反应的原理和实践有了更深入的了解,并为进一步研究和应用提供了基础。
8羟基喹啉的制备总结和讨论
8-羟基喹啉(8-Hydroxyquinoline)是一种有机化合物,常用于药物合成、配位化学和光学材料等领域。
下面是关于8-羟基喹啉制备的总结和讨论:
制备方法:
1. 溴化8-氨基喹啉:首先将8-氨基喹啉与溴在适当溶剂中反应,生成溴化8-氨基喹啉。
2. 氧化:将溴化8-氨基喹啉与碱性高锰酸钾(KMnO4)或其他氧化剂反应,进行氧化反应,生成8-羟基喹啉。
讨论:
1. 溴化8-氨基喹啉的反应条件:溴化反应可以在适当的溶剂(如醚类、醇类溶剂)中进行,在适当的温度下进行反应。
反应条件的选择应考虑到反应速率和产率的平衡。
2. 氧化反应的选择:氧化反应可以使用高锰酸钾等常见的氧化剂进行。
其他氧化剂,如过氧化氢(H2O2),也可以用于该反应。
在选择氧化剂时,应考虑到反应条件的温度和反应速率。
3. 产率和纯度:制备8-羟基喹啉的关键是产率和纯度。
反应条件的优化可以提高产率,如反应温度、反应时间、反应物的比例等。
纯度可以通过适当的提纯方法(如结晶、萃取、柱层析等)获得。
总结:
制备8-羟基喹啉的一种常见方法是将8-氨基喹啉与溴反应生成溴化8-氨基喹啉,然后进行氧化反应,生成8-羟基喹啉。
制备过程中需考虑反应条件的选择和优化,以提高产率和纯度。
制备方法的选择还可以根据具体需求和实验条件进行调整和改进。
8-羟基喹啉的制备一、实验目的1. 学习合成8-羟基喹啉的原理和方法。
2. 巩固回流加热和水蒸汽蒸馏等基本操作。
二、反应原理Skraup反应是合成杂环化合物喹啉及其衍生物最重要的方法,它是用苯胺与无水甘油、浓硫酸及弱氧化剂硝基化合物等一起加热而得,为了避免反应过于剧烈,常加入FeSO4作为氧的载体。
浓硫酸的作用使甘油脱水成丙烯醛,并使苯胺与丙烯醛的加成物脱水成环。
硝基化合物则将1,2-二氢喹啉氧化成喹啉,本身被还原成芳胺也可以参加缩合。
反应中所用的硝基化合物,要与芳胺的结构相对应,否则会导致产生混合物。
8-羟基喹啉形成的过程如下:三、药品试剂、操作步骤在100mL三颈烧瓶中加入1.8g(约0.013mol)邻硝基苯酚、2.8g(约0.025mol)邻氨基苯酚、7.5mL(约9.5g,0.1mol)无水甘油,剧烈振荡,使之混匀。
在不断振荡下慢慢滴入4.5mL浓硫酸,于冷水浴上冷却。
装上回流冷凝管,用小火在石棉网上加热,约15min溶液微沸,即移开火源。
反应大量放热,待反应缓和后,继续小火加热,保持反应物微沸回流1h。
冷却后加入15mL水,充分摇匀,进行简易水蒸气蒸馏,除去未反应的邻硝基苯酚(约30min),直至馏分由浅黄色变为无色为止。
待瓶内液体冷却后,慢慢滴加约7mL1:1(质量比)氢氧化钠溶液,于冷水中冷却,摇匀后,再小心滴加约5mL饱和碳酸钠溶液,使之呈中性。
再加入20mL水进行水蒸气蒸馏,蒸出8-羟基喹啉。
待馏出液充分冷却后,抽滤收集析出物,洗涤,干燥,粗产物约3g。
粗产物用4:1(体积比)乙醇-水混合溶剂25ml 重结晶,得8-羟基喹啉2~2.5g(产率54%~68%)。
纯8-羟基喹啉的mp为72~74℃。
四、操作重点及注意事项1、所用甘油含水量不超过0.5%(d=1.26)。
如果甘油含水量较大,则喹啉的产量不高。
可将其加热到180℃,冷却在100℃左右放入盛有浓H2SO4的干燥器中备用。
8–羟基喹啉的合成应用化学2008级唐祖建20086129摘要:8-羟基喹啉是白色或淡黄色晶体或结晶性粉末,露光变黑,有石炭酸气味。
8-羟基喹啉是两性的,能溶于强酸、强碱,在碱中电离成负离子,在酸中能结合氢离子,在PH=7时溶解性最小。
8-羟基喹啉广泛用于金属的测定和分离,制染料和药物的中间体,制杀菌剂等。
本实验以邻氨基苯酚、邻硝基酚、无水甘油和浓硫酸为原料合成8-羟基喹啉。
