高二上册文科数学期末试卷
- 格式:doc
- 大小:29.50 KB
- 文档页数:4
2021-2021学年湖北省武汉市高二〔上〕期末数学试卷〔文科〕一、选择题〔本大题共12小题,每题5分,共60分〕.〔分〕假设5,f′〔x0〕=20,那么x0的值为〔〕1f〔x〕=xA .B.±C.﹣2D.±22.〔5分〕以下求导运算正确的选项是〔〕A.〔cosx〕'=sinx B.〔3x〕'=3x log3eC.D.〔x2cosx〕′=﹣2xsinx3.〔5分〕过抛物线y2=4x的焦点作直线交抛物线于A〔x1,y1〕,B〔x2,y2〕两点,假设x1+x2=6,那么|AB|=〔〕A.2B.4C.6D.84.〔5分〕焦点在x轴上的椭圆+=1的离心率为,那么m=〔〕A.8B.9C.﹣3D.16.〔5分〕设函数2+x,那么=〔〕5f〔x〕=xA.﹣6B.﹣3C.3D.66.〔5分〕假设pVq是假命题,那么〔〕A.p,q至少有一个是假命题B.p,q均为假命题C.p,q中恰有一个是假命题D.p,q至少有一个是真命题7.〔5分〕双曲线﹣=1的渐近线方程是〔〕A.y=±B.y=±2x C.y=±xD.y=±x8.〔5分〕命题α:“如果x<3,那么x<5〞,命题β:“如果x≥5,那么x≥3〞,那么命题α是命题β的〔〕A.否命题B.逆命题C.逆否命题D.否认形式9.〔5分〕抛物线方程为y2=5x那么焦点到准线的距离为〔〕A.B.C.5D.1010.〔5分〕设集合M={x|0<x≤4},N={x|2≤x≤3},那么“a∈M〞是“a∈N〞的〔〕A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件.〔5分〕抛物线2上有一点P,它到A〔2,10〕距离与它到焦点距离之和最小时,点P11y=2x坐标是〔〕A.〔,10〕B.〔,20〕C.〔2,8〕D.〔1,2〕12.〔5分〕F是椭圆=1〔a>b>0〕的左焦点,A为右顶点,P是椭圆上的一点,PF⊥x轴,假设|PF|=|AF|,那么该椭圆的离心率是〔〕A.B.C.D.二、填空题〔本大题共4小题,每题5分,共20分〕13.〔5分〕命题“?x0∈R,x02+2x0>0〞的否认是.14.〔5分〕F1,F2是椭圆+ =1的两个焦点,过F1的直线l交椭圆于M,N两点,那么△MF2N的周长为.15.〔5分〕曲线y=lnx在点〔e,f〔e〕〕处的切线方程为.16.〔5分〕命题p:“?x∈[1,2],3x2﹣a≥0〞,命题q:“?x∈R,x2+2ax+2﹣a=0〞,假设命题“p且q〞是真命题,那么实数a的取值范围是.三、解答题〔本大题共6小题,共70分.解容许写出文字说明,证明过程或演算步骤〕2217.〔10分〕双曲线方程为16y﹣9x=144.〔2〕假设抛物线C的顶点是该双曲线的中心,而焦点是其下顶点,求抛物线C的方程.18.〔12分〕函数f〔x〕=x3﹣3x2﹣9x+1〔x∈R〕,g〔x〕=2a﹣1〔1〕求函数f〔x〕的单调区间与极值.〔2〕假设f〔x〕≥g〔x〕对?x∈[﹣2,4]恒成立,求实数a的取值范围.19.〔12分〕椭圆C:=1〔a>0,b>0〕的离心率为,短轴长为4.〔1〕求椭圆的标准方程;〔2〕过点P〔2,1〕作弦且弦被P平分,那么此弦所在的直线方程.20.〔12分〕直线l的参数方程为〔t为参数〕,以原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=2cos〔θ﹣〕.〔1〕求直线l的普通方程及曲线C的直角坐标方程;〔2〕设直线l与曲线C交于A,B两点,求|AB|.21.〔12分〕在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已2,θ∈,π,直线:〔是参数〕知曲线C:ρ=[0]l t〔1〕求出曲线C的参数方程,及直线l的普通方程;〔2〕P为曲线C上任意一点,Q为直线l上任意一点,求|PQ|的取值范围.22.〔12分〕函数f〔x〕=lnx﹣,a为常数〔1〕判断f〔x〕在定义域内的单调性〔2〕假设f〔x〕在[1,e]上的最小值为,求a的值.2021-2021学年湖北省武汉市高二〔上〕期末数学试卷〔文科〕参考答案与试题解析一、选择题〔本大题共12小题,每题5分,共60分〕.〔分〕假设5,f′〔x0〕=20,那么x0的值为〔〕15f〔x〕=xA.B.±C.﹣2D.±2【解答】解:函数的导数f′〔x〕=5x4,f′〔x0〕=20,5x04=20,得x04=4,那么x0=±,应选:B.2.〔5分〕以下求导运算正确的选项是〔〕A.〔cosx〕'=sinx B.〔3x〕'=3x log3e C.D.〔x2cosx〕′=﹣2xsinx【解答】解:〔cosx〕'=﹣sinx,A不正确;〔3x〕'=3x ln3,B不正确lgx〕′=,C正确;x2cosx〕′=2xcosx﹣x2sinx,D不正确应选:C.2=4x的焦点作直线交抛物线于1,y1〕,B〔x2,y2〕两点,假设x1+x2,3.〔5分〕过抛物线y A〔x=6那么|AB|=〔〕∴A.2 B.4C.6D.8【解答】解:由题意,抛物线的方程为y2=4x,即p=2,故抛物线的准线方程是x=﹣1,∵抛物线y2=4x的焦点作直线交抛物线于A〔x1,y1〕B〔x2,y2〕两点|AB|=x1+x2+2,x1+x2=6|AB|=x1+x2+2=8应选:D.4.〔5分〕焦点在x轴上的椭圆+=1的离心率为,那么m=〔〕A.8B.9C.﹣3D.16【解答】解:根据题意,椭圆+=1的焦点在x轴上,那么有m>6,那么a=,b=,那么c=,又由椭圆的离心率e==,即有=,解可得m=8;应选:A.5.〔5分〕设函数f〔x〕=x2+x,那么=〔〕A.﹣6B.﹣3C.3D.6【解答】解:根据导数的定义:那么=2=﹣2f′〔1〕,由f′〔x〕=2x+1,∴﹣2f′〔1〕=﹣6,∴=﹣6,应选A.6.〔5分〕假设pVq是假命题,那么〔〕A.p,q至少有一个是假命题B.p,q均为假命题C.p,q中恰有一个是假命题D.p,q至少有一个是真命题【解答】解:假设p∨q是假命题,那么p,q均为假命题,应选:B7.〔5分〕双曲线﹣=1的渐近线方程是〔〕A.y=±B.y=±2x C.y=±xD.y=±x【解答】解:根据题意,双曲线的方程为其焦点在y轴上,且a=2,b=2,那么该双曲线的渐近线方程为y=±x;应选:D.﹣=1,8.〔5分〕命题α:“如果x<3,那么x<5〞,命题β:“如果x≥5,那么x≥3〞,那么命题α是命题β的〔〕A.否命题 B.逆命题C.逆否命题D.否认形式【解答】解:命题α的条件的否认是β的结论,命题α的结论的否认是β的条件,两个条件满足逆否命题关系,故命题α是命题β的逆否命题,应选:C9.〔5分〕抛物线方程为y2=5x那么焦点到准线的距离为〔A.B.C.5D.10〕【解答】解:根据题意,抛物线方程为y2=5x,那么抛物线的焦点为〔,0〕,准线为x=﹣,所以焦点到准线的距离为;应选:B.10.〔5分〕设集合M={x|0<x≤4},N={x|2≤x≤3},那么“a∈M〞是“a∈N〞的〔〕A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:设集合M={x|0<x≤4},N={x|2≤x≤3},N?M,所以假设“a∈M〞推不出“a∈N〞;假设“a∈N〞,那么“a∈M〞,所以“a∈M〞是“a∈N〞的必要而不充分条件,应选:B.〔分〕抛物线2上有一点P,它到A〔2,10〕距离与它到焦点距离之和最小时,点P 115y=2x坐标是〔〕A.〔,10〕B.〔,20〕C.〔2,8〕D.〔1,2〕【解答】解:由题意知,抛物线的抛物线y=2x2标准方程:x2= y焦点为F〔0,〕,准线l 为y=﹣,且点A在抛物线内部,过点A作准线l的垂线,垂足为A′,根据抛物线的定义,可知,垂线AA′与抛物线的交点即为所求的点P,且易求得,点P的坐标为〔2,8〕,应选C.12.〔5分〕F是椭圆=1〔a>b>0〕的左焦点,A为右顶点,P是椭圆上的一点,PF⊥x轴,假设|PF|=|AF|,那么该椭圆的离心率是〔〕A.B.C.D.【解答】解:根据椭圆几何性质可知|PF|=,|AF|=a+c,所以=〔a+c〕,4b2=3a2﹣3ac,因为b2=a2﹣c2,所以有4a2﹣4c2=3a2﹣3ac,整理可得4c2+3ac﹣a2=0,两边同除以a2得:4e2+3e﹣1=0,所以〔4e﹣1〕〔e+1〕=0,由于0<e<1,所以e=.应选:A二、填空题〔本大题共4小题,每题5分,共20分〕13.〔5分〕命题“?x0∈R,x02+2x0>0〞的否认是?x∈R,x2+2x≤0.【解答】解:依题意,特称命题的否认是全称命题,故命题“?x0∈R,x02+2x0>0〞的否认是:x∈R,x2+2x≤0.故答案为:?x∈R,x2+2x≤0.14.〔5分〕F1,F2是椭圆+ =1的两个焦点,过F1的直线l交椭圆于M,N两点,那么△MF2N的周长为 8.【解答】解:根据题意,椭圆+ =1中a= =2,F1的直线l交椭圆于M,N两点,那么有|MF1|+|MF2|=2a=4,同理:|NF1|+|NF2|=2a=4,△MF2N的周长l=|MN|+|MF2|+|NF2|=|MF1|+|MF2|+|NF1|+|NF2|=4a=8;故答案为:8.15.〔5分〕曲线y=lnx在点〔e,f〔e〕〕处的切线方程为x﹣ey=0.【解答】解:y=lnx的导数为y′=,那么切线斜率k=,切点为〔e,1〕,那么切线的方程为y﹣1=〔x﹣e〕,即为x﹣ey=0.故答案为:x﹣ey=0.16.〔5分〕命题p:“?x∈[1,2],3x2﹣a≥0〞,命题q:“?x∈R,x2+2ax+2﹣a=0〞,假设命题“p且q〞是真命题,那么实数a的取值范围是a≤﹣2或1≤a≤3..【解答】解:p:假设?x∈[1,2],3x2﹣a≥0,得a≤3x2,恒成立,q:假设:“?x∈R,x2+2ax+2﹣a=0,那么△=4a2﹣4〔2﹣a〕≥0,假设命题“p且q〞是真命题,那么p、q都为真.∴a≤﹣2或1≤a≤3.故答案为:a≤﹣2或1≤a≤3三、解答题〔本大题共6小题,共70分.解容许写出文字说明,证明过程或演算步骤〕2217.〔10分〕双曲线方程为16y﹣9x=144.〔2〕假设抛物线C的顶点是该双曲线的中心,而焦点是其下顶点,求抛物线C的方程.【解答】解:〔1〕由16y2﹣9x2=144,得﹣=1,2a=6,2b=8,2c=10,所以实轴长为6,虚轴长为8,离心率为e==;2〔2〕设抛物线C:x=﹣2py,〔p>0〕,所以抛物线C:x2=﹣12y.18.〔12分〕函数f〔x〕=x3﹣3x2﹣9x+1〔x∈R〕,g〔x〕=2a﹣1〔1〕求函数f〔x〕的单调区间与极值.〔2〕假设f〔x〕≥g〔x〕对?x∈[﹣2,4]恒成立,求实数a的取值范围.【解答】解:〔1〕f′〔x〕=3x2﹣6x﹣9,f′〔x〕>0,解得:x<﹣1或x>3,f′〔x〕<0,解得:﹣1<x<3,故函数f〔x〕的单调增区间为〔﹣∞,﹣1〕,〔3,+∞〕,单调减区间为[﹣1,3];故f〔x〕的极大值为f〔﹣1〕=6,极小值f〔3〕=﹣26;〔2〕由〔1〕知f〔x〕在[﹣2,﹣1]上单调递增,在[﹣1,3]上单调递减,在[3,4]上单调递增,又f〔﹣2〕=﹣1,f〔3〕=﹣26,f〔3〕<f〔﹣2〕,f〔x〕min=﹣26,f〔x〕﹣2a+1≥0对?x∈[﹣2,4]恒成立,∴f〔x〕min≥2a﹣1,即2a﹣1≤﹣26,∴a≤﹣.19.〔12分〕椭圆C:=1〔a>0,b>0〕的离心率为,短轴长为4.〔1〕求椭圆的标准方程;〔2〕过点P〔2,1〕作弦且弦被P平分,那么此弦所在的直线方程.【解答】解:〔1〕e= =,2b=4,所以a=4,b=2,c=2,椭圆标准方程为+,〔2〕设以点p〔2,1〕为中点的弦与椭圆交于A〔x1,y1〕,B〔x2,y2〕,x1+x2=4,那么y1+y2=2,分别代入椭圆的方程,两式相减可得〔x1+x2〕〔x1﹣x2〕+4〔y1+y2〕〔y1﹣y2〕=0,∴4〔x1﹣x2〕+8〔y1﹣y2〕=0,∴k==﹣,∴点P〔2,1〕为中点的弦所在直线方程为y﹣1=﹣〔x﹣2〕,整理,得:x+2y﹣4=0.20.〔12分〕直线l的参数方程为〔t为参数〕,以原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=2cos〔θ﹣〕.〔1〕求直线l的普通方程及曲线C的直角坐标方程;〔2〕设直线l与曲线C交于A,B两点,求|AB|.【解答】解:〔1〕直线l的参数方程为〔t为参数〕,消去t得到:,即:4x+3y﹣2=0.曲线C的极坐标方程为ρ=2cos〔θ﹣〕.转化为:ρ2=2ρcos+2ρsin,θ整理得:x2+y2﹣2x﹣2y=0.〔2〕将l的参数方程〔t为参数〕,代入曲线C:x2+y2﹣2x﹣2y=0,整理得:t2+4t+3=0,所以:t1+t2=﹣4,t1t2=3,那么:|AB|=|t1﹣t2|==2.21.〔12分〕在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已2,θ∈,π,直线:〔是参数〕知曲线C:ρ=[0]l t〔1〕求出曲线C的参数方程,及直线l的普通方程;〔2〕P为曲线C上任意一点,Q为直线l上任意一点,求|PQ|的取值范围.【解答】解析:〔1〕曲线C的普通方程为:〔y≥0〕,∴曲线C的参数方程〔θ为参数,θ∈[0,π]〕直线l:〔t是参数〕转化成普通方程为:,〔2〕设P〔2cosθ,sinθ〕P到直线l的距离d==,∵θ∈[0,π]∴,那么:,∴∴,∴.22.〔12分〕函数f〔x〕=lnx﹣,a为常数〔1〕判断f〔x〕在定义域内的单调性〔2〕假设f〔x〕在[1,e]上的最小值为,求a的值.【解答】解:〔1〕由题意得f〔x〕的定义域为〔0,+∞〕,f〔′x〕=+ =,①当a≥0时,f'〔x〕>0,故f〔x〕在上为增函数;②当a<0时,由f'〔x〕=0得x=﹣a;由f'〔x〕>0得x>﹣a;由f'〔x〕<0得x<﹣a;f〔x〕在〔0,﹣a]上为减函数;在〔﹣a,+∞〕上为增函数.所以,当a≥0时,f〔x〕在〔0,+∞〕上是增函数;当a<0时,f〔x〕在〔0,﹣a]上是减函数,在〔﹣a,+∞〕上是增函数.〔2〕由〔1〕,当a≥0时,f〔x〕在[1,e]上单调递增,f〔x〕min=f〔1〕=﹣a=,∴a=﹣,不舍题意,舍;当﹣e<a<0时,f〔x〕在[1,﹣a]上单调递减,在[﹣a,e]上单调递增,f〔x〕min=f〔﹣a〕=ln〔﹣a〕+1=,解得a=﹣;当a<﹣e时,f〔x〕在[1,e]上单调递增,∴f〔x〕min=f〔1〕=﹣a=,解得a=﹣,不合题意,舍;综上所述,a=﹣.。