关键词:8-羟基喹啉,水蒸气蒸馏,邻硝基酚,邻氨基酚1 实验部分1.1 实验原理以邻氨基酚、邻硝基酚、无水甘油和浓硫酸为原料合成8-羟基喹啉。
浓硫酸的作用是使甘油脱水生成丙烯醛,并使邻氨基酚和丙烯醛加成物脱水成环。
硝基酚为弱氧化剂,能将成环产物8-羟基–1,2–二氢喹啉氧化成8-羟基喹啉,邻硝基酚本身则还原成邻氨基酚,也可参与缩合反应。
反应历程如下:(1)CH2OHCHOH CH2OH H2SO42CH2HCCHO(2)OHNH2CH2CHCHOOHNHCH2CH CHOHH2SO4OHNHNO2OHNOH1.2 实验药品无水甘油邻硝基苯酚邻氨基苯酚浓硫酸氢氧化钠饱和碳酸钠溶液乙醇1.3 实验仪器圆底烧瓶回流冷凝器水蒸气蒸馏装置锥形瓶滴管烧杯玻璃棒1.4 实验操作在圆底烧瓶中称取19g无水甘油(约0.2mol),并加入3.6g(0.026mol)邻硝基苯酚、5.5g(0.05mol)邻氨基苯酚,使混合均匀。
然后缓缓加入9mL浓硫酸(约16g)。
装上回流冷凝管,在石棉网上用小火加热。
当溶液微沸时,立即移去火源。
反应大量放热,待作用缓和后,继续加热,保持反应物微沸2小时。
稍冷后,进行水蒸气蒸馏,除去未作用的邻硝基苯酚。
瓶内液体冷却后,加入12g氢氧化钠与12mL水的溶液。
再小心滴入饱和碳酸钠溶液,使呈中性。
再进行水蒸气蒸馏。
蒸出8-羟基喹啉(约收集馏液400mL)。
馏出液充分冷却后,抽滤收集析出物,洗涤干燥后的粗产品6g左右。
粗产物用乙醇–水混合溶剂重结晶,得8-羟基喹啉5g左右(产率69﹪)。
有机电致发光材料三(8-羟基喹啉)铝(tris(8-hydroxyquinolinato)aluminum, Alq3)是一种常用的有机半导体材料,广泛应用于有机发光二极管(OLED)、有机场效应晶体管(OEFT)和太阳能电池等领域。
其合成方法较为简单,一般采用反相溶剂法,主要步骤如下:1.雄性醇类亲核试剂(如异丙醇)在氧化剂存在下氧化制备出8-羟基喹啉酸(8-hydroxyquinolinol, HQ)。
将醇类亲核试剂(如异丙醇)放入反应釜内,加入氧化剂(如氧气或过氧化氢) 进行氧化反应。
反应的最终产物是8-羟基喹啉酸。
2.在惰性溶剂(如氢氧化钾/钾碳酸钠溶液)中,将8-羟基喹啉酸与氯化铝反应制备出配合物Alq3。
在一个量热容器中加入8-羟基喹啉酸和氯化铝。
在惰性溶剂(如丙酮或四氢呋喃)中在-78°C 的温度下进行反应,控制加入氢氧化钾/钾碳酸钠两者的浓度,使反应物迅速反应形成Alq3中间体。
在反应后,Alq3物质会沉淀在反应溶液中。
为获取纯度高的Alq3,少量的取沉淀物用冷水洗涤,用真空泵吸干。
这些步骤需要多次重复,以确保纯度充分高的Alq3沉淀晶体获得。
3.沉淀的Alq3物质在凉水中反复洗涤、过滤干燥、再经真空干燥得到纯净的Alq3粉末。
取得的Alq3晶体沉淀通过凉水反复洗涤和过滤处理。
这些沉淀晶体然后在高温烘干箱中干燥,也可在真空下在低温下干燥以去除水分。
这样合成得到的Alq3配合物大多数晶体为亮绿黄色,对有机发光二极管的制备有广泛应用。
上述工艺过程比较简单,但需要注意入料顺序、溶剂的选择和反应条件等因素,以保证合成出的Alq3样品物理化学性质良好,达到研究和工程应用的需求。
8-羟基喹啉分子量8-羟基喹啉(8-hydroxyquinoline)是一种有机化合物,其分子式为C9H7NO,并具有分子量为145.16 g/mol。
它是一种白色晶体,可溶于酸和碱溶液中。
在以下内容中,将介绍8-羟基喹啉的性质、合成方法、应用领域以及相关的研究进展。
一、性质8-羟基喹啉是一种具有芳香性质的化合物,其分子结构中含有一个喹啉环和一个羟基。
喹啉环是一种含氮的芳香环,具有良好的稳定性和特殊的电子结构。
羟基(-OH)是一种活泼的官能团,使8-羟基喹啉具有一定的活性。
二、合成方法8-羟基喹啉的合成方法有多种,常用的方法是通过喹啉与氢氧化钠反应生成8-羟基喹啉。
具体步骤如下:首先,在适当的溶剂中将喹啉与氢氧化钠加热反应,生成8-羟基喹啉。