高二上学期期末考试数学试题(文)第I 卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)1. 已知,,a b c 满足a b c <<,且0ac <,则下列选项中一定成立的是( )A.ab ac <B.()0c a b ->C.22ab cb <D.()220a cac ->2.若不等式202mx mx ++>恒成立,则实数m 的取值范围是( ) A.2m > B.2m < C. 0m <或2m >D.02m <<3.2014是等差数列4,7,10,13,…的第几项( ). A .669B .670C .671D .6724.△ABC 中,a=80,b=100,A=450则三角形解的情况是( ) A .一解B .两解C .一解或两解D .无解5.一元二次不等式ax 2+bx +2>0的解集为(-12,13),则a +b 的值是( ). A .10B .-10C .14D .-146.等差数列{an}中s 5=7,s 10=11,则s 30=( ) A 13 B 18 C 24 D 317.△ABC 中a=6,A=600 c=6 则C=( ) A 450, B 1350C 1350,450D 6008.点(1,1)在直线ax+by-1=0上,a,b 都是正实数,则ba 11+的最小值是( )A 2B 2+22C 2-22D 4 9.若a ∈R ,则“a =1”是“|a|=1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件10.下列有关命题的说法正确的是 ( ) A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”; B .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++<”; C .在ABC ∆中,“B A >”是“B A 22cos cos <”的充要条件; D .“2x ≠或1y ≠”是“3x y +≠”的非充分非必要条件.11中心在原点、焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )A . +=1B . +=1C .+=1 D .+=112.抛物线x 2=4y 的焦点坐标为( )A .(1,0)B .(﹣1,0)C .(0,1)D .(0,﹣1)第II 卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分) 13. 不等式31≤+xx 的解集是_____________ 14. 已知直线21=+y x 与曲线3y x ax b =++相切于点(1,3),则实数b 的值为_____. 15.在等比数列{a n }中,a 3a 7=4,则log 2(a 2a 4a 6a 8)=________.16.ABC ∆中,a 2-b 2 =c 2+bc 则A= .三、解答题17.已知函数()(2)()f x x x m =-+-(其中m>-2). ()22x g x =-. (I )若命题“2log ()1g x ≥”是假命题,求x 的取值范围;(II )设命题p :∀x ∈R ,f(x)<0或g(x)<0;命题q :∃x ∈(-1,0),f(x)g(x)<0. 若p q ∧是真命题,求m 的取值范围.18函数f(x)=3lnx-x 2-bx.在点(1,f (1))处的切线的斜率是0 (1)求b ,(2)求函数的单调减区间19.锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知()2cos 2sin .2C B A -=(Ⅰ)求sin sin A B 的值;(Ⅱ)若3,2a b ==,求ABC ∆的面积.20. (本小题满分12分)数列{n a }的前n 项和为n S ,2131(N )22n n S a n n n *+=--+∈ (Ⅰ)设n n b a n =+,证明:数列{n b }是等比数列; (Ⅱ)求数列{}n nb 的前n 项和n T ;21已知椭圆C :=1(a >b >0)的短半轴长为1,离心率为(1)求椭圆C 的方程(2)直线l 与椭圆C 有唯一公共点M ,设直线l 的斜率为k ,M 在椭圆C 上移动时,作OH ⊥l 于H (O 为坐标原点),当|OH|=|OM|时,求k 的值. 22.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (Ⅰ)求,a b 的值;(Ⅱ)当[03]x ∈,时,函数()y f x = 的图像恒在直线2y c =的下方,求c 的取值范围.答案一选择题、D D C B . D D C B A .D A C二、填空题. {|0x x <或1}2x ≥ .3 4. 120017、.解:(I )若命题“2log ()1g x ≥”是假命题,则()2log 1g x <即()2log 221,0222x x -<<-<,解得1<x <2;(II )因为p q ∧是真命题,则p,q 都为真命题,当x >1时,()22x g x =->0,因为P 是真命题,则f(x)<0,所以f(1)= ﹣(1+2)(1﹣m) <0,即m <1;当﹣1<x <0时,()22x g x =-<0,因为q 是真命题,则∃x ∈(-1,0),使f(x) >0,所以f(﹣1)= ﹣(﹣1+2)( ﹣1﹣m) >0,即m >﹣1,综上所述,﹣1<m <1. 18,(1)b=1 (2)(1,∞)19. 解:(Ⅰ)由条件得cos(B -A)=1-cosC=1+cos(B+A), 所以cosBcosA+sinBsinA=1+cosBcosA -sinBsinA,即sinAsinB=12;(Ⅱ)sin 3sin 2A aB b ==,又1sin sin 2A B =,解得:sin 23A B ==,因为是锐角三角形,1cos ,cos 23A B ∴==,()sin sin sin cos cos sin C A B A B A B =+=+=11sin 322262S ab C ∆+==⨯⨯⨯=. 略20.【答案】解:(Ⅰ)∵ 213122n n a S n n +=--+,…………………………①∴ 当1=n 时,121-=a ,则112a =-, …………………1分当2n ≥时,21113(1)(1)122n n a S n n --+=----+,……………………②则由①-②得121n n a a n --=--,即12()1n n a n a n -+=+-,…………………3分∴ 11(2)2n n b b n -=≥,又 11112b a =+=, ∴ 数列{}n b 是首项为12,公比为12的等比数列,…………………4分 ∴ 1()2n n b =. ……………………5分(Ⅱ)由(Ⅰ)得2n nn nb =. ∴ n n n nn T 221..........242322211432+-+++++=-,……………③ 1232221..........24232212--+-+++++=n n n nn T ,……………④……………8分 由④-③得n n n nT 221......2121112-++++=- 1122212212nn n n n ⎛⎫- ⎪+⎝⎭=-=--.……………………12分21、【解答】解:(1)椭圆C:=1(a >b >0)焦点在x 轴上,由题意可知b=1,由椭圆的离心率e==,a 2=b 2+c 2,则a=2∴椭圆的方程为;﹣﹣﹣﹣﹣﹣﹣(2)设直线l :y=kx+m ,M (x 0,y 0).﹣﹣﹣﹣﹣﹣﹣,整理得:(1+4k 2)x 2+8kmx+4m 2﹣4=0,﹣﹣﹣﹣﹣﹣﹣令△=0,得m 2=4k 2+1,﹣﹣﹣﹣﹣﹣﹣由韦达定理得:2x0=﹣,x02=,﹣﹣﹣﹣﹣﹣﹣∴丨OM丨2=x02+y02=x02+(kx+m)2=①﹣﹣﹣﹣﹣﹣﹣又|OH|2==,②﹣﹣﹣﹣﹣﹣﹣由|OH|=|OM|,①②联立整理得:16k4﹣8k2+1=0﹣﹣﹣﹣﹣﹣﹣∴k2=,解得:k=±,k的值±.﹣﹣﹣﹣﹣﹣﹣22.(Ⅰ)a=-3,b=4(Ⅱ)(-∞,-1)∪(9,+∞)(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即6630241230a ba b++=⎧⎨++=⎩解得a=-3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3-9x2+12x+8c,f'(x)=6x2-18x+12=6(x-1)(x-2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<-1或c>9,第一学期期末调研考试高中数学(必修⑤、选修1-1)试卷说明:本卷满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若p q ∧是假命题,则A .p 是真命题,q 是假命题B .,p q 均为假命题C .,p q 至少有一个是假命题D .,p q 至少有一个是真命题 2.一个等比数列的第3项和第4项分别是12和18,则该数列的第1项等于 A .27 B .163 C .812D .8 3.已知ABC ∆中,角A 、B 的对边为a 、b ,1a =,b = 120=B ,则A 等于 A .30或150 B .60或120 C .30 D .60 4.曲线xy e =在点(1,)e 处的切线方程为(注:e 是自然对数的底)A . (1)x y e e x -=-B . 1y x e =+-C .2y ex e =-D .y ex =5.不等式组⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,表示的平面区域的面积是A .41 B .49 C .29 D .236.已知{}n a 为等差数列,1010=a ,前10项和7010=S ,则公差=d A .32- B .31- C . 31 D . 327.函数()f x 的导函数...()'f x 的图象如图所示,则 A .1x =是()f x 的最小值点xB .0x =是()f x 的极小值点C .2x =是()f x 的极小值点D .函数()f x 在()1,2上单调递增8. 双曲线22221(0,0)x y a bb a -=>>的一条渐近线方程是y =,则双曲线的离心率是A .B .2C . 3D .9.函数3()1f x ax x =++有极值的充分但不必要条件是 A . 1a <-B . 1a <C . 0a <D . 0a >10.已知点F 是抛物线x y =2的焦点,A 、B 是抛物线上的两点,且3||||=+BF AF ,则线段AB 的中点到y 轴的距离为 A .43 B .1 C .45 D .4711.已知直线2+=kx y 与椭圆1922=+my x 总有公共点,则m 的取值范围是 A .4≥m B .90<<m C .94<≤mD .4≥m 且9≠m12.已知定义域为R 的函数)(x f 的导函数是)(x f ',且4)(2)(>-'x f x f ,若1)0(-=f ,则不等式x e x f 22)(>+的解集为A .),0(+∞B .),1(+∞-C .)0,(-∞D .)1,(--∞二、填空题:本大题共4小题,每小题5分,满分20分.13.命题“若24x =,则2x =”的逆否命题为__________.14.ABC ∆中,若AB =1AC =,且23C π∠=,则BC =__________.15.若1x >,__________. 16.设椭圆()2222:10x y C a b a b+=>>的左右焦点为12F F ,,过2F 作x 轴的垂线与C 交于A B ,两点,若1ABF ∆是等边三角形,则椭圆C 的离心率等于________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知ABC ∆的三个内角A ,B ,C 的对边长分别为a ,b ,c ,60B =︒. (Ⅰ)若2b ac =,请判断三角形ABC 的形状;(Ⅱ)若54cos =A ,3c =+,求ABC ∆的边b 的大小.18.(本小题满分12分)等比数列{}n a 的各项均为正数,且11a =,4332=+a a (*n N ∈). (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)已知(21)n n b n a =-⋅,求数列{}n b 的前n 项和n T .19.(本小题满分12分)已知椭圆的中心在坐标原点O ,长轴长为离心率e =,过右焦点F 的直线l 交椭圆于P ,Q 两点.(Ⅰ)求椭圆的方程; (Ⅱ)当直线l 的倾斜角为4π时,求POQ ∆的面积.20.(本小题满分12分)某农场计划种植甲、乙两个品种的水果,总面积不超过300亩,总成本不超过9万元.甲、乙两种水果的成本分别是每亩600元和每亩200元.假设种植这两个品种的水果,能为该农场带来的收益分别为每亩0.3万元和每亩0.2万元.问该农场如何分配甲、乙两种水果的种植面积,可使农场的总收益最大?最大收益是多少万元?21.(本小题满分12分)设函数329()62f x x x x a =-+-. 在 (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若方程()0f x =有且仅有三个实根,求实数a 的取值范围.22.(本小题满分12分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于||1AF -. (Ⅰ)求p 的值;(Ⅱ)若直线AF 交抛物线于另一点B ,过B 与x 轴平行 的直线和过F 与AB 垂直的直线交于点N ,求N 的横坐标 的取值范围.x第一学期期末调研考试高中数学(必修⑤、选修1-1)参考答案与评分标准一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分.13.若2x ≠,则24x ≠; 14.1 ; 15.15 ; 16. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17. 解:(Ⅰ)由2222cos b a c ac B ac =+-⋅=,1cos cos 602B =︒=,……………………2分得0)(2=-c a ,即:c a =.………………………………………………………5分 又60B =︒,∴ 三角形ABC 是等边三角形. ……………………………………………………5分(Ⅱ)由4cos 5A =,得3sin 5A =,…………………………………………………………6分 又60B =︒,∴ sin sin()sin cos cos sin C A B A B A B =+=⋅+⋅314525=⨯+7分 由正弦定理得(3sin sin c Bb C+⋅===10分18.解:(Ⅰ)设等比数列{}n a 的公比为q ,∴43)(2132=+=+q q a a a ……………………………………………………1分 由432=+q q 解得:21=q 或23-(舍去).…………………………………3分∴所求通项公式11121--⎪⎭⎫ ⎝⎛==n n n q a a .………………………………………5分(Ⅱ)123n n T b b b b =++++即()0112123252212n n T n -=⋅+⋅+⋅+⋅⋅⋅+-⋅------------①…………………………………6分①⨯2得 2()132123252212nn T n =⋅+⋅+⋅+⋅⋅⋅+-⋅ -----②……………………7分①-②:()1121222222212n n n T n --=+⋅+⋅+⋅⋅⋅+⋅--…………………………………8分9分()3223n n =--,……………………………………………………………………………11分 ()3232n n T n ∴=-+.………………………………………………………………………12分19. 解:(Ⅰ)由题得:22222c a a b c a ===+..................................................................2分 解得1a b ==, (4)分椭圆的方程为2212x y +=. (5)分(Ⅱ)(1,0)F ,直线l 的方程是tan (1)14y x y x π=-⇒=- (6)分由2222232101x y y y x y ⎧+=⇒+-=⎨=+⎩(*)…………………………………………………………………………7分设1122(,),(,)P xy Q x y ,(*)2243(1)160∆=-⨯⨯-=>………………………………………………………8分124||3y y ∴-===……………………………………………………10分121142||||12233OPQ S OF y y ∆∴=-=⨯⨯= POQ ∆的面积是23……………………………………………………….…………………………………………12分20. 解:设甲、乙两种水果的种植面积分别为x ,y 亩,农场的总收益为z 万元,则 ………1分300,0.060.029,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩………① …………4分 目标函数为0.30.2z x y =+, ……………5分不等式组①等价于300,3450,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩可行域如图所示,……………………………7分 目标函数0.30.2z x y =+可化为z x y 523+-= 由此可知当目标函数对应的直线经过点M 时,目标函数z 取最大值.…………………9分 解方程组300,3450,x y x y +=⎧⎨+=⎩ 得75,225,x y =⎧⎨=⎩M 的坐标为(75,225).……………………………………………………………………10分所以max 0.3750.222567.5z =⨯+⨯=.…………………………………………………11分 答:分别种植甲乙两种水果75亩和225亩,可使农场的总收益最大,最大收益为67.5万元. ………………………………………………………………………………12分21. 解:(Ⅰ)/2()3963(1)(2)f x x x x x =-+=--,………………………………………2分令/()0f x >,得2x >或1x <;/()0f x <,得12x <<, …………………………4分∴()f x 增区间()1,∞-和()+∞,2;减区间是()2,1.………………………………………6分(Ⅱ)由(I )知 当1x =时,()f x 取极大值5(1)2f a =-,………………………………7分 当2x =时,()f x 取极小值 (2)2f a =-,………………………………………………8分因为方程()0f x =仅有三个实根.所以⎩⎨⎧<>0)2(0)1(f f …………………………………………10分解得:252<<a , 实数a 的取值范围是5(2,)2.………………………………………………………………12分22.解:(Ⅰ)由题意可得抛物线上点A 到焦点F 的距离等于点A 到直线1x =-的距离.……………………2分由抛物线的定义得12p=,即p =2. …………………………………………………………………………………4分(Ⅱ)由(Ⅰ)得抛物线的方程为()24,F 1,0y x =,可设()2,2,0,1A t t t t ≠≠± (5)分由题知AF 不垂直于y 轴,可设直线:1(0)AF x sy s =+≠,()0s ≠,由241y x x sy ⎧=⎨=+⎩消去x 得2440y sy --=,………………………………6分 故124y y =-,所以212,B tt ⎛⎫- ⎪⎝⎭.…………………………………………………………………………………7分又直线AB 的斜率为221tt -,故直线FN 的斜率为212t t --,从而的直线FN :()2112t y x t -=--,直线BN :2y t=-, (9)分由21(1)22t y x t y t ⎧-=--⎪⎪⎨⎪=-⎪⎩解得N 的横坐标是2411N x t =+-,其中220,1t t >≠…………………………………10分1N x ∴>或3N x <-.综上,点N 的横坐标的取值范围是()(),31,-∞-+∞.…………………………………………………12分注:如上各题若有其它解法,请评卷老师酌情给分.x绝密★启用前第一学期期末考试高二年级(文科数学)试题卷 本试卷共22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生先检查试卷与答题卷是否整洁无缺损,并用黑色字迹的签字笔在答题卷指定位置填写自己的班级、姓名、学号和座位号。
第一学期高二期末试题期末数学试卷(文科)考试内容:必修5中不等式 :必修3中算法初步、统计:占40% :选修2-1:占60%一、选择题:本大题共15小题 :每小题4分 :满分60分.(注:以下每小题给出的四个选项中 :有且只有一项符合题目要求. 请将符合题目要求的那一项的代号选出来填涂在指定地方.)1、已知a>0 :-1<b<0 :则a :ab :ab 2的大小关系是A .a> ab 2>abB .ab>ab 2>aC .ab 2>a>abD .ab 2>ab>a2、已知两定点F 1(-1 :0) 、F 2(1 :0) : 且12F F 是1PF 与2PF的等差中项 :则动点P的轨迹是 AA. 椭圆B. 双曲线C. 抛物线D. 线段3、若双曲线的渐近线方程为043=±y x :则双曲线的离心率为A.45B.35C. 45或35D. 54或534、焦距是10 :虚轴长是8 :过点(23 : 4)的双曲线的标准方程是A 、116922=-y xB 、116922=-x yC 、1643622=-y xD 、1643622=-x y5、已知三角形ABC 的顶点A (2 :4) :B (-1 :2) :C (1 :0) :点P (x :y )在三角形内部及其边界上运动 :则Z=x-y 的最大值和最小值分别是 A .3 :1 B .1 :-3 C .-1 :-3 D .3 :-16、若方程151022=-+-k y k x 表示焦点在y 上的椭圆 :则k 的取值范围是A .(5 :10) B.(215 :10) C.)215,5( D.)10,215()215,5(7、如果命题“p 或q ”为真命题 :则A 、p :q 均为真命题B 、p :q 均为假命题C 、¬p :¬q 中至少有一个为假命题D 、¬p :¬q 中至多有一个为假命题 8、已知p 是r 的充分不必要条件 :s 是r 的必要条件 :q 是s 的必要条件。
高二(上)期末测试数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数集是由实数集和虚数集构成的,而实数集又可分为有理数集和无理数集两部分;虚数集也可分为纯虚数集和非纯虚数集两部分,则可选用()来描述之.A.流程图B.结构图C.流程图或结构图中的任意一个D.流程图和结构图同时用2.(5分)下面四个推导过程符合演绎推理三段论形式且推理正确的是()A.π是无限不循环小数,无限不循环小数是无理数,所以π是无理数B.π是无限不循环小数,π是无理数,所以无限不循环小数是无理数C.无限不循环小数是无理数,π是无理数,所以π是无限不循环小数D.无限不循环小数是无理数,π是无限不循环小数,所以π是无理数3.(5分)已知方程x2+y2﹣2mx﹣4y+5m=0所表示的曲线是圆C,则实数m的取值范围()A.1<m<4B.m<1或m>4C.m>4D.m<14.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A.B.C.D.5.(5分)福利彩票“双色球”中红球的号码由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表选取6组数作为6个红球的编号,选取方法是从下面的随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第6个红球的编号为()49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 2357 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76A.23B.24C.06D.046.(5分)如图,一个矩形的长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积约为()A .B .C .D .7.(5分)下列四个命题:①对立事件一定是互斥事件,互斥事件不一定是对立事件;②若A、B为两个事件,则P(A∪B)=P(A)+P(B);③若事件A、B、C两两互斥,则P(A)+P(B)+P(C)=1;④若事件A、B满足P(A)+P(B)=1且P(AB)=0,则A、B是对立事件.其中错误命题的个数是()A.0B.1C.2D.38.(5分)春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如表的列联表,则下面的正确结论是()做不到“光盘”能做到“光盘”男4510女30150.1000.0500.0100.001附表及公式:=K2k0 2.706 3.841 6.63510.828 A.有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”B.有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”C.在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别无关”D.在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别有关”9.(5分)如图1是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为A1,A2,…,A16,图2是茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是()A.6B.10C.91D.9210.(5分)已知圆C:(x﹣a)2+(y﹣2)2=4(a>0)及直线l:x﹣y+3=0,当直线l 被C截得弦长为2时,则a等于()A.B.2﹣C.﹣1D. +111.(5分)已知菱形ABCD的边长为4,∠ABC=150°,若在菱形内任取一点,则该点到菱形的四个顶点的距离大于1的概率()A.B.C.D.12.(5分)如图,已知A(﹣4,0),B(4,0),C(0,4),E(﹣2,0),F(2,0),一束光线从F点出发射到BC上的D点,经BC反射后,再经AC反射,落到线段AE上(不含端点),则直线FD的斜率的取值范围为()A.(﹣∞,﹣2)B.(4,+∞)C.(2,+∞)D.(1,+∞)二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.(5分)一条直线过点A(2,),并且它的倾斜角等于直线y=x的倾斜角的2倍,则这条直线的一般式方程是.14.(5分)某校开展“爱我襄阳、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示.则去掉一个最高分和一个最低分后的7个评分的方差是.15.(5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣3m﹣2=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.16.(5分)把正整数按一定的规则排成了如图所示的三角形数表.(1)设a i,j(i,j∈N*)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,如a5,2=11,则a10,7=;(2)设T2n表示三角形数表中第2n行的所有数的和,其中n∈N*,则T2n=.三、解答题:本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)已知复数z1=2+ai(a∈R,a>0,i为虚数单位),且z12为纯虚数.(Ⅰ)求实数a的值;(Ⅱ)若z=,求复数z的模|z|.18.(12分)已知直线l的方程为(a+1)x+y+2﹣a=0,直线l1的方程为2x+ay+1=0,其中a∈R.(Ⅰ)若l在y轴上的截距是在x轴上的截距的2倍,求直线l的方程;(Ⅱ)若直线l和直线l1互行,求实数a的值.19.(12分)在“一带一路”的建设中,中石化集团得了某地深海油田区块的开采权,集团在该地区随机初步堪探了几口井,取得了相关的地质资料.堪探的数据资料见下表:井号I123456坐标(x,y)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)(km)5624810钻探深度(km)出油量(L)98904095180205(Ⅰ)在散点图中1﹣6号井位置大致分布在一条直线附近,借助前5组数据求得回归线方程为y=6.5x+a,求a,并估计y的预报值;(Ⅱ)设出油量与钻探深度的比值k不低于20的勘探井称为优质井,在井号1﹣6的6口井中任意勘探2口井,求至多有1口是优质井的概率.20.(12分)某同学在研究相邻三个整数的算术平方根之间的关系时,发现以下四个式子均是正确的:①<2;②<2;③;④<2.(Ⅰ)已知∈(1.41,1.42),∈(1.73,1.74),∈(2.23,2.24),∈(2.44,2.45),请从①②③④这四个式子中任选一个,结合所的出的、、的范围,验证所选式子的正确性(注意不能近似计算)(Ⅱ)据此规律,运用合情推理知识,写出第n个不等式,并证明所写出的不等式.21.(12分)已知圆D过点A(﹣2,0)、点B(2,0)和点C(0,2).(Ⅰ)求圆D的方程;(Ⅱ)在圆D上是否存在点E使得|EA|=2|EB|,并说明理由;(Ⅲ)点P为圆D上异于B、C的任意一点,直线PC与x轴交于点M,直线PB与y 轴交于点.求证:|CN|×|BM|为定值.22.(10分)某幼儿园根据部分同年龄段的100名女童的身高数据绘制了频率分布直方图,其中身高的变化范围是[96,106](单位:厘米),样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106).(I)求出x的值,并求样本中女童的身高的众数和中位数;(Ⅱ)在身高在[100,102),[102,104),[104,106]的三组中,用分层抽样的方法抽取14名女童,则身高数据在[104,106]的女童中应抽取多少人数?2017-2018学年湖北省襄阳市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】设计的这个结构图从整体上要反映数的结构,从左向右要反映的是要素之间的从属关系.在画结构图时,应根据具体需要确定复杂程度.简洁的结构图有时能更好地反映主体要素之间的关系和系统的整体特点.同时,要注意结构图,通常按照从上到下、从左到右的方向顺序表示,各要素间的从属关系较多时,常用方向箭头示意.【解答】解:结构图如下:故选:B.【点评】绘制结构图时,首先对所画结构的每一部分有一个深刻的理解,从头到尾抓住主要脉络进行分解.然后将每一部分进行归纳与提炼,形成一个个知识点并逐一写在矩形框内,最后按其内在的逻辑顺序将它们排列起来并用线段相连.2.【分析】根据三段论推理的标准形式,逐一分析四个答案中的推导过程,可得出结论.【解答】解:对于A,小前提与大前提间逻辑错误,不符合演绎推理三段论形式;对于B,大小前提及结论颠倒,不符合演绎推理三段论形式对于C,小前提和结论颠倒,不符合演绎推理三段论形式;对于D,符合演绎推理三段论形式且推理正确;故选:D.【点评】本题主要考查推理和证明,三段论推理的标准形式,属于基础题.3.【分析】圆的方程化为标准形式,利用右侧大于0,即可求m的取值范围.【解答】解:方程x2+y2﹣2mx﹣4y+5m=0化为:(x﹣m)2+(y﹣2)2=m2﹣5m+4,方程表示圆的方程,所以m2﹣5m+4>0,解得:m<1或m>4.故选:B.【点评】本题考查的知识要点:圆的一般方程与标准方程的转化.属于基础题型.4.【分析】根据题意,设齐王的上,中,下三个等次的马分别为a,b,c,田忌的上,中,下三个等次的马分别为记为A,B,C,用列举法列举齐王与田忌赛马的情况,进而可得田忌胜出的情况数目,进而由等可能事件的概率计算可得答案【解答】解:设齐王的上,中,下三个等次的马分别为a,b,c,田忌的上,中,下三个等次的马分别为记为A,B,C,从双方的马匹中随机选一匹进行一场比赛的所有的可能为Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc,根据题设其中Ab,Ac,Bc是胜局共三种可能,则田忌获胜的概率为=,故选:A.【点评】本题考查等可能事件的概率,涉及用列举法列举基本事件,注意按一定的顺序,做到不重不漏.5.【分析】根据随机抽样的定义进行抽取即可.【解答】解:第1行的第5列和第6列数字为54,向右17满足,23满足,20满足,26满足,23满足,24满足,则第六个为24,故选:B.【点评】本题主要考查简单随机抽样的应用,利用随机数的定义是解决本题的关键.比较基础.6.【分析】由已知中矩形的长为5,宽为2,我们易计算出矩形的面积,根据随机模拟实验的概念,我们易得阴影部分的面积与矩形面积的比例约为黄豆落在阴影区域中的的方程,解方程即可求出阴影部分面积.频率,由此我们构造关于S阴影【解答】解:∵矩形的长为5,宽为2,则S矩形=10∴==,,∴S阴=故选:A.【点评】本题考查的知识点是几何概型与随机模拟实验,利用阴影面积与矩形面积的比的方程,是解答本题的关键.例约为黄豆落在阴影区域中的频率,构造关于S阴影7.【分析】根据互斥事件与对立事件之间的关系,以及互斥事件的求和公式,对题目中的命题进行分析、判断正误即可.【解答】解:对于①,对立事件一定是互斥事件,互斥事件不一定是对立事件,①正确;对于②,若A、B为两个互斥事件,则P(A∪B)=P(A)+P(B),∴②错误;对于③,若事件A、B、C两两互斥,则P(A)+P(B)+P(C)≤1,∴③错误;对于④,若事件A、B满足P(A)+P(B)=1且P(AB)=0,则A、B是对立事件,④正确;综上,错误的命题序号是①④,共2个.故选:C.【点评】本题利用命题真假的判断,考查了互斥事件和对立事件的概念与应用问题,是基础题.8.【分析】由列联表中的数据计算观测值,对照临界值得出结论.【解答】解:由列联表中的数据知,K2=≈3.303>2.706,∴有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”.故选:B.【点评】本题考查了列联表与独立性检验的应用问题,是基础题.9.【分析】模拟执行算法流程图可知其统计的是数学成绩大于等于90的人数,由茎叶图知:数学成绩大于等于90的人数为10,从而得解.【解答】解:由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图知:数学成绩大于等于90的人数为10,因此输出结果为10.故选:B.【点评】本题考查学生对茎叶图的认识,通过统计学知识考查程序流程图的认识,是一道综合题.10.【分析】由弦长公式求得圆心(a ,2)到直线l :x ﹣y +3=0 的距离 等于1,再根据点到直线的距离公式得圆心到直线l :x ﹣y +3=0的距离也是1,解出待定系数a .【解答】解:圆心为(a ,2),半径等于2,由弦长公式求得圆心(a ,2)到直线l :x ﹣y +3=0 的距离为==1, 再由点到直线的距离公式得圆心到直线l :x ﹣y +3=0的距离 1=,∴a=﹣1.故选:C .【点评】本题考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用. 11.【分析】以菱形ABCD 的各个顶点为圆心、半径为1作圆如图所示,可得当该点位于图中阴影部分区域时,它到四个顶点的距离均不小于1.因此算出菱形ABCD 的面积和阴影部分区域的面积,利用几何概型计算公式加以计算,即可得到所求的概率. 【解答】解:分别以菱形ABCD 的各个顶点为圆心,作半径为1的圆,如图所示. 