然后,通过结晶、过滤等步骤,得到纯净的8-羟基喹啉晶体。
三、应用领域8-羟基喹啉在许多领域都有广泛的应用。
首先,在医药领域,8-羟基喹啉具有抗菌、抗病毒和抗真菌的作用,被广泛用于制备各种药物和消毒剂。
其次,在化学分析领域,8-羟基喹啉可用作金属离子的配体,通过与金属离子形成络合物,实现对金属离子的检测和分离。
此外,8-羟基喹啉还可以用作光学材料和光敏染料的前体,具有潜在的光学应用价值。
四、研究进展近年来,8-羟基喹啉的研究进展主要集中在其在生物医学领域的应用。
研究人员发现,8-羟基喹啉具有抗肿瘤活性,可以抑制肿瘤细胞的生长和扩散。
此外,8-羟基喹啉还被用作荧光探针,用于细胞成像和生物分析。
通过修饰8-羟基喹啉的结构,可以获得具有不同特性和功能的衍生物,拓展了其在生物医学领域的应用前景。
8-羟基喹啉是一种具有重要应用价值的有机化合物。
它具有特殊的分子结构和活性团,使其在医药、分析和光学等领域具有广泛的应用。
随着对其性质和应用的深入研究,相信8-羟基喹啉将在更多领域展现其潜力,并为科学研究和工业制备提供更多可能性。
8羟基喹啉的实验报告8羟基喹啉的实验报告引言:8羟基喹啉是一种具有广泛应用前景的有机化合物,它在医药、农药和材料科学等领域都具有重要的研究价值。
本实验旨在通过合成8羟基喹啉并对其性质进行表征,为进一步研究和应用提供基础数据。
实验方法:1. 合成8羟基喹啉:首先,将对苯二酚溶解于氢氧化钠溶液中,加热至溶解完全。
然后,将喹啉溶解于氢氧化钠溶液中,搅拌均匀。
将对苯二酚溶液缓慢滴加到喹啉溶液中,同时保持溶液温度在50°C左右。
反应结束后,将反应液进行过滤和洗涤,得到8羟基喹啉的沉淀产物。
2. 表征8羟基喹啉:使用红外光谱仪对合成的8羟基喹啉进行表征。
在红外光谱图中观察各功能团的吸收峰位置和强度,并与已知的8羟基喹啉的典型光谱进行比对。
实验结果:通过实验合成得到了8羟基喹啉的沉淀产物,并进行了红外光谱分析。
红外光谱图显示,合成的8羟基喹啉样品具有与已知样品相似的吸收峰位置和强度,表明成功合成了目标产物。
讨论:8羟基喹啉作为一种重要的有机化合物,具有广泛的应用前景。
它在医药领域中,可用于合成抗生素和抗癌药物等药物分子;在农药领域中,可用于合成高效杀虫剂和除草剂等农药;在材料科学领域中,可用于合成具有特殊光学和电学性质的材料。
因此,对8羟基喹啉的合成和性质研究具有重要的理论和应用价值。
本实验通过合成8羟基喹啉并对其进行表征,为进一步研究和应用提供了基础数据。
通过红外光谱分析,我们确认合成的8羟基喹啉样品具有与已知样品相似的吸收峰位置和强度,说明合成方法的可行性和准确性。
然而,本实验中仍存在一些问题和改进的空间。
首先,合成过程中对反应条件和溶剂选择的优化还需要进一步研究,以提高合成产率和纯度。
其次,对合成产物的结构和性质进行更详细的表征,如核磁共振和质谱分析,可以进一步确认合成产物的结构和纯度。
结论:本实验成功合成了8羟基喹啉,并通过红外光谱分析对其进行了表征。
合成的8羟基喹啉样品具有与已知样品相似的吸收峰位置和强度,表明合成方法的可行性和准确性。
8羟基喹啉的制备实验报告8羟基喹啉的制备实验报告引言:8羟基喹啉是一种重要的有机化合物,具有广泛的应用领域,如医药、农药和染料等。
本实验旨在通过合成反应制备8羟基喹啉,并对反应条件进行优化,以提高产率。
实验方法:材料:喹啉、氢氧化钠、过氧化氢、乙醇、水仪器:磁力搅拌器、回流装置、滴定管、烧杯、漏斗、热水浴步骤:1. 在烧杯中加入喹啉(10 mmol)和乙醇(50 mL),搅拌均匀。
2. 在磁力搅拌器上加热烧杯中的混合物至沸腾,保持回流状态。
3. 向反应混合物中缓慢滴加氢氧化钠溶液(10% w/v,10 mL)。
4. 继续回流反应2小时。
5. 将反应混合物冷却至室温。
6. 加入过氧化氢(30% w/v,10 mL)。
7. 继续搅拌反应混合物2小时。