在菱形ABCD 内任取一点P ,则点P 位于四个圆的外部或在圆上时,满足点P 到四个顶点的距离均不小于1,即图中的阴影部分区域∵S 菱形ABCD =AB•BCsin30°=4×4×=8,∴S 阴影=S 菱形ABCD ﹣S 空白=8﹣π×12=8﹣π.因此,该点到四个顶点的距离均不小于1的概率P===1﹣.故选:D .【点评】本题给出菱形ABCD ,求在菱形内部取点,使该点到各个顶点的距离均不小于1的概率.着重考查了菱形的面积公式、圆的面积公式和几何概型计算公式等知识,属于基础题.12.【分析】先作出F 关于BC 的对称点P ,再作P 关于AC 的对称点M ,因为光线从F 点出发射到BC 上的D 点经BC 反射后,入射光线和反射光线都经过F 关于直线BC 的对称点P 点,又因为再经AC 反射,反射光线经过P 关于直线AC 的对称点,所以只需连接MA、ME交AC与点N,连接PN、PA分别交BC为点G、H,则G,H之间即为点D 的变动范围.再求出直线FG,FH的斜率即可.【解答】解:∵A(﹣4,0),B(4,0),C(0,4),∴直线BC方程为x+y﹣4=0,直线AC方程为x﹣y+4=0如图,作F关于BC的对称点P,∵F(2,0),∴P(4,2),再作P关于AC的对称点M,则M(﹣2,8),连接MA、ME交AC与点N,则直线ME方程为x=﹣2,∴N(﹣2,2)连接PN、PA分别交BC为点G、H,则直线PN方程为y=2,直线PA方程为x﹣4y+4=0,∴G(2,2),H(,)连接GF,HF,则G,H之间即为点D的变动范围.∵直线FG方程为x=2,直线FH的斜率为=4∴FD斜率的范围为(4,+∞)故选:B.【点评】本题考查入射光线与反射光线之间的关系,解题的关键是入射光线与反射光线都经过物体所成的像,据此就可找到入射点的范围.二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.【分析】由题意求得直线y=x的斜率和倾斜角,再计算所求直线的倾斜角和斜率,利用点斜式写出直线的方程,再化为一般式方程.【解答】解:由题意知,直线y=x的斜率是,∴它的倾斜角为,所求直线的倾斜角为,它的斜率为k=tan=,这条直线的方程是y+=(x﹣2),化为一般式方程为x﹣y﹣3=0.故答案为:x﹣y﹣3=0.【点评】本题考查了直线的倾斜角与斜率以及直线方程的应用问题,是基础题.14.【分析】根据题意写出这组数据,计算它们的平均数和方差即可.【解答】解:根据茎叶图中的数据,去掉一个最高分94,去掉一个最低分88,余下的数据为:89,89,91,91,92,92,93;则平均数为=×(89+89+91+91+92+92+93)=91,方差为s2=×[(﹣2)2+(﹣2)2+02+02+12+12+22]=2.故答案为:2.【点评】本题考查了利用茎叶图求平均数与方差的应用问题,是基础题.15.【分析】根据题意,设要求圆的半径为r,将直线mx﹣y﹣3m﹣2=0变形为y+2=m (x﹣3),分析可得该直线过定点P(3,﹣2),结合直线与圆的位置关系可得以C 为圆心且与直线mx﹣y﹣3m﹣2=0(m∈R)相切的所有圆中,半径最大的圆的半径为CP,结合圆的标准方程分析可得答案.【解答】解:根据题意,设要求圆的半径为r,其圆心C的坐标为(1,0),对于直线mx﹣y﹣3m﹣2=0,变形可得y+2=m(x﹣3),过定点P(3,﹣2),分析可得:以C为圆心且与直线mx﹣y﹣3m﹣2=0(m∈R)相切的所有圆中,半径最大的圆的半径为CP,此时r=CP==2,则此时圆的标准方程为:(x﹣1)2+y2=8,故答案为:(x﹣1)2+y2=8.【点评】本题考查直线与圆的位置关系,涉及直线过定点问题,属于基础题.16.【分析】(1)第10行为偶数,其第一个为:a10,1=2+(21﹣1)×2=42,再利用等差数列的通项公式即可得出a10,7.(2)设T2n表示三角形数表中第2n行的所有数的和,其中n∈N*,可得a2n,1=2+=2n2﹣2n+2.再利用等差数列的求和公式即可得出.【解答】解:(1)第10行为偶数,其第一个为:a10,1=2+(21﹣1)×2=42,∴a10,7=42+6×2=54.(2)设T2n表示三角形数表中第2n行的所有数的和,其中n∈N*,a2n,1=2+=2n2﹣2n+2.则T2n=2n(2n2﹣2n+2)+=4n3+2n.故答案为:54;4n3+2n.【点评】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤.17.【分析】(I)z12=4﹣a2+4ai为纯虚数.可得4﹣a2=0,4a≠0,a>0,解得a.(II)利用复数的运算法则、模的计算公式即可得出.【解答】解:(I)z12=4﹣a2+4ai为纯虚数.∴4﹣a2=0,4a≠0,a>0,解得a=2.(II)z===2×=2i.∴复数z的模|z|=2.【点评】本题考查了复数的运算法则、模的计算公式、纯虚数的定义,考查了推理能力与计算能力,属于基础题.18.【分析】(I)直线l的方程为(a+1)x+y+2﹣a=0,与坐标轴的交点分别为:,(0,a﹣2).可得a﹣2=2×,解得a.(II)由a(a+1)﹣2=0,解得a,经过检验即可得出.【解答】解:(I)直线l的方程为(a+1)x+y+2﹣a=0,与坐标轴的交点分别为:,(0,a﹣2).则a﹣2=2×,解得a=2,或1.经过检验满足题意.∴直线l的方程为:2x+y+1=0,或3x+y=0.(II)由a(a+1)﹣2=0,解得a=1或a=﹣2.经过检验:a=1时两条直线重合舍去.∴a=﹣2.【点评】本题考查了相互平行的直线斜率之间的关系、截距的应用,考查了推理能力与计算能力,属于基础题.19.【分析】(Ⅰ)求出系数a的值,求出回归方程,代入x的值,求出y的预报值即可;(Ⅱ)列举出这六口井中随机选取两口井的可能情况以及至多有1口是优质井的情况,求出满足条件的概率即可.【解答】解:(Ⅰ)∵回归方程过样本中心点(,),=5,=50,∴a=﹣b=50﹣6.5×5=17.5,故回归方程是:y=6.5x+17.5,x=1时,y=24,即y的预报值是24;(Ⅱ)由题意可知,3,4,5,6这四口井是优质井,1,2这两口井是非优质井,由题意从这六口井中随机选取两口井的可能情况有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共有15种,其中至多有1口是优质井的有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)共9种,故至多有1口井是优质井的概率是P==.【点评】本题考查了回归方程问题,考查概率求值,是一道常规题.20.【分析】(Ⅰ)选③,运用分析法证明,结合移项和平方、以及不等式的性质可得;(Ⅱ)第n个不等式为<2﹣,n∈N*,运用移项和两边平方、结合不等式的性质即可得证.【解答】解:(Ⅰ)③,由⇔+<4⇔8+2<16⇔<4⇔15<16,可得③正确;(Ⅱ)第n个不等式为<2﹣,n∈N*,由<2﹣⇔+<2⇔2n+2+2<4n+4⇔<n+1⇔n2+2n<n2+2n+1,上式显然成立,即<2﹣,n∈N*,成立.【点评】本题考查不等式的性质和分析法的运用,考查运算能力和推理能力,属于基础题.21.【分析】(Ⅰ)由已知可得圆D的圆心为原点,半径为2,进而可得圆D的方程;(Ⅱ)设E点坐标为(2cosθ,2sinθ),结合|EA|=2|EB|,可得E点坐标;(Ⅲ)分类讨论,求出直线PC,PB的方程,可得M,N的坐标,即可证明结论【解答】解:(Ⅰ)∵圆D过点A(﹣2,0)、点B(2,0)和点C(0,2).故圆D的圆心为原点,半径为2,故圆D的方程为x2+y2=4;(Ⅱ)在圆D上存在点E使得|EA|=2|EB|,设E点坐标为(2cosθ,2sinθ),∵|EA|=2|EB|,∴|EA|2=4|EB|2,即(2cosθ+2)2+4sin2θ=4[(2cosθ﹣2)2+4sin2θ]解得:cosθ=,则sinθ=,即E点坐标为:(,),(Ⅲ)当直线PC的斜率不存在时,|CN|•|BM|=8.当直线PC与直线PB的斜率存在时,设P(2cosθ,2sinθ),直线PA的方程为y=x+2,令y=0得M(,0).直线PB的方程为y=(x﹣2),令x=0得N(0,).∴|CN|•|BM|=(2﹣)(2﹣)=4+4=8,故|AN|•|BM|为定值为8.【点评】本题考查圆的方程,考查直线的方程,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.22.【分析】(1)由频率分布直方图中小矩形的面积之和为1,能求出x=0.075,由频率分布直方图能求出样本中女童的身高的众数和中位数.(2)在身高在[100,102),[102,104),[104,106]的三组中,用分层抽样的方法抽取14名女童,由[100,102),[102,104),[104,106]对应的频率分别为0.3,0.25,0.15,能求出身高数据在[104,106]的女童中应抽取的人数.【解答】解:(1)由频率分布直方图得:(0.050+0.100+0.150+0.125+x)×2=1,解得x=0.075.样本中女童的身高的众数为:=101,∵[96,100)的频率为:(0.050+0.100)×2=0.3,[100,102)的频率为:0.150×2=0.3,∴中位数为:100+=.(2)在身高在[100,102),[102,104),[104,106]的三组中,用分层抽样的方法抽取14名女童,∵[100,102),[102,104),[104,106]对应的频率分别为:0.150×2=0.3,0.125×2=0.25,0.075×2=0.15,∴身高数据在[104,106]的女童中应抽取:14×=3(人).【点评】本题考查频率分布直方图、分层抽样的应用,考查频率分布直方图等基础知识,考查运算求解能力,考查数形结合思想,是基础题.。
1. 、选择题 抛物线2. 3. 高二数学(文科)上学期期末试卷(命题范围:选修 1 — 1、1 — 2 满分:150分,答卷时间:120分钟) (共12个小题;每小题 5分,共60分,每题只有一个正确答案 2 y 4x 的准线方程是 B . 160”是“方程Ax 2 “ AB A .充分而不必要条件 C .充分必要条件 命题“对任意的 x R, 3 1 y 16 By 2C. y 1 1表示椭圆”的 B A .不存在x R, x C .存在x R, 4..必要而不充分条件 .既不充分也不必要条件 的否定是 B.存在 x R , x 3D.对任意的x R , x 与销售额y 的统计数据如下表: 3x 2 x D 2 x 1 0 0 广告费用x (万元)4 2 35 销售额y (万元)49 26 39 54 根据上表可得回归方程 y = bx + a 中的b 为9.4,据此模型预报广告费用为 时,销售额为() A . 72.0 万元 B . 67.7 万元 C 5. 如图,一圆形纸片的圆心为 O, F 是圆内一定点, 与F 重合,; A .椭圆 C .抛物线 6. 函数f(x)A.[0 , +^)(―汽 1] 若抛物线 p 的值为( A . 24已知奇函数)A . f'(x) C. f'(x) 通过随机询问110名性别不同的大学生是否爱好某项运动, 然后抹平纸片,折痕为 CD 设B .双曲线 D .圆 (x 1)e x 的单调递增区间是 C. B. [1 , +^) 6万元.65.5万元 D . 63.6万元 M 是圆周上一动点,把纸片折叠使 MCD 与 OM 交于P ,则点P 的轨迹是( )( ) ( — g, 0] D. D. & ( 9 . 附表: 2px 的焦点与双曲线 ) B 3y 2 3的右焦点重合, C. 4 f (x)、偶函数g(x).若当 0, g '(x) 0 o,g'(x) 0 0时有f '(x) .f'(x) .f'(x)0、g '(x) 0 ,则 x 0时0,g'(x) 00,g'(x) 0得到如下的列联表:男 女 总计 爱好 40 20 60「 不爱好 20 30 50 总计6050110— 2 .R x 》k ) 0.050 0.010 0.001 k 3.8416.63510.8282B. 在犯错误的概率不超过 0.1%的前提下,认为“爱好该项运动与性别无关”C. 有99%以上的把握认为“爱好该项运动与性别有关”D. 有99%以上的把握认为“爱好该项运动与性别无关”2 210 .双曲线X — y1上一点P 与双曲线的两个焦点F 1、F 2的连线互相垂直,则△4924PF 1F 2的面积为()A . 20B.22C. 28D.2411•有下列数组排成一排:1 ()(2 1、,3 2 1、,4 3 2 1、/ 1 ,2),(1,2,3),(1 ,2,3,4),(5 4 3 2 1上》「12.函数y f'(x )是函数y f (x )的导函数,且函数y线为:l:y g(x) f'(x 0)(x 沧)f(x 0),F(x) f (x) g(x),如果函数 y f (x)在区间[a,b ]上的图像如图所示,且 a x 0b ,那么 ()13.如果apa + g/b >a 寸b + g/a ,贝U a 、b 应满足的条件是 ______________2 214.设双曲线筈告1 (b aa 2b 22110X 40X 30— 20X 20 X 2n n ii n 22— n i2n 2i 由X =算得:rn +n 2+n +i n + 2参照附表,得到的正确结论是 ( A. 在犯错误的概率不超过 0.1%的前提下,认为“爱好该项运动与性别有关”60 X 50 X 60 X50〜7.8. 数组中的括号都去掉会形成一个数列: 列中的第2011项是()A. —B.—57581 2 1 3 2 1—J J J — J J —112 12 34 3 2 15 4 3 2 17,2,3,4,<2,3, 7,子 L则此数C. 59f(x)在点p(x 0, f (X 0))处的切A.F'(x 。
高二数学文科期末测试题高二数学文科期末测试题一.选择题(每小题5分,共60分)1.以下四个命题中,真命题的序号是(。
)A。
①②。
B。
①③。
C。
②③。
D。
③④2.“x≠”是“x>”的(。
)A。
充分而不必要条件。
B。
必要而不充分条件C。
充分必要条件。
D。
既不充分也不必要条件3.若方程C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a是常数),则下列结论正确的是(。
)A。
$\forall a\in R^+$,方程C表示椭圆。
B。
$\forall a\in R^-$,方程C表示双曲线C。
$\exists a\in R^-$,方程C表示椭圆。
D。
$\exists a\in R$,方程C表示抛物线4.抛物线:$y=x^2$的焦点坐标是(。
)A。
$(0,\frac{1}{4})$。
B。
$(0,\frac{1}{2})$。
C。
$(1,\frac{1}{4})$。
D。
$(1,\frac{1}{2})$5.双曲线:$\frac{y^2}{4}-\frac{x^2}{1}=1$的渐近线方程和离心率分别是(。
)A。
$y=\pm2x$,$e=3$。
B。
$y=\pm\frac{1}{2}x$,$e=5$C。
$y=\pm\frac{1}{2}x$,$e=3$。
D。
$y=\pm2x$,$e=5$6.函数$f(x)=e^xlnx$在点$(1,f(1))$处的切线方程是(。
)A。
$y=2e(x-1)$。
B。
$y=ex-1$。
C。
$y=e(x-1)$。
D。
$y=x-e$7.函数$f(x)=ax^3+x+1$有极值的充要条件是(。
)A。
$a>$。
B。
$a\geq$。
C。
$a<$。
D。
$a\leq$8.函数$f(x)=3x-4x^3$($x\in[0,1]$)的最大值是(。
)A。
$\frac{2}{3}$。
B。
$-1$。
C。
$1$。
D。
$-\frac{2}{3}$9.过点$P(0,1)$与抛物线$y^2=x$有且只有一个交点的直线有(。