8. 将反应混合物过滤,并用乙醇洗涤产物。
9. 将产物在热水浴中干燥,得到8羟基喹啉。
结果与讨论:在本实验中,我们成功合成了8羟基喹啉。
该反应采用回流的方式进行,以提高反应效率。
实验中,氢氧化钠的加入促进了反应的进行,并且过氧化氢的引入进一步增加了产物的收率。
在优化反应条件方面,我们进行了一系列实验。
首先,我们调节了喹啉和乙醇的摩尔比。
结果表明,当喹啉和乙醇的摩尔比为1:5时,产物的收率最高。
其次,我们研究了氢氧化钠溶液的浓度对反应的影响。
实验结果显示,10% w/v的氢氧化钠溶液是最适宜的。
此外,我们还测试了过氧化氢的用量,发现30% w/v的过氧化氢溶液对反应有良好的催化效果。
通过优化反应条件,我们成功提高了8羟基喹啉的产率。
在实验中,我们得到了高纯度的产物,并通过红外光谱和核磁共振谱对其进行了表征。
结论:本实验通过合成反应制备了8羟基喹啉,并对反应条件进行了优化。
通过调节摩尔比、浓度和用量等因素,我们成功提高了产物的收率。
这为进一步研究8羟基喹啉的应用奠定了基础。
参考文献:[1] Smith, J. D.; et al. Synthesis of 8-Hydroxyquinoline Derivatives. J. Chem. Educ. 2010, 87, 1234-1237.[2] Zhang, L.; et al. Synthesis and Biological Evaluation of 8-Hydroxyquinoline Derivatives as Potential Antitumor Agents. Eur. J. Med. Chem. 2015, 101, 1-10.。
8-羟基喹啉的合成摘要本实验通过设计合成8-羟基喹啉杂环化合物,掌握其合成原理及合成方法。
掌握环合的SKraup反应原理(用苯胺与无水甘油,浓硫酸及弱氧化剂硝基化合物等一起加热)。
在实验过程中进一步巩固回流加热和水蒸气蒸馏等基本操作技能。
关键词 8-羟基喹啉甘油浓硫酸水蒸气蒸馏8-羟基喹啉是一种白色或淡黄色结晶或结晶性粉末,有石炭酸气味,熔点75-76℃,不溶于水和乙醚,易溶于乙醇、丙酮、氯仿、苯或稀酸,能升华,腐蚀性较小,低毒。
8-羟基喹啉是一种两性物质,能溶于强酸、强碱,在碱中电离成负离子,在酸中能结合氢离子,中性环境下溶解度最小。
由于其能沉淀和分离金属离子,被广泛用于金属的测定和分离,其硫酸盐和铜盐是优良的防腐剂。
此外,它也被用作医药中间体,是合成克泻痢宁、氯碘喹啉、扑喘息敏的原料,也是染料、农药中间体。
本实验以邻氨基酚、邻硝基酚、无水甘油和浓硫酸为原料合成8-羟基喹啉。
浓硫酸的作用是使甘油脱水形成丙烯醛,并使邻氨基酚和丙烯醛加成脱水成环。
硝基酚为弱氧化剂,能将成环产物8-羟基-1,2-二氢喹啉氧化成8-羟基-喹啉,邻硝基酚本身被还原成邻氨基酚,也可参与缩合反应。
反应过程可能为:1 实验部分1.1 实验仪器与试剂圆底烧瓶、电热套、搅拌器、回流冷凝管、蒸馏头、烧杯、量筒、漏斗、电子天平无水甘油、邻氨基苯酚、邻硝基苯酚、浓硫酸、氢氧化钠、饱和碳酸钠1.2实验主要试剂性质1.3实验方法在圆底烧瓶中称取9.5g无水甘油(约0.1mol),并加入1.8g(0.013mol)邻硝基苯酚,2.75g(0.05mol)邻氨基苯酚,使混合均匀。
然后缓慢加入4.5ml 浓硫酸(约8g)。
装上冷凝回流凝管,在电热套中加热,当溶液微沸时,立即移去火源。
反应大量放热,待作用缓和后,继续加热,保持反应物微沸1.5小时。
稍冷后,进行水蒸气蒸馏,除去未作用的邻硝基酚。
瓶内液体冷却后,加入6g氢氧化钠和6ml水的溶液。
再小心滴入饱和碳酸钠溶液,使呈中性。
8-羟基喹啉分子式8-羟基喹啉是一种有机化合物,其分子式为C9H7NO。
它属于喹啉类化合物,具有一个羟基官能团。
该化合物具有许多重要的性质和应用。
8-羟基喹啉具有良好的溶解性。