高二数学(文科)上册期末考试题一.选择题:(每小题5分,共50分)1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( D ) A .30° B .30°或150° C .60° D .60°或120°2.在△ABC 中,AB =5,BC =7,AC =8,则BC AB ⋅的值为( D ) A .79B .69C .5D .-53.在△ABC 中,“A>300”是“sinA>12”的…………………( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4.若点A 的坐标为(3,2),F 为抛物线x y 22=的焦点,点P 是抛物线上的一动点,则PF PA + 取得最小值时点P 的坐标是 ( C ) A .(0,0)B .(1,1)C .(2,2)D .)1,21(5.一个命题与他们的逆命题、否命题、逆否命题这4个命题中( C ) A. 真命题与假命题的个数相同 B. 真命题的个数一定是奇数C. 真命题的个数一定是偶数D.真命题的个数一定是可能是奇数,也可能是偶数6.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( D ) A .椭圆 B .线段 C .双曲线 D .两条射线7.等差数列{}n a 中,10120S =,那么110a a +=( B ) A. 12 B. 24 C. 36 D. 488.若椭圆的短轴为AB ,它的一个焦点为1F ,则满足1ABF ∆为等边三角形的椭圆的离心率是( D )A. 41B. 21C. 22D. 239.等比数列{}n a 中,===+q a a a a 则,8,63232(C )A .2B .21C .2或21D .-2或21-10.已知平面内有一固定线段AB,其长度为4,动点P 满足|PA|-|PB|=3,则|PA|的最小值为 ( D ) (A)1.5 (B)3 (C)0.5 (D)3.5二.填空题:(每小题5分,共20分)11.如果椭圆4x 2+y 2=k 上两点间的最大距离是8,那么k 等于_______________. 1612.动点到点的距离比到直线的距离小2,则动点的轨迹方程为________________________.13.与椭圆1251622=+y x 有相同的焦点,且两准线间的距离为310的双曲线方程为______________________14522=-x y14.若31<<x ,则22222-+-x x x 的最小值是___________. 1高二数学(文科)上册期末考试题二、填空题(每小题5分,共20分)11、 16 12、13、 14522=-x y14、 1三.解答题: (共80分)15.(14分)已知等比数列}{n a 的前n 项和记为,n S a 3=3 , a 10=384. 求该数列的公比q 和通项a n解: 由a 10= a 3q 7 得q 7=128, ∴q=2 ………………………7分又a 3=3得a 1q 2=3 ∴ a 1=43 ………………………10分∴ a n =43×2n-1=3·2n -3…………………………………14分16.(14分)抛物线的焦点F 在x 轴的正半轴上,A(m ,-3)在抛物线上,且|AF|=5,求抛物线的标准方程.解:设抛物线的方程为y 2=2px(p>0) , …………………………2分∵A 点在抛物线上,∴(-3)2 =2pm ∴m=p29①, ………………4分又|AF|=5||2=+m P②, …………………………9分 把①代入②可得:.即0910,52922=+-=+p p pp ………………12分∴p=1或p=9 ………………13分∴所求的抛物线方程为x y x y 18222==或………………………14分17. (14分)如图在⊿MNG 中,己知NO=GO=2,当动点M 满足条件sinG-sinN=21sinM 时,求动点M解:∵sinG-sinN=21sinM ,∴由正弦定理,得|MN|-|MG|=21×4.…………………………5分∴由双曲线的定义知,点M 的轨迹是以N 、G 为焦点的双曲线的右支(除去与x 轴的交点). …………………………10分 ∴2c=4,2a=2,即c=2,a=1.∴b 2=c 2-a 2=3. …………………………12分∴动点M 的轨迹方程为:x 2-32y =1(x>0,且y ≠0)………………14分18.(13分)记函数f (x )=132++-x x 的定义域为A , g(x )=lg[(x -a -1)(2a -x )] (a <1) 的定义域为B . (Ⅰ) 求A ;(Ⅱ) 若B ⊆A, 求实数a 的取值范围.解:(Ⅰ)()x f 的定义域满足不等式2-13++x x ≥0, …………………2分得11+-x x ≥0, x <-1或x ≥1 …………………………6分 即A =(-∞,-1)∪[1,+ ∞) …………………………7分(Ⅱ) 条件B ⊆A 表明,集合B 是集合A 成立的充分条件,首先要求出集合B .由(x -a -1)(2a -x )>0, …………………………9分得(x -a -1)(x -2a)<0.∵a <1, ∴a +1>2a ,∴B =(2a ,a +1). …………………………11分 ∵B ⊆A , ∴2a ≥1或a +1≤-1,即a ≥21或a ≤-2, 而a <1, ∴21≤a <1或a ≤-2, …………………………12分 故当B ⊆A 时, 实数a 的取值范围是(]1,2,12⎡⎫-∞-⎪⎢⎣⎭U .…………………………13分19.(13分)已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈ (I )证明:数列{}1n n a a +-是等比数列;(II )求数列{}n a 的通项公式;(I )证明:2132,n n n a a a ++=-Q 21112*2112(),1,3,2().n n n n n n n na a a a a a a a n N a a ++++++∴-=-==-∴=∈-Q………………………7分{}1n n a a +∴-是以21a a -2=为首项,2为公比的等比数列。
高二(上)期末数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)将命题“x2+y2≥2xy”改写成全称命题为()A.对任意x,y∈R,都有x2+y2≥2xy成立B.存在x,y∈R,使x2+y2≥2xy成立C.对任意x>0,y>0,都有x2+y2≥2xy成立D.存在x<0,y<0,使x2+y2≤2xy成立2.(5分)过点M(﹣2,a),N(a,4)的直线的斜率为﹣,则a等于()A.﹣8 B.10 C.2 D.43.(5分)方程x2+y2+2x+4y+1=0表示的圆的圆心为()A.(2,4)B.(﹣2,﹣4)C.(﹣1,﹣2)D.(1,2)4.(5分)命题p:“x2﹣3x﹣4=0”,命题q:“x=4”,则p是q的()条件.A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)给出下列结论:①若y=,则y′=﹣;②若f(x)=sinα,则f′(x)=cosα;③若f(x)=3x,则f′(1)=3.其中,正确的个数是()A.0个B.1个C.2个D.3个6.(5分)函数f(x)=1+3x﹣x3()A.有极小值,无极大值B.无极小值,有极大值C.无极小值,无极大值D.有极小值,有极大值7.(5分)到直线x=﹣2与到定点P(2,0)的距离相等的点的轨迹是()A.椭圆B.圆C.抛物线D.直线8.(5分)抛物线 x=﹣2y2的准线方程是()A.B.C.D.9.(5分)若双曲线﹣=1的一条渐近线经过点(3,﹣4),则此双曲线的离心率为()A.B.C.D.10.(5分)设椭圆+=1与双曲线﹣y2=1有公共焦点为F1,F2,P是两条曲线的一个公共点,则cos∠F1PF2的值等于()A.B.C.D.11.(5分)某几何体的三视图如图所示,则该几何体的体积是()A.B.2πC.D.12.(5分)对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A.﹣1是f(x)的零点B.1是f(x)的极值点C.3是f(x)的极值D.点(2,8)在曲线y=f(x)上二、填空题(本大题共4小题,每题5分,共20分.请把正确答案填在题中的横线上)13.(5分)在空间直角坐标系中,若点点B(﹣3,﹣1,4),A(1,2,﹣1),则|AB|= .14.(5分)函数f(x)=x3﹣8x2+13x﹣6的单调减区间为.15.(5分)设双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),则C的方程为.16.(5分)如图,正方体ABCD﹣A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为(注:把你认为正确的结论的序号都填上).三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(11分)已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.(1)当m=﹣1时,求A∪B;(2)若A⊆B,求实数m的取值范围.18.(11分)求适合下列条件的圆的方程.(1)圆心在直线y=﹣4x上,且与直线l:x+y﹣1=0相切于点P(3,﹣2);(2)过三点A(1,12),B(7,10),C(﹣9,2).19.(12分)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(Ⅰ)求证:DE∥平面A1CB;(Ⅱ)求证:A1F⊥BE.20.(12分)已知椭圆C 1: +y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上, =2,求直线AB 的方程.21.(12分)已知函数f (x )=为常数,e 是自然对数的底数),曲线y=f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值;(2)求f (x )的单调区间.22.(12分)已知点A (﹣2,0),B (2,0),曲线C 上的动点P 满足•=﹣3.(I )求曲线C 的方程;(Ⅱ)若过定点M (0,﹣2)的直线l 与曲线C 有公共点,求直线l 的斜率k 的取值范围;(Ⅲ)若动点Q (x ,y )在曲线上,求u=的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】直接把命题改写成含有全称量词的命题即可.【解答】解:命题“x2+y2≥2xy”是指对任意x,y∈R,都有x2+y2≥2xy成立,故命题“x2+y2≥2xy”改写成全称命题为:对任意x,y∈R,都有x2+y2≥2xy成立.故选:A.【点评】本题考查全称量词及全称命题,理解全称命题的定义及形式是解决问题的关键,是基础题.2.【分析】直接利用斜率公式求解即可.【解答】解:过点M(﹣2,a),N(a,4)的直线的斜率为﹣,∴,解得a=10.故选:B.【点评】本题考查直线的斜率公式的求法,基本知识的考查.3.【分析】把圆的一般方程化为圆的标准方程,可得圆心坐标.【解答】解:圆的方程 x2+y2+2x+4y+1=0,即(x+1)2+(y+2)2 =4,故圆的圆心为(﹣1,﹣2),故选:C.【点评】本题主要考查圆的标准方程,属于基础题.4.【分析】根据题意,求出方程x2﹣3x﹣4=0的根,分析可得若q:x=4成立,则有p:“x2﹣3x﹣4=0”成立,反之若p:“x2﹣3x﹣4=0”成立,则q:x=4不一定成立,结合充分必要条件的定义,分析可得答案.【解答】解:根据题意,p:“x2﹣3x﹣4=0”,即x=4或﹣1,则有若q:x=4成立,则有p:“x2﹣3x﹣4=0”成立,反之若p:“x2﹣3x﹣4=0”成立,则q:x=4不一定成立,则p是q的必要不充分条件;故选:B.【点评】本题考查充分必要条件的判断,关键是掌握充分必要条件的定义.5.【分析】根据题意,依次计算三个函数的导数,分析可得答案.【解答】解:根据题意,依次分析3个结论;对于①,y==x﹣3,则y′=(﹣3)x﹣4=,正确;对于②,f(x)=sinα,为常数,则f′(x)=0,错误;对于③,若f(x)=3x,则f′(x)=3,则f′(1)=3,正确;其中正确的有2个;故选:C.【点评】本题考查导数的计算,关键是掌握导数的计算公式,属于基础题.6.【分析】求出函数的导数,根据函数的单调性求出函数的极值即可.【解答】解:f′(x)=3(1+x)(1﹣x),令f′(x)>0,解得:﹣1<x<1,令f′(x)<0,解得:x>1或x<﹣1,故f(x)在(﹣∞,﹣1)递减,在(﹣1,1)递增,在(1,+∞)递减,故函数f(x)即有极大值也有极小值,故选:D.【点评】本题考查了函数的单调性,极值问题,考查导数的应用,是一道基础题.7.【分析】确定M的轨迹是以点P为焦点,直线l为准线的抛物线,即可得出结论.【解答】解:动点M到定点P(2,0)的距离与到定直线l:x=﹣2的距离相等,所以M的轨迹是以点P为焦点,直线l为准线的抛物线,故选:C.【点评】本题主要考查了抛物线的定义,考查学生的计算能力,比较基础.8.【分析】由于抛物线y2=﹣2px(p>0)的准线方程为x=,则抛物线 x=﹣2y2即y2=﹣x 的准线方程即可得到.【解答】解:由于抛物线y 2=﹣2px (p >0)的准线方程为x=,则抛物线 x=﹣2y 2即y 2=﹣x 的准线方程为x=, 故选:D .【点评】本题考查抛物线的方程和性质,主要考查抛物线的准线方程的求法,属于基础题. 9.【分析】利用双曲线的渐近线方程经过的点,得到a 、b 关系式,然后求出双曲线的离心率即可.【解答】解:双曲线﹣=1的一条渐近线经过点(3,﹣4),可得3b=4a ,即9(c 2﹣a 2)=16a 2,解得=. 故选:D .【点评】本题考查双曲线的简单性质的应用,基本知识的考查.10.【分析】先求出公共焦点分别为F 1,F 2,再联立方程组求出P ,由此可以求出,cos ∠F 1PF 2=【解答】解:由题意知F 1(﹣2,0),F 2(2,0),解方程组得取P 点坐标为(),,cos ∠F 1PF 2==故选:B .【点评】本题考查圆锥曲线的性质和应用,解题时要注意公式的灵活运用.11.【分析】由已知中几何体的三视图,我们可以判断出几何体的形状及底面直径,母线长,进而求出底面半径和高后,代入圆锥体积公式进行计算,此图圆锥下面放一个半球,把二者的体积进行相加即可;【解答】解:如图所示:俯视图为一个圆,说明图形底面是一个圆,再根据正视图和俯视图一样,可知上面是一个圆锥,高为2,直径为2,下面是一个半径为1的半球,可得该几何体的体积是V圆锥+V 半球=×π×12×2+=,故选:A .【点评】本题考查由三视图求几何体的体积,考查由三视图还原直观图,考查球和圆锥的体积,本题是一个基础题,运算量比较小.12.【分析】可采取排除法.分别考虑A ,B ,C ,D 中有一个错误,通过解方程求得a ,判断是否为非零整数,即可得到结论. 【解答】解:可采取排除法.若A 错,则B ,C ,D 正确.即有f (x )=ax 2+bx+c 的导数为f′(x )=2ax+b , 即有f′(1)=0,即2a+b=0,①又f (1)=3,即a+b+c=3②,又f (2)=8,即4a+2b+c=8,③由①②③解得,a=5,b=﹣10,c=8.符合a 为非零整数.若B 错,则A ,C ,D 正确,则有a ﹣b+c=0,且4a+2b+c=8,且=3,解得a ∈∅,不成立;若C 错,则A ,B ,D 正确,则有a ﹣b+c=0,且2a+b=0,且4a+2b+c=8,解得a=﹣不为非零整数,不成立;若D 错,则A ,B ,C 正确,则有a ﹣b+c=0,且2a+b=0,且=3,解得a=﹣不为非零整数,不成立. 故选:A .【点评】本题考查二次函数的极值、零点等概念,主要考查解方程的能力和判断分析的能力,属于中档题.二、填空题(本大题共4小题,每题5分,共20分.请把正确答案填在题中的横线上)13.【分析】根据空间直角坐标系中两点间的距离公式求出|AB|.【解答】解:空间直角坐标系中,点B(﹣3,﹣1,4),A(1,2,﹣1),则|AB|==5.故答案为:5.【点评】本题考查了空间直角坐标系中两点间的距离公式应用问题,是基础题.14.【分析】求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可.【解答】解:f′(x)=3x2﹣16x+13=(x﹣1)(3x﹣13),令f′(x)<0,解得:1<x<,故函数的递减区间是:(1,),故答案为:(1,).【点评】本题考查了函数的单调性问题,考查导数的应用,是一道基础题.15.【分析】利用双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),可得c=,a=1,进而求出b,即可得出双曲线的方程.【解答】解:∵双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),∴c=,a=1,∴b=1,∴C的方程为x2﹣y2=1.故答案为:x2﹣y2=1.【点评】本题考查双曲线方程与性质,考查学生的计算能力,属于基础题.16.【分析】根据正方体的几何特征,结合已知中的图形,我们易判断出已知四个结论中的两条线段的四个端点是否共面,若四点共面,则直线可能平行或相交,反之则一定是异面直线.【解答】解:∵A、M、C、C四点不共面1是异面直线,故①错误;∴直线AM与CC1同理,直线AM与BN也是异面直线,故②错误.是异面直线,故③正确;同理,直线BN与MB1同理,直线AM与DD是异面直线,故④正确;1故答案为:③④【点评】本题考查的知识点是空间中直线与直线之间的位置关系判断,其中判断两条线段的四个顶点是否共面,进而得到答案,是解答本题的关键.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.【分析】(1)根据并集的定义即可求出,(2)由题意可知,解得即可.【解答】解:(1)当m=﹣1时,B={x|﹣2<x<2},A∪B={x|﹣2<x<3}.(2)由A⊆B,知,解得m≤﹣2,即实数m的取值范围为(﹣∞,﹣2].【点评】本题考查并集的法,考查实数的取值范围的求法,考查并集及其运算、集合的包含关系判断及应用等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.【分析】(1)设圆的标准方程为(x﹣a)2+(y﹣b)2=r2,由已知可得,求解方程组得到a,b,r的值,则圆的方程可求;(2)设圆的一般方程为x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0),由已知列关于D,E,F的方程组,求解得答案.【解答】解:(1)设圆的标准方程为(x﹣a)2+(y﹣b)2=r2,则有,解得a=1,b=﹣4,r=2.∴圆的方程为(x﹣1)2+(y+4)2=8;(2)设圆的一般方程为x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0),则,解得D=﹣2,E=﹣4,F=﹣95.∴所求圆的方程为x2+y2﹣2x﹣4y﹣95=0.【点评】本题考查利用待定系数法求圆的方程,考查计算能力,是基础题.19.【分析】(Ⅰ)由D,E分别是AC,AB上的中点,结合中位线定理和线面平行的判定定理可得结论;(Ⅱ)由已知易得对折后DE⊥平面A1DC,即DE⊥A1F,结合A1F⊥CD可证得A1F⊥平面BCDE,再由线面垂直的性质可得结论.【解答】证明:(Ⅰ)∵D,E分别为AC,AB的中点,∴DE∥BC,∵DE⊄平面A1CB,BC⊂平面A1CB,∴DE∥平面A1CB,(Ⅱ)由已知得AC⊥BC且DE∥BC,∴DE⊥AC,∴DE⊥A1D,又DE⊥CD,A1D∩CD=D∴DE⊥平面A1DC,∵A1F⊂平面A1DC,∴DE⊥A1F,又∵A1F⊥CD,CD∩DE=D,CD,DE⊂平面BCDE;∴A1F⊥平面BCDE又∵BE⊂平面BCDE∴A1F⊥BE.【点评】本题考查直线与平面平行的判定,直线与平面垂直的判定与性质,考查学生的分析推理证明与逻辑思维能力,其中熟练掌握空间线面关系的判定及性质,会将空间问题转化为平面问题是解答本题的关键.20.【分析】(1)求出椭圆的长轴长,离心率,根据椭圆C2以C1的长轴为短轴,且与C1有相同的离心率,即可确定椭圆C2的方程;(2)设A,B的坐标分别为(xA ,yA),(xB,yB),根据,可设AB的方程为y=kx,分别与椭圆C1和C2联立,求出A,B的横坐标,利用,即可求得直线AB的方程.【解答】解:(1)椭圆的长轴长为4,离心率为∵椭圆C2以C1的长轴为短轴,且与C1有相同的离心率∴椭圆C2的焦点在y轴上,2b=4,为∴b=2,a=4∴椭圆C2的方程为;(2)设A,B的坐标分别为(xA ,yA),(xB,yB),∵∴O,A,B三点共线,当斜率不存在时, =2不成立,∴点A,B不在y轴上当斜率存在时,设AB的方程为y=kx将y=kx代入,消元可得(1+4k2)x2=4,∴将y=kx代入,消元可得(4+k2)x2=16,∴∵,∴ =4,∴,解得k=±1,∴AB的方程为y=±x【点评】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,解题的关键是掌握椭圆几何量关系,联立方程组求解.21.【分析】(1)求出函数的导函数,函数在点(1,f(1))处的切线与x轴平行,说明f′(1)=0,则k值可求;(2)求出函数的定义域,然后让导函数等于0求出极值点,借助于导函数在各区间内的符号求函数f(x)的单调区间.【解答】解:(1)由题意得,又,故k=1;(2)由(1)知,,设,则h′(x)=﹣﹣<0,即h(x)在(0,+∞)上是减函数,由h(1)=0知,当0<x<1时,h(x)>0,从而当x>1时,h(x)<0,从而f'(x)<0,综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).【点评】本题考查利用导数研究函数的单调性,考查学生会利用导数求曲线上过某点切线方程的斜率,会利用导数研究函数的单调区间以及根据函数的增减性得到函数的最值.掌握不等式恒成立时所取的条件.22.【分析】(I)设P(x,y),运用向量的数量积的坐标表示,化简即可得到曲线C的方程;(Ⅱ)可设直线l:y=kx﹣2,运用直线和圆有公共点的条件:d≤r,运用点到直线的距离公式,解不等式即可得到取值范围;(Ⅲ)由动点Q(x,y),设定点N(1,﹣2),u=的几何意义是直线QN的斜率,再由直线和圆相交的条件d≤r,解不等式即可得到范围.【解答】解:(I)设P(x,y),=(x+2,y)•(x﹣2,y)=x2﹣4+y2=﹣3,即有x2+y2=1,P点的轨迹为圆C:x2+y2=1;(Ⅱ)可设直线l:y=kx﹣2,即为kx﹣y﹣2=0,当直线l与曲线C有交点,得,,解得,k或k.即有直线l的斜率k的取值范围是(﹣∞,﹣]∪[,+∞);(Ⅲ)由动点Q(x,y),设定点N(1,﹣2),则直线QN的斜率为k==u,又Q在曲线C上,故直线QN与圆有交点,由于直线QN方程为y+2=k(x﹣1)即为kx﹣y﹣k﹣2=0,当直线和圆相切时, =1,解得,k=﹣,当k不存在时,直线和圆相切,则k的取值范围是(﹣∞,﹣]【点评】本题考查平面向量的数量积的坐标表示,考查直线和圆的位置关系,考查直线斜率的公式的运用,考查运算能力,属于中档题.。
高二上册文科数学期末 试卷说明:本卷满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确答案的代号填入下面的表格内.1.如果,那么下列不等式一定成立的是A .c b c a +>+B .b c a c ->-C .b a 22->-D .22b a > 2.命题“R x ∈∃0,0123>+-x x ”的否定是A .R x ∈∃0,0123<+-x xB .R x ∈∀,0123≤+-x x C .R x ∈∃0,0123≤+-x x D .不存在R x ∈,0123>+-x x 3.若a 、b 、c 、R d ∈,则“c b d a +=+”是“a 、b 、c 、d 依次成等差数列”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.已知ABC ∆中内角A 、B 、C 的对边分别是a 、b 、c ,6=c ,4=a ,120=B ,则=bA .76B .192C .27D .72 5.已知数列{}n a 的通项公式503-=n a n ,则前n 项和n S 的最小值为A .784-B .368-C .389-D .392- 6.已知ABC ∆中内角A 、B 、C 的对边分别是a 、b 、c ,14=a ,16=b , 45=A ,则满足条件的三角形有A .0个B .1个C .2个D .1个或2个 7.已知命题p :“到点)0,1(的距离比到直线2-=x 的距离小1的动点的轨迹是抛物线”,命题q :“1和100的等比中项大于4和14的等差中项”,则A .命题q p ∨是假命题B .命题q p ∧是真命题C .命题)(q p ⌝∧是真命题D .命题)(q p ⌝∨是假命题8.若函数d cx bx ax x f +++=23)(有极大值点1x 和极小值点2x (21x x <),则其导函数)(x f '的大致图象可能是9.若直线2-=kx y 与抛物线x y 82=交于A 、B 两个不同的点,且AB 的中点的横坐标为2,则=kA .2B .1-C .2或1-D .51± 10.已知函数x x x f cos )(=,则=')2(πf A .π2- B .π2 C .π3D .π3-11.已知双曲线1C :13422=-y x 的一条渐线与双曲线2C 的一条渐近线垂直,则双曲线2C 离心率为 A .27 B .321 C .27或321 D .47或3712.已知正项等比数列{}n a 中799a a =,若存在两项m a 、n a ,使2127a a a n m =,则nm 161+的最小值为A .5B .521 C .165D .465二、填空题:本大题共4小题,每小题5分,满分20分.13.若关于x 的不等式052<+-b x ax 的解集为}32|{<<x x ,则=+b a .14.函数xxe x f =)(在0=x 处的切线的斜率为 .15.设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≤≤≥-+≥+3002202y x y x y x ,则目标函数y x z +=的最大值为______.16. 已知抛物线方程为x y =2,点M 在此抛物线上运动,则点)0,4(A 与点M 之间的距离||MA 的最小值为______________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知抛物线C :22x y =和直线l :1+=kx y ,O 为坐标原点.(Ⅰ)若抛物线C 的焦点到直线l 的距离为167,求k 的值; (Ⅱ)若直线l 与直线x y 2=平行,求直线l 与抛物线C 相交所得的弦长.18.(本小题满分12分)甲乙两地相距km 100,货车从甲地匀速行驶到乙地,速度不得超过km 80.已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的91,固定成本为a 元.(Ⅰ)将全程运输成本y (元)表示为速度v (h km /.)的函数,并指出这个函数的定义域;(Ⅱ)若400=a ,为了使全程运输成本最小,货车应以多大的速度行驶?19.(本小题满分12分)已知椭圆C :12222=+b y a x (0>>b a )的离心率为23,短轴长为4. (Ⅰ)求椭圆C 的方程;(Ⅱ)求以点)1,2(P 为中点的弦所在的直线l 的方程.20.(本小题满分12分)已知数列{}n a 是等比数列,首项11=a ,公比0>q ,其前n 项和为n S ,且11a S +,33a S +,22a S +成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足nn a nb =,求数列{}n b 的前n 项和n T . 21.(本小题满分12分)在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,已知A b B a c sin cos +=. (Ⅰ)求角A 的值;(Ⅱ)若2=a ,c b =,求ABC ∆的面积. 22.(本小题满分12分)已知函数)1(ln )(+-=x m x x f (R m ∈).(Ⅰ)若1=m ,判断函数)(x f 的单调性,并求出单调区间;(Ⅱ)若函数02)(<+m x f 对任意),1(∞+∈x 恒成立,求m 的取值范围.参考答案与评分标准一、选择题:本大题共12小题,每小题5分,共60分。
高二数学上学期期末试卷文科含解析数学试卷文科一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“所有能被2整除的数都是偶数”的否定是A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为A.2B.3C.5D.74.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A.¬p∨¬qB.p∨¬qC.¬p∧¬qD.p∨q5.若双曲线的离心率为,则其渐近线的斜率为A.±2B.C.D.6.曲线在点M ,0处的切线的斜率为A. B. C. D.7.若椭圆 a>b>0的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为A. ,0B. ,0C.0,D.0,8.设z1,z2是复数,则下列命题中的假命题是A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则9.已知命题“若函数fx=ex﹣mx在0,+∞上是增函数,则m≤1”,则下列结论正确的是A.否命题“若函数fx=ex﹣mx在0,+∞上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数fx=ex﹣mx在0,+∞上是增函数”是假命题C.逆否命题“若m>1,则函数fx=ex﹣mx在0,+∞上是减函数”是真命题D.逆否命题“若m>1,则函数fx=ex﹣mx在0,+∞上不是增函数”是真命题10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件11.设a>0,fx=ax2+bx+c,曲线y=fx在点Px0,fx0处切线的倾斜角的取值范围为,则P到曲线y=fx对称轴距离的取值范围为A. B. C. D.12.已知函数fx=x3+ax2+bx+c有两个极值点x1,x2,若fx1=x1A.3B.4C.5D.6二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于.14.fx=x3﹣3x2+2在区间上的最大值是.15.函数fx=lnx﹣f′1x2+5x﹣4,则f1= .16.过抛物线x2=2pyp>0的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点A在y轴左侧,则 = .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数i为虚数单位.Ⅰ求复数z;Ⅱ求的模.18.已知集合A={x|ax﹣1ax+2≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M 在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .Ⅰ求椭圆的离心率;Ⅱ设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥AB.20.设函数,其中a为实数.1已知函数fx在x=1处取得极值,求a的值;2已知不等式f′x>x2﹣x﹣a+1对任意a∈0,+∞都成立,求实数x的取值范围.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.1求C1的方程;2设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.22.已知函数fx=lnx﹣ax﹣12﹣x﹣1其中常数a∈R.Ⅰ讨论函数fx的单调区间;Ⅱ当x∈0,1时,fx<0,求实数a的取值范围.高二上期末数学试卷文科参考答案与试题解析一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先根据mn>0看能否得出方程mx2+ny2=1的曲线是椭圆;这里可以利用举出特值的方法来验证,再看方程mx2+ny2=1的曲线是椭圆,根据椭圆的方程的定义,可以得出mn>0,即可得到结论.【解答】解:当mn>0时,方程mx2+ny2=1的曲线不一定是椭圆,例如:当m=n=1时,方程mx2+ny2=1的曲线不是椭圆而是圆;或者是m,n都是负数,曲线表示的也不是椭圆;故前者不是后者的充分条件;当方程mx2+ny2=1的曲线是椭圆时,应有m,n都大于0,且两个量不相等,得到mn>0;由上可得:“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的必要不充分条件.故选B.2.命题“所有能被2整除的数都是偶数”的否定是A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【考点】命题的否定.【分析】根据已知我们可得命题“所有能被2整除的数都是偶数”的否定应该是一个特称命题,根据全称命题的否定方法,我们易得到结论.【解答】解:命题“所有能被2整除的数都是偶数”是一个全称命题其否定一定是一个特称命题,故排除A,B结合全称命题的否定方法,我们易得命题“所有能被2整除的数都是偶数”的否定应为“存在一个能被2整除的整数不是偶数”故选:D3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为A.2B.3C.5D.7【考点】椭圆的简单性质.【分析】由椭圆方程找出a的值,根据椭圆的定义可知椭圆上的点到两焦点的距离之和为常数2a,把a的值代入即可求出常数的值得到P到两焦点的距离之和,由P到一个焦点的距离为7,求出P到另一焦点的距离即可.【解答】解:由椭圆,得a=5,则2a=10,且点P到椭圆一焦点的距离为7,由定义得点P到另一焦点的距离为2a﹣3=10﹣7=3.故选B4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A.¬p∨¬qB.p∨¬qC.