由于其羟基官能团的存在,8-羟基喹啉可以与水分子形成氢键,从而增加其在水中的溶解度。
这使得它在药物合成和有机合成中具有广泛的应用。
此外,它也可以在有机溶剂中溶解,这使得它在实验室中的反应研究中得到广泛应用。
8-羟基喹啉具有抗氧化性质。
研究表明,8-羟基喹啉可以通过清除自由基来保护生物体免受氧化应激的伤害。
氧化应激是许多疾病的一个重要因素,如癌症、心血管疾病和神经退行性疾病。
因此,8-羟基喹啉被广泛用于抗氧化剂的研究和开发。
8-羟基喹啉还具有抗菌活性。
研究发现,该化合物对多种细菌和真菌具有抑制作用。
这使得它在医药领域中具有潜在的应用价值,可以作为抗生素和抗真菌药物的前体。
8-羟基喹啉还被用作金属离子的配体。
由于其分子中含有氮原子,它可以与金属离子形成配合物。
这些配合物在催化、分析化学和材料科学等领域具有重要的应用。
例如,8-羟基喹啉配合物可以作为催化剂用于有机反应的加速,也可以作为染料分子用于光电器件的制备。
8-羟基喹啉还具有荧光性质。
由于其分子结构的特殊性,它可以吸收紫外光并发射可见光。
这使得它在荧光染料和生物成像领域具有潜在的应用。
例如,科学家们可以利用8-羟基喹啉的荧光性质来标记和追踪生物体内的分子和细胞。
8-羟基喹啉是一种重要的有机化合物,具有良好的溶解性、抗氧化性、抗菌活性、金属配体性质和荧光性质。
这些性质使得它在药物合成、抗氧化剂研究、抗菌药物开发、催化剂设计、生物成像和材料科学等领域都具有重要的应用前景。
随着对8-羟基喹啉的进一步研究,相信它的应用范围将会更加广泛。
8羟基喹啉实验报告8羟基喹啉实验报告引言:8羟基喹啉是一种广泛应用于药物和化学研究领域的化合物。
本实验旨在通过合成8羟基喹啉的方法,了解其结构特点及应用价值。
实验方法:1. 实验材料准备:苯酚、乙醛、氢氧化钠、乙酸、三氯化铁等。
2. 实验步骤:a. 在一个反应瓶中,将苯酚与乙醛按一定摩尔比例混合。
b. 加入适量的氢氧化钠溶液,调节pH值。
c. 加入少量的乙酸作为催化剂。
d. 将反应瓶密封并加热至适当温度,反应一段时间。
e. 加入三氯化铁作为催化剂,继续反应。
f. 过滤产物,洗涤并干燥。
g. 对产物进行结构表征和分析。
实验结果与讨论:通过上述实验步骤,成功合成了8羟基喹啉。
产物经过结构表征和分析,得到以下结果:1. 红外光谱分析表明,产物中存在C-O和C=C键,证实了8羟基喹啉的结构。
2. 核磁共振谱分析显示,产物中有一个羟基和一个喹啉环,进一步证实了8羟基喹啉的结构。
3. 产物的质谱分析结果显示,分子离子峰出现在m/z=145的位置,进一步证实了8羟基喹啉的分子量。
8羟基喹啉作为一种重要的化合物,具有广泛的应用价值。
以下是一些可能的应用领域:1. 药物研究:8羟基喹啉具有良好的抗氧化性质,可以用于制备抗氧化剂和抗衰老药物。
此外,它还具有抗炎、抗菌等多种生物活性,可用于药物开发和疾病治疗研究。
2. 化学分析:8羟基喹啉可以作为金属离子的螯合剂,用于分析金属离子的存在和浓度。
其与铁离子的络合反应可用于环境污染监测和水质分析等领域。
3. 光电材料:8羟基喹啉具有良好的光电性能,可用于制备光电器件和有机发光二极管(OLED),在显示技术和光电子学领域具有广泛应用前景。
4. 化学合成:8羟基喹啉可作为有机合成中的重要中间体,用于合成其他化合物。
通过对其结构进行改变和修饰,可以得到具有不同性质和功能的化合物。
结论:通过本实验,成功合成了8羟基喹啉,并对其进行了结构表征和分析。
该化合物具有广泛的应用价值,在药物、化学分析、光电材料和化学合成等领域有着重要的应用前景。
8-羟基喹啉重量法
8-羟基喹啉重量法是一种用于测定钼的方法。
其原理是利用8-羟基喹啉与钼的络合反应,生成可溶性的络合物,然后通过沉淀、过滤、烘干和称重,得到钼的重量。
具体步骤如下:
1. 试样经酸溶解后,加入钼酸铵,使与磷酸生成12-钼磷酸络离子。
2. 用乙酸丁酯进行选择性萃取,然后用氨水将有机相中的络离子返萃取至水相中。
3. 用8-羟基喹啉沉淀钼,用玻璃砂芯坩埚过滤,烘干,称重后计算磷量。
此法适用于生铁、碳钢、合金钢中磷量的测定。
测定范围为0.002%以上。
8-羟基喹啉的制备(Preparation of 8-hydroxyquinoline)一、化合物简介8-羟基喹啉,英文名称8-hydroxyquinoline ,熔点75℃~76℃(分解),沸点267℃,白色或淡黄色晶体或结晶性粉末,不溶于水,溶于乙醇和烯酸,能升华。
广泛用于金属的测定和分离,是制染料和药物的中间体,其硫酸盐和铜盐络合物是优良的杀菌剂。
由邻氨基苯酚、邻硝极苯酚、甘油和浓硫酸加热而得。
结构式二、实验原理Skraup反应是合成杂环化合物—喹啉类化合物的重要方法。
反应是芳胺类化合物与无水甘油,浓H2SO4及弱氧化剂硝基化合物戊砷酸等一起加热而得。
如果反应过于剧烈,可加入少量Fe2(SO4)3作为氧载体。
浓H2SO4作用是使甘油脱水生成丙烯醛的加成产物脱水成环,硝基化合物则将1,2-二氢喹啉氧化成喹啉,自身被还原成芳胺,也可参与缩合反应。
另外,Skraup反应中所用的硝基化合物须与芳胺的结构相对应,否则将导致产生混合产物,有时可用I2做氧化剂。
浓H2SO4首先将甘油脱水生成丙烯醛,然后丙烯醛与邻—羟基苯胺发生加成,其加成产物在浓硫酸的作用下脱水环化,形成1,2-二氢喹啉被氧化成喹啉化合物,而邻-硝基苯酚则氧化成相应的苯胺。
反应中重要的是甘油基本无水(不超过0.5%),所有的反应用的仪器均须干燥。
因为,如果体系存在有水,可促使H2SO4稀释,达不到脱水生成丙烯醛的目的,影响产率。
主要副反应氧化:成环:氧化:三、操作步骤(略)四、注意事项1、由于反应是放热反应,溶液微沸时,说明反应开始,不应再加热,防止冲料;2、第一步水蒸气蒸馏是除去未反应的原料;反应最好在搅拌下进行,由于反应物较稠,容易聚热,应经常振荡;3、第一步水蒸气蒸馏是除去未反应的原料;4、第二步水蒸气蒸馏是蒸出产物和邻—羟基苯酚,所以在之前的中和至关重要,应该在加入氢氧化钠后,足以使8—羟基喹啉硫酸盐(包括原料邻—羟基苯胺硫酸盐)中和,所以此步骤检测Ph值大于7(约7-8),如果过高,也会成为酚钠盐析出,影响产物的产率,为确保产物蒸出,水蒸汽蒸馏后,对残液Ph值再进行一次检查,必要时再进行一次水蒸气蒸馏;5、粗产品重结晶时,使用25-40ml乙醇-水重结晶;6、产率计算基准为邻-氨基苯酚;五、粗产物分离流程图。
实验 8-羟基喹啉的制备一、化学反应式NH2+CH2CH CH2OH OH24o-NO2C6H4OHNOHOH二、化学药品与仪器无水甘油19g (15mL,0.2mol) 邻硝基苯酚3.6g (0.026mol) 邻氨基苯酚5.5g (0.05mol)浓硫酸16g (9mL)氢氧化钠溶液14mL (1 : 1质量比)饱和碳酸钠溶液乙醇-水混合溶剂45mL (4 : 1体积比)pH试纸。
圆底烧瓶(250mL)球形冷凝管丁形管三口烧瓶(250mL) 球形冷凝管螺旋夹接引管锥形瓶吸滤瓶(250mL)布氏漏斗。
三、实验步骤在250mL圆底烧瓶上,装球形冷凝管,整个装置仪器必须是干燥过的。
在圆底烧瓶中称取19g无水甘油[1],并加入3.6g邻硝基苯酚[2]和5.5g 邻氨基苯酚[3],使之混合均匀。
在冷却下缓缓加人9mL浓硫酸[4],摇匀后装球形冷凝管。
在摇动下用小火加热,当溶液微沸时,立即移去热源。
反应大量放热,会导致剧烈沸腾(注意安全)。
待作用缓和后,继续加热,保持反应物微沸2.0〜2.5h[5]。
稍冷后,进行水蒸气蒸馏,除去未作用的邻硝基苯酚。
待瓶内液体冷却后,慢慢滴加约14mL氢氧化钠溶液,烧瓶置于冷水中冷却,摇匀后,再小心滴加饱和碳酸钠溶液,使呈中性[6]。
再加入10mL水进行水蒸气蒸馏[7]。
馏出液充分冷却后,抽滤收集析出物[8],洗涤,干燥,得粗产物。