¬p∧¬qD.p∨q【考点】四种命题间的逆否关系.【分析】由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.【解答】解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为¬pV¬q.故选A.5.若双曲线的离心率为,则其渐近线的斜率为A.±2B.C.D.【考点】双曲线的简单性质.【分析】由双曲线的离心率为,可得,解得即可.【解答】解:∵双曲线的离心率为,∴ ,解得 .∴其渐近线的斜率为 .故选:B.6.曲线在点M ,0处的切线的斜率为A. B. C. D.【考点】利用导数研究曲线上某点切线方程.【分析】先求出导函数,然后根据导数的几何意义求出函数fx在x= 处的导数,从而求出切线的斜率.【解答】解:∵∴y'==y'|x= = |x= =故选B.7.若椭圆 a>b>0的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为A. ,0B. ,0C.0,D.0,【考点】双曲线的简单性质;椭圆的简单性质;抛物线的简单性质.【分析】根据椭圆 a>b>0的焦点与双曲线的焦点恰好是一个正方形的四个顶点,得到a,b的关系式;再将抛物线ay=bx2的方程化为标准方程后,根据抛物线的性质,即可得到其焦点坐标.【解答】解:∵椭圆 a>b>0的焦点与双曲线的焦点恰好是一个正方形的四个顶点∴2a2﹣2b2=a2+b2,即a2=3b2, = .抛物线ay=bx2的方程可化为:x2= y,即x2= y,其焦点坐标为:0, .故选D.8.设z1,z2是复数,则下列命题中的假命题是A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则【考点】复数代数形式的乘除运算;命题的真假判断与应用.【分析】利用特例判断A的正误;复数的基本运算判断B的正误;复数的运算法则判断C的正误;利用复数的模的运算法则判断D的正误.【解答】解:若|z1|=|z2|,例如|1|=|i|,显然不正确,A错误.B,C,D满足复数的运算法则,故选:A.9.已知命题“若函数fx=ex﹣mx在0,+∞上是增函数,则m≤1”,则下列结论正确的是A.否命题“若函数fx=ex﹣mx在0,+∞上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数fx=ex﹣mx在0,+∞上是增函数”是假命题C.逆否命题“若m>1,则函数fx=ex﹣mx在0,+∞上是减函数”是真命题D.逆否命题“若m>1,则函数fx=ex﹣mx在0,+∞上不是增函数”是真命题【考点】四种命题间的逆否关系.【分析】先利用导数知识,确定原命题为真命题,从而逆否命题为真命题,即可得到结论.【解答】解:∵fx=ex﹣mx,∴f′x=ex﹣m∵函数fx=ex﹣mx在0,+∞上是增函数∴ex﹣m≥0在0,+∞上恒成立∴m≤ex在0,+∞上恒成立∴m≤1∴命题“若函数fx=ex﹣mx在0,+∞上是增函数,则m≤1”,是真命题,∴逆否命题“若m>1,则函数fx=ex﹣mx在0,+∞上不是增函数”是真命题∵m≤1时,f′x=ex﹣m≥0在0,+∞上不恒成立,即函数fx=ex﹣mx在0,+∞上不一定是增函数,∴逆命题“若m≤1,则函数fx=ex﹣mx在0,+∞上是增函数”是真命题,即B不正确故选D.10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】因为“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.再据命题的真假与条件的关系判定出“不便宜”是“好货”的必要条件.【解答】解:“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.所以“好货”⇒“不便宜”,所以“不便宜”是“好货”的必要条件,故选B11.设a>0,fx=ax2+bx+c,曲线y=fx在点Px0,fx0处切线的倾斜角的取值范围为,则P到曲线y=fx对称轴距离的取值范围为A. B. C. D.【考点】直线的图象特征与倾斜角、斜率的关系.【分析】先由导数的几何意义,得到x0的范围,再求出其到对称轴的范围.【解答】解:∵过Px0,fx0的切线的倾斜角的取值范围是,∴f′x0=2ax0+b∈,∴P到曲线y=fx对称轴x=﹣的距离d=x0﹣﹣ =x0+∴x0∈[ ,].∴d=x0+ ∈.故选:B.12.已知函数fx=x3+ax2+bx+c有两个极值点x1,x2,若fx1=x1A.3B.4C.5D.6【考点】利用导数研究函数的极值;根的存在性及根的个数判断.【分析】由函数fx=x3+ax2+bx+c有两个极值点x1,x2,可得f′x=3x2+2ax+b=0有两个不相等的实数根,必有△=4a2﹣12b>0.而方程3fx2+2afx+b=0的△1=△>0,可知此方程有两解且fx=x1或x2.再分别讨论利用平移变换即可解出方程fx=x1或fx=x2解得个数.【解答】解:∵函数fx=x3+ax2+bx+c有两个极值点x1,x2,∴f′x=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得 = .∵x1< p="">∴ , .而方程3fx2+2afx+b=0的△1=△>0,∴此方程有两解且fx=x1或x2.不妨取00.①把y=fx向下平移x1个单位即可得到y=fx﹣x1的图象,∵fx1=x1,可知方程fx=x1有两解.②把y=fx向下平移x2个单位即可得到y=fx﹣x2的图象,∵fx1=x1,∴fx1﹣x2<0,可知方程fx=x2只有一解.综上①②可知:方程fx=x1或fx=x2.只有3个实数解.即关于x的方程3fx2+2afx+b=0的只有3不同实根.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于 1 .【考点】复数代数形式的乘除运算.【分析】直接利用复数的代数形式的混合运算化简求解即可.【解答】解:复数,那么z• = = =1.故答案为:1.14.fx=x3﹣3x2+2在区间上的最大值是 2 .【考点】利用导数求闭区间上函数的最值.【分析】求出函数的导函数,令导函数为0,求出根,判断根是否在定义域内,判断根左右两边的导函数符号,求出最值.【解答】解:f′x=3x2﹣6x=3xx﹣2令f′x=0得x=0或x=2舍当﹣10;当0<0< p="">所以当x=0时,函数取得极大值即最大值所以fx的最大值为2故答案为215.函数fx=lnx﹣f′1x2+5x﹣4,则f1= ﹣1 .【考点】导数的运算.【分析】先求出f′1的值,代入解析式计算即可.【解答】解:∵fx=lnx﹣f′1x2+5x﹣4,∴f′x= ﹣2f′1x+5,∴f′1=6﹣2f′1,解得f′1=2.∴fx=lnx﹣2x2+5x﹣4,∴f1=﹣1.故答案为:﹣1.16.过抛物线x2=2pyp>0的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点A在y轴左侧,则 = .【考点】抛物线的简单性质.【分析】点斜式设出直线l的方程,代入抛物线方程,求出A,B两点的纵坐标,利用抛物线的定义得出 = ,即可得出结论.【解答】解:设直线l的方程为:x=y﹣,Ax1,y1,Bx2,y2,由x=y﹣,代入x2=2py,可得y2﹣3py+ p2=0,∴y1= p,y2= p,从而, = = .故答案为: .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数i为虚数单位.Ⅰ求复数z;Ⅱ求的模.【考点】复数求模;复数的基本概念.【分析】Ⅰ设z=a+bi,分别代入z+2i和,化简后由虚部为0求得b,a的值,则复数z可求;Ⅱ把z代入,利用复数代数形式的乘除运算化简,代入模的公式得答案.【解答】解:Ⅰ设z=a+bi,∴z+2i=a+b+2i,由a+b+2i为实数,可得b=﹣2,又∵ 为实数,∴a=4,则z=4﹣2i;Ⅱ ,∴ 的模为 .18.已知集合A={x|ax﹣1ax+2≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义,转化为集合的关系进行求解.【解答】解:1a>0时,,若x∈B是x∈A的充分不必要条件,所以,,检验符合题意;┅┅┅┅┅┅┅2a=0时,A=R,符合题意;┅┅┅┅┅┅┅3a<0时,,若x∈B是x∈A的充分不必要条件,所以,,检验不符合题意.综上.┅┅┅┅┅┅┅19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M 在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .Ⅰ求椭圆的离心率;Ⅱ设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥AB.【考点】椭圆的简单性质.【分析】1通过题意,利用 =2 ,可得点M坐标,利用直线OM的斜率为,计算即得结论;2通过中点坐标公式解得点N坐标,利用× =﹣1,即得结论.【解答】Ⅰ解:设Mx,y,已知Aa,0,B0,b,由|BM|=2|MA|,所以 =2 ,即x﹣0,y﹣b=2a﹣x,0﹣y,解得x= a,y= b,即可得,┅┅┅┅┅┅┅所以,所以椭圆离心率;┅┅┅┅┅┅┅Ⅱ证明:因为C0,﹣b,所以N ,MN斜率为,┅┅┅┅┅┅┅又AB斜率为,所以× =﹣1,所以MN⊥AB.┅┅┅┅┅┅┅20.设函数,其中a为实数.1已知函数fx在x=1处取得极值,求a的值;2已知不等式f′x>x2﹣x﹣a+1对任意a∈0,+∞都成立,求实数x的取值范围.【考点】利用导数研究函数的极值.【分析】1求出f′x,因为函数在x=1时取极值,得到f′1=0,代入求出a值即可;2把fx的解析式代入到不等式中,化简得到,因为a>0,不等式恒成立即要,求出x的解集即可.【解答】解:1f′x=ax2﹣3x+a+1由于函数fx在x=1时取得极值,所以f′1=0即a﹣3+a+1=0,∴a=12由题设知:ax2﹣3x+a+1>x2﹣x﹣a+1对任意a∈0,+∞都成立即ax2+2﹣x2﹣2x>0对任意a∈0,+∞都成立于是对任意a∈0,+∞都成立,即∴﹣2≤x≤0于是x的取值范围是{x|﹣2≤x≤0}.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.1求C1的方程;2设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.【考点】椭圆的简单性质.【分析】1运用椭圆的离心率和最小距离a﹣c,解方程可得a= ,c=1,再由a,b,c 的关系,可得b,进而得到椭圆方程;2设出直线y=kx+m,联立椭圆和抛物线方程,运用判别式为0,解方程可得k,m,进而得到所求直线的方程.【解答】解:1由题意可得e= = ,由椭圆的性质可得,a﹣c= ﹣1,解方程可得a= ,c=1,则b= =1,即有椭圆的方程为 +y2=1;2直线l的斜率显然存在,可设直线l:y=kx+m,由,可得1+2k2x2+4kmx+2m2﹣2=0,由直线和椭圆相切,可得△=16k2m2﹣41+2k22m2﹣2=0,即为m2=1+2k2,①由,可得k2x2+2km﹣4x+m2=0,由直线和抛物线相切,可得△=2km﹣42﹣4k2m2=0,即为km=1,②由①②可得或,即有直线l的方程为y= x+ 或y=﹣ x﹣ .22.已知函数fx=lnx﹣ax﹣12﹣x﹣1其中常数a∈R.Ⅰ讨论函数fx的单调区间;Ⅱ当x∈0,1时,fx<0,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】Ⅰ求出函数的导数,通过讨论a的范围求出函数的单调区间即可;Ⅱ根据Ⅰ通过讨论a的范围,确定出满足条件的a的范围即可.【解答】解:Ⅰfx=lnx﹣ax﹣12﹣x﹣1,x>0,f′x=﹣,①a<﹣时,0<﹣ <1,令f′x<0,解得:x>1或00,解得:﹣ < p="">∴fx在递减,在递增;②﹣ <0,解得:x>﹣或00,解得:1∴fx在递减,在递增;③ ,f′x=﹣≤0,fx在0,1,1+∞递减;④a≥0时,2ax+1>0,令f′x>0,解得:0<0,解得:x>1,∴fx在0,1递增,在1,+∞递减;Ⅱ函数恒过1,0,由Ⅰ得:a≥﹣时,符合题意,a<﹣时,fx在0,﹣递减,在递增,不合题意,故a≥﹣ .感谢您的阅读,祝您生活愉快。
高二数学(文科)第一学期期末考试试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共150分.第Ⅰ卷(选择题共60分)一、选择题(每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目 要求的.)1.命题“若b a >,则c b c a +>+”的逆否命题为( ) A .若b a <,则c b c a +<+. B .若b a ≤,则c b c a +≤+. C .若c b c a +<+,则b a <. D .若c b c a +≤+,则b a ≤. 2.抛物线2y x =的焦点坐标是( )A .()1,0B .1,04⎛⎫ ⎪⎝⎭C .10,8⎛⎫ ⎪⎝⎭ D .10,4⎛⎫ ⎪⎝⎭3.命题p :存在实数m ,使方程210x mx ++=有实数根,则“非p ”形式的命题是( )A .存在实数m ,使得方程210x mx ++=无实根. B .不存在实数m ,使得方程210x mx ++=有实根. C .对任意的实数m ,使得方程210x mx ++=有实根. D .至多有一个实数m ,使得方程210x mx ++=有实根.4. 顶点在原点,坐标轴为对称轴的抛物线过点()2,3-,则它的方程是( )A .292x y =-或243y x = B .292y x =-或243x y = C .243x y = D .292y x =-5.函数2221x y x =+的导数是( )A .()()23224141x x x y x +-'=+ B .()()22224141x x x y x +-'=+C .()()23222141x x x y x+-'=+ D .()()2224141x x xy x+-'=+6.若椭圆22110036x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是( )A .4B .194C .94D .147.,,A B C 是三个集合,那么“B A =”是“A C B C =I I ”成立的( ) A .充分非必要条件. B .必要非充分条件. C .充要条件. D .既非充分也非必要条件.8.已知:点()2,3-与抛物线22(0)y px p =>的焦点的距离是5,则p 的值是( )A .2B .4C .8D .16 9.函数32y x x =-+的单调递减区间是( ) A .-∞(,)36-B .36(,)∞+ C .-∞(,36()36Y -,)∞+ D .36(-,)3610.抛物线x y 82=上的点),(00y x 到抛物线焦点的距离为3,则|y 0|=( ) A .2 B .22 C .2 D .411.以坐标轴为对称轴、渐近线互相垂直、两准线间距离为2的双曲线方程是( ) A.222=-y x B .222=-x yC .422=-y x 或422=-x y D .222=-y x 或222=-x y12.已知函数()y f x =的导函数的图象如图甲所示, 则()y f x =的图象可能是( )AB C D第Ⅱ卷(非选择题共90分)二、填空题(每小题6分,共30分.)13.用符号“∀”与“∃”表示含有量词的命题:(1)实数的平方大于等于0. ______________________.(2)存在一对实数,使2x +3y +3>0成立.______________________. 14.离心率35=e ,一条准线为3=x 的椭圆的标准方程是______________________. 15.曲线32x x y -=在点(1,1)处的切线方程为___ _______.16.若直线l 过抛物线()20y ax a =>的焦点,并且与x 轴垂直,若l 被抛物线截得的线段长为4,则a =___ _______.17. 过双曲线822=-y x 的右焦点2F 有一条弦PQ ,7PQ =,1F 是左焦点,那么1F PQ ∆的周长为___ _______.三、解答题(共60分)18.已知命题P :“若,0≥ac 则二次方程02=++c bx ax 没有实根”. (1)写出命题P 的否命题;(4分)(2)判断命题P 的否命题的真假, 并证明你的结论.(6分)19.已知双曲线的一条渐近线方程是20x y -=,若双曲线经过点M ,求双曲线的标准方程.(12分)20.已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),求a 和b 的值.(14分) 21.