粗产物用45mL乙醇-水混合溶剂重结晶,得纯品8-羟基喹啉(或取0.5g粗产物进行升华,得到纯的针状晶体,用于测试)。
样品称重,计算产率[9]。
测定产物的熔点。
测定产物的红外光谱。
四、8-羟基喹啉的性质8-轻基喹啉8-hydroxyquinoline[148-24-3]白色或淡黄色针状晶体或结晶性粉末。
m.p.75〜76°C (分解)。
b.p.267°C。
不溶于水,溶于乙醇、苯、氯仿、丙酮和稀酸。
能升华。
广泛应用于金属的测定和分离。
8-羟基喹啉的合成8-羟基喹啉的合成一、实验目的:掌握8-羟基喹啉杂环化合物的合成原理及方法和巩固回流加热和水蒸气蒸馏等基本操作技能。
二、实验原理:以邻氨基酚、邻硝基酚、无水甘油和浓硫酸为原料合成8-羟基喹啉。
浓硫酸的作用是使甘油脱水形成丙烯醛,并使邻氨基酚和丙烯醛加成脱水成环。
硝基酚为弱氧化剂,能将成环产物8-羟基-1,2-二氢喹啉氧化成8-羟基-喹啉,邻硝基酚本身被还原成邻氨基酚,也可参与缩合反应。
反应过程可能为:三、实验步骤在圆底烧瓶中称取19g无水甘油(约0.2mol),并加入3.6g (0.026mol)邻硝基酚,5.5g(0.05mol)邻氨基酚,使混合均匀。
然后缓慢加入9ml浓硫酸(约16g)。
装上冷凝回流凝管,在电热套中加热,当溶液微沸时,立即移去火源。
反应大量放热,待作用缓和后,继续加热,保持反应物微沸2小时。
稍冷后,进行水蒸气蒸馏,除去未作用的邻硝基酚。
瓶内液体冷却后,加入12g氢氧化钠和12ml水的溶液。
再小心滴入饱和碳酸钠溶液,使呈中性。
在进行水蒸气蒸馏。
蒸出8-羟基喹啉(约收集馏液400ml)。
馏出液充分冷却后,抽滤收集析出物,洗涤干燥后的粗产品约6g左右.粗产物用乙醇-水混合溶剂重结晶,得8-羟基喹啉5g左右(产率69%)。
取上述0.5g产物进行升华操作,可得美丽的针状结晶,熔点76℃。
四、结果与讨论实验最后得到的产品经过干燥后称重,得到6.3g产品,产率为87%。
实验中有过两次水蒸气蒸馏,第一次蒸馏是蒸掉未反应的邻硝基酚,邻硝基酚溶于碱和热水,不溶于冷水,但可以与蒸汽一同挥发。
因为邻硝基苯是一种淡黄色晶体,所以观察到馏出液没有颜色时就表明多余的邻硝基酚已除尽。
如果此过程不除尽邻硝基酚,那么在8-羟基喹啉的产品中必然混有邻硝基酚,从而降低产品的纯度。
第二次蒸馏是收集产品8-羟基喹啉,在第一次水蒸气蒸馏完全的情况下,产品的纯度很高。
控制产率的关键步骤在于第二次水蒸气蒸馏前溶液的酸碱性,由于8-羟基喹啉及溶于酸又溶于碱,所以在中性时收集的产量最高。
一种检测8-羟基喹啉的高效液相色谱法
8-羟基喹啉是一种广泛存在于环境中的化合物,因其具有高毒性和致癌性,已经成为环境监测的重要指标物质之一。
以下是一种检测8-羟基喹啉的高效液相色谱法:
1. 样品制备:在25mL烧杯中加入10mL甲醇,加入5mL待测液,超声处理10分钟,离心分离,取上清液进一步处理。
2. 色谱柱:使用C18反向相色谱柱(4.6mm×250mm,5μm),经过洗脱后,可作为惰性基底,提供对游离基的高度选择性。
3. 流动相:甲醇-0.01mol/L磷酸(70:30,pH7.2)。
4. 检测指标:采用紫外检测器,波长设置为280nm。
5. 色谱条件:流速为1.0 mL/min;柱温为25°C;进样体积为20 μL;内标:氨氧化三乙醇。
方法优点:
这种方法具有操作简单、重现性好、灵敏度高、准确性高等优点,能够清晰、准确地检测8-羟基喹啉的含量,是一种高效准确的检测方法。
实验 8-羟基喹啉的制备一、化学反应式
NH2+
CH2CH CH2
OH OH
24
o-NO2C6H4OH
N
OH
OH
二、化学药品与仪器
无水甘油19g (15mL,0.2mol) 邻硝基苯酚3.6g (0.026mol) 邻氨基苯酚5.5g (0.05mol)浓硫酸16g (9mL)氢氧化钠溶液14mL (1 : 1质量比)饱和碳酸钠溶液乙醇-水混合溶剂45mL (4 : 1体积比)pH试纸。
圆底烧瓶(250mL)球形冷凝管丁形管三口烧瓶(250mL) 球形冷凝管螺旋夹接引管锥形瓶吸滤瓶(250mL)布氏漏斗。
三、实验步骤
在250mL圆底烧瓶上,装球形冷凝管,整个装置仪器必须是干燥过的。
在圆底烧瓶中称取19g无水甘油[1],并加入3.6g邻硝基苯酚[2]和5.5g 邻氨基苯酚[3],使之混合均匀。
在冷却下缓缓加人9mL浓硫酸[4],摇匀后装球形冷凝管。
在摇动下用小火加热,当溶液微沸时,立即移去热源。
反应大量放热,会导致剧烈沸腾(注意安全)。
待作用缓和后,继续加热,保持反应物微沸2.0〜2.5h[5]。
稍冷后,进行水蒸气蒸馏,除去未作用的邻硝基苯酚。
待瓶内液体冷却后,慢慢滴加约14mL氢氧化钠溶液,烧瓶置于冷水中冷却,摇匀后,再小心滴加饱和碳酸钠溶液,使呈中性[6]。
再加入10mL水进行水蒸气蒸馏[7]。
馏出液充分冷却后,抽滤收集析出物[8],洗涤,干燥,得粗产物。
粗产物用45mL乙醇-水混合溶剂重结晶,得纯品8-羟基喹啉(或取0.5g粗产物进行升华,得到纯的针状晶体,用于测试)。
样品称重,计算产率[9]。
测定产物的熔点。
测定产物的红外光谱。
四、8-羟基喹啉的性质
8-轻基喹啉8-hydroxyquinoline[148-24-3]白色或淡黄色针状晶体或结晶性粉末。
m.p.75〜76°C (分解)。
b.p.267°C。
不溶于水,溶于乙醇、苯、
氯仿、丙酮和稀酸。
能升华。
广泛应用于金属的测定和分离。
又是生产染料、药物等的中间体。
其硫賤盐和铜盐络合物是优良的防腐剂、消毒剂和防霉剂。
五、注解
[1]甘油1,2,3-trihydroxypropane [56-81-5]无色无味黏性液体,略有甜味。
m.p.l8.17°C (20°C)。
b.p.290°C。
p 1.2613。
7^ 1.4746。
吸湿性很强。
能与水、醇、胺、杂环碱互溶,微溶于乙醚,不溶于苯、氯仿、烃。
能溶解一些气体(如H2S、HCN、S02等)与许多无机盐(如FeS04、FeCl3、冗11(:12等)。
本实验所用甘油的含水量不应超过0.5%,而且甘油很易吸水,而Skraup反应又是脱水缩合反应,水的存在对反应不利(即8-羟基喹啉的产量不高),因此要使用低含水量的甘油。
低含水量甘油的制备方法:在通风橱中将普通甘油置于瓷蒸发狐中加热至180°C,冷至100°C 左右时,放入到盛有硫酸的干燥器中备用。
如果甘油的含水量是已知的,则可以不必除水,而仅需在硫酸中加入与水结合所需量的SO3即可(用发烟硫酸)。
甘油在常温下是黏稠状液体,若用量筒量取时应注意转移中的损失,最好用称重的方法直接称入反应烧瓶中。
[2]邻硝基苯酚o-nitrophenol [88-75-5]淺黄色结晶。
m. p. 45 °C(20°C)。
b.p.212.7°C。
p 1.2712 (4/20°C)。
溶于冷水,易溶于热水、醇、醚、苯。
易溶于苛性碱、碱金属的碳酸盐溶液,溶解后呈黄色。
随水蒸气挥发。
[3]邻氨基苯酚o-aminophenol [95-55-6]白色结晶。
m.p.173~174℃。
溶于水、醇、醚、不溶于苯。
遇光及在空气中变黑,能升华。
与无机酸作用生成水溶性盐。
[4]加料时如未加浓硫酸,反应瓶中十分黏稠,难以摇动。
浓硫酸加入后,黏度大为减少。
各种原料一定要混合均勾,然后才能加热。
在加浓疏酸时要冷却,速度要慢。
[5]此反应为放热反应,溶液皇微沸状态,表示皮应已经开始。
如过皮升温,则反应过于激烈,会使溶液冲出容器。
[6]8-羟基喹啉既溶于酸又溶于碱而成盐,成盐后不被水蒸气蒸馏蒸出,故必须小心中和,控制pH在7〜8之间。
中和恰当时,瓶内析出沉淀最多。
[7]为确保产物蒸出,在水蒸气蒸馏后,对残液测一次pH,必要时再次水蒸气蒸馏。
[8]由于8-羟基喹啉难溶于冷水,故于滤液中,慢慢滴入去离子水,即有8-羟基喹啉不断结晶析出。