求59623-+-=x x x y 的单调区间和极值.(10分)22.一段双行道隧道的横截面边界由椭圆的上半部分和矩形的三边组成,如图所示.一辆卡车 运载一个长方形的集装箱,此箱平放在车上与车同宽,车与箱的高度共计4.2米,箱宽3 米,若要求通过隧道时,车体不得超过中线. 试问这辆卡车是否能通过此隧道,请说明理由(14分)高二数学(文科)第一学期期末考试试卷参考答案一、选择题(每小题5分,共60分)二、填空题(每小题6分,共30分)13.(1)2,0x R x ∀∈≥ (2),,2330x y R x y ∃∈++> 14.2212059x y += 15. 20x y +-= 16. 4 17.2814+三、解答题(共60分.)18.已知命题P :“若,0≥ac 则二次方程02=++c bx ax 没有实根”.(1)写出命题P 的否命题;(4分)(2)判断命题P 的否命题的真假, 并证明你的结论.(6分)18.解:(1)命题P的否命题为:“若,0<ac 则二次方程02=++c bx ax 有实根”. (2)命题P 的否命题是真命题.证明:20040ac ac b ac <⇒->⇒∆=->⇒二次方程02=++c bx ax 有实根.∴该命题是真命题.19.已知双曲线的一条渐近线方程是20x y -=,若双曲线经过点M ,求双曲线的标准方程.(12分)解:由已知可知双曲线的两条渐近线为20x y ±=因此可设所求双曲线为()2240x y λλ-=≠ (6分)将M 代入()2240x y λλ-=≠,解得16λ= (4分)∴双曲线方程为22416x y -=∴标准方程为:221164x y -= (2分)20.已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),求a 和b 的值.(14分) 解:∵直线1y kx =+与曲线3y x ax b =++切于点(1,3)∴点(1,3)在直线1y kx =+与曲线3y x ax b =++上 (2分) ∴312k k =+⇒=31a b =++ (4分)又由()323y x ax bxa ''=++=+ (4分)由导数的几何意义可知:1|321x k y a a ='==+=⇒=- (2分) 将1a =-代入31a b =++,解得3b = (2分)21.求59623-+-=x x x y 的单调区间和极值.(10分)解:()3226953129y x x x xx ''=-+-=-+ (2分)令0y '=,即231290x x -+=,解得31x x ==或 (2分) 当0y '>时,即231290x x -+>,解得13x x <>或,函数59623-+-=x x x y 单调递增; (2分)当0y '<时,即231290x x -+<,解得13x <<,函数59623-+-=x x x y 单调递减; (2分)综上所述,函数59623-+-=x x x y 的单调递增区间是()(),13,-∞+∞或,单调递减区间是()1,3;当1x =时取得极大值1-,当3x =时取得极小值5-。
2017—2018学年度第一学期高二数学期末考试题文科(提高班)选择题(每题5分, 共60分)1.在相距2km的A、B两点处测量目标C, 若∠CAB=75°, ∠CBA=60°, 则A、C两点之间的B. 3 km距离是()A. 2 kmA.2kmC. kmD. 3 km2. 已知椭圆()的左B.4C.3D.2焦点为,则()A.93. 在等差数列中,,则B. 15C. 20D. 25的前5项和=()A.74. 某房地产公司要在一块圆形的土地上,设计一B. 100m2C. 200m2D. 250m2个矩形的停车场.若圆的半径为10m,则这个矩形的面积最大值是()A. 50m2A.50m25. 如图所示, 表示满足不等式的点所在的平面区域为()B .C .D .A .6. 焦点为(0, ±6)且与双曲线有相同渐近线的双曲线方程是()B .A .C .D .7. 函数的导数为()B .A .C .D .8. 若<<0, 则下列结论正确的是()B .A. bA .bC. -2D .9. 已知命题: 命题.则下列判断正确的是()B. q是真命题A. p是假命题A.p是假命题C. 是真命题D. 是真命题10. 某观察站B. 600米C. 700米D. 800米与两灯塔、的距离分别为300米和500米, 测得灯塔在观察站北偏东30 , 灯塔在观察站正西方向, 则两灯塔、间的距离为()A. 500米A.500米11. 方程表示的曲线为()A. 抛物线A.抛物线B. 椭圆 C. 双曲线D.圆12. 已知数列的前项和为, 则的值是()A. -76A.-76B. 76C. 46D. 13二、填空题(每题5分, 共20分)13.若, , 是实数, 则的最大值是_________14.过抛物线的焦点作直线交抛物线于、两点, 如果, 那么=___________.15.若双曲线的顶点为椭圆长轴的端点, 且双曲线的离心率与该椭圆的离心率的积为1, 则双曲线的方程是____________.16.直线是曲线y=l.x(x>0)的一条切线,则实数b=___________2017—2018学年度第一学期高二数学期末考试文科数学(提高班)答题卡二、填空题(共4小题, 每题5分)13. 2 14、 815. 16.三、解答题(共6小题, 17题10分, 其他每小题12分)17.已知数列(Ⅰ)求数列的通项公式;(Ⅱ)求证数列是等比数列;18.已知不等式组的解集是, 且存在, 使得不等式成立.(Ⅰ)求集合;(Ⅱ)求实数的取值范围.19.某公司生产一种电子仪器的固定成本为20000元, 每生产一台仪器需增加投入100元, 已知总收益满足函数:(其中是仪器的月产量).(1)将利润表示为月产量的函数;(2)当月产量为何值时, 公司所获利润最大?最大利润为多少元?(利润=总收益-总成本)20.根据下列条件, 求双曲线的标准方程.(1)经过点, 且一条渐近线为;(2) 与两个焦点连线互相垂直, 与两个顶点连线的夹角为.21.已知函数在区间上有最小值1和最大值4, 设.(1)求的值;(2)若不等式在区间上有解, 求实数k的取值范围.22.已知函数().(1)求曲线在点处的切线方程;(2)是否存在常数, 使得, 恒成立?若存在, 求常数的值或取值范围;若不存在, 请说明理由.文科(提高班)选择题(每题5分, 共60分)1.考点: 1. 2 应用举例试题解析:由题意, ∠ACB=180°-75°-60°=45°, 由正弦定理得=, 所以AC=·sin60°=(km).答案:C2.考点: 2. 1 椭圆试题解析:, 因为, 所以, 故选C.答案:C3.考点: 2. 5 等比数列的前n项和试题解析: .答案:B4.考点: 3. 3 二元一次不等式(组)与简单的线性规划问题试题解析:如图,设矩形长为, 则宽为,所以矩形面积为 , 故选C答案: C5.考点:3..二元一次不等式(组)与简单的线性规划问题试题解析: 不等式等价于或作出可行域可知选B答案: B6.考点: 2. 2 双曲线试题解析:与双曲线有共同渐近线的双曲线方程可设为,又因为双曲线的焦点在y轴上,∴方程可写为.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12.∴双曲线方程为.答案:B7.考点: 3. 2 导数的计算试题解析:, 故选B.答案:B8.考点: 3. 1 不等关系与不等式试题解析:根据题意可知, 对两边取倒数的得, 综上可知, 以此判断:A.正确;因为:, 所以:, B错误;, 两个正数相加不可能小于, 所以C错误;, D错误, 综上正确的应该是A.答案:A9.考点: 1. 3 简单的逻辑联结词试题解析:当时, (当且仅当, 即时取等号), 故为真命题;令, 得, 故为假命题, 为真命题;所以是真命题.答案:C10.考点: 1. 2 应用举例试题解析:画图可知在三角形ACB中, , , 由余弦定理可知, 解得AB=700.答案:C11.考点: 2. 1 椭圆试题解析:方程表示动点到定点的距离与到定直线的距离, 点不在直线上, 符合抛物线的定义;答案:A12.考点: 2. 3 等差数列的前n项和试题解析:由已知可知:, 所以, , , 因此, 答案选A.答案:A二. 填空题(每题5分, 共20分)13.考点: 3. 4 基本不等式试题解析:, , 即,则, 化简得, 即, 即的最大值是2.答案:214.考点: 2. 3 抛物线试题解析:根据抛物线方程知, 直线过焦点, 则弦, 又因为, 所以.答案:815.考点: 2. 2 双曲线试题解析:椭圆长轴的端点为, 所以双曲线顶点为, 椭圆离心率为,所以双曲线离心率为, 因此双曲线方程为答案:16.考点: 3. 2 导数的计算试题解析:设曲线上的一个切点为(m, n), , ∴,∴.答案:三、解答题(共6小题, 17题10分, 其他每小题12分)17.考点: 2. 3 等差数列的前n项和试题解析: (Ⅰ)设数列由题意得:解得:(Ⅱ)依题,为首项为2, 公比为4的等比数列(Ⅲ)由答案: (Ⅰ)2n-1;(Ⅱ)见解析;(Ⅲ){1, 2, 3, 4}18.考点: 3. 2 一元二次不等式及其解法试题解析:(Ⅰ)解得;(Ⅱ)令, 由题意得时, .当即, (舍去)当即, .综上可知, 的取值范围是.答案: (Ⅰ);(Ⅱ)的取值范围是19.考点: 3. 4 生活中的优化问题举例试题解析:(1)(2)当时,∴当时, 有最大值为当时,是减函数,∴当时, 的最大值为答:每月生产台仪器时, 利润最大, 最大利润为元.答案:(1);(2)每月生产台仪器时, 利润最大, 最大利润为元20.考点: 双曲线试题解析:(1)由于双曲线的一条渐近线方程为设双曲线的方程为()代入点得所以双曲线方程为(2)由题意可设双曲线的方程为则两焦点为, 两顶点为由与两个焦点连线垂直得, 所以由与两个顶点连线的夹角为得, 所以, 则所以方程为21.考点: 3. 2 一元二次不等式及其解法试题解析: (1), 因为, 所以在区间上是增函数,故, 解得.(2)由已知可得, 所以, 可化为,化为, 令, 则, 因, 故,记, 因为, 故,所以的取值范围是22.考点: 3. 3 导数在研究函数中的应用试题解析:(1), 所求切线的斜率所求切线方程为即(2)由, 作函数,其中由上表可知, , ;,由, 当时, , 的取值范围为, 当时, , 的取值范围为∵, 恒成立, ∴答案:(1)(2)存在, , 恒成立100.在中, 角所对的边分别为, 且满足, .(.)求的面积;(II)若, 求的值.46.考点: 正弦定理余弦定理试题解析:(Ⅰ)又, , 而, 所以, 所以的面积为:(Ⅱ)由(Ⅰ)知, 而, 所以所以答案: (1)2(2)。
届高二上学期期末考试试卷文科数学考试时间:120 分钟满分:150 分注意事项: 1.本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分。
考试结束后,请将答题卡 上交。
2.答卷前,考生务必将自己的学校、姓名、班级、准考证号、考场号、座位号填写在答 题卡上。
3.选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷、草稿纸上无效。
4.非选择题的作答:用黑色签字笔在答题卡上对应的答题区域内作答。
答在试卷、草稿 纸上无效。
5.考生务必保持答题卡的整洁。
第I卷一、选择题(本大题共 12 小题,每小题 5 分,共 60 分;在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 设全集U 1,2,3,4,5, M 1,2,4, N 2,4,5,则(CU M) (CU N ) 等于( )A. 4B. 1,3C. 2,5D. 32. 设,“ x 1”是“ x 1”的( )A.充分必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3. 已知直线 经过点 P2,5 ,且斜率为 3 ,则直线 l 的方程为( )4A. 3x 4y 14 0B. 3x 4y 14 0C. 4x 3y 14 0D. 4x 3y 14 04. 如果执行右面的程序框图,那么输出的 S ( )A.90B.110第1页 共11页C.250D.2095. 将一条 5 米长的绳子随机地切断为两段,则两段绳子都不短于 1 米的概率为( )A. 1 5B. 2 5C. 3 5D. 4 53x y 2≤06.已知变量x,y满足线性约束条件 xy2≥0x y 1≥0,则目标函数 z 1 x y 的最小值为 2()A. 5 4B. 2C. 2D. 13 47. 下列四个命题中正确的是( )①若一个平面经过另一平面的垂线,那么这两个平面相互垂直;②若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;③垂直于同一条直线的两个平面相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.A.①③B.①④C.①②④D.①③④8. 某四棱锥的三视图如图所示,则该四棱锥的体积为( )A. 4 3B. 2 3C. 8 3D. 29. 若,,则的值为( )A.B.C.D.10. 若圆 C 的半径为 1,圆心在第一象限,且与直线 4x 3y 0 和 x 轴都相切,则该圆的标准方程是( )A. (x 2)2 ( y 1)2 1B. (x 2)2 ( y 1)2 1C. (x 2)2 ( y 1)2 1D. (x 3)2 ( y 1)2 1第2页 共11页11. 《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一,书中有这样一道题:把 120 个面包分成 5 份,使每份的面包数成等差数列,且较多的三份之和恰好是较少的两份之和的 7 倍,则最少的那份有( )个面包.A.1B.2C.3D.412.设函数f x lg 1 2x11 x4,则使得f3x 2 f x 4 成立的 x 的取值范围是( )A. 1 3,1B. 1,3 2 C. ,3 2 D. ,1 3 , 2 第 II 卷(非选择题,共 90 分)注意事项:用 0.5 毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效.二、填空题(本大题共 4 小题,每小题 5 分,共 20 分。
2019高二上册文科数学期末试卷高中是重要的一年,大家一定要好好把握高中,查字典数学网小编为大家整理了高二上册文科数学期末试卷,希望大家喜欢。
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.命题的否定是( )
A. B.
C. D. .
2.设实数和满足约束条件,则的最小值为( )
A. B. C. D.
3.抛物线的准线方程为( )
A. B. C. D.
4. 为锐角是的( )
A.充分非必要条件
B.必要非充分条件
C.非充分非必要条件
D.充要条件
5.设双曲线的渐近线方程为,则a的值为()
A.4
B.3
C.2
D.1
6. 在空间直角坐标系中,已知点P(x,y,z),给出下列四条叙述:
①点P关于x轴的对称点的坐标是(x,-y,z)
②点P关于yOz平面的对称点的坐标是(x,-y,-z)
③点P关于y轴的对称点的坐标是(x,-y,z)
④点P关于原点的对称点的坐标是(-x,-y,-z)
其中正确的个数是( )
A.3
B.2
C.1
D.0
7.给定下列四个命题:
①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两条直线相互平行;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.
其中,为真命题的是( )
A.①和②
B.②和③
C.③和④
D.②和④
8.若的弦被点(4,2)平分,则此弦所在的直线方程是( )
A. B.
C. D.
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,
也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
9.设, 是椭圆: =1( 0)的左、右焦点, 为直线上一点,
要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
△是底角为的等腰三角形,则的离心率为( )
A. B. C. D.
10.椭圆的左焦点为, 点在椭圆上, 若线段的中点在轴上, 则( )
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
“老师”的原意并非由“老”而形
容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。
“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。
慢慢“老师”之说也不再有年龄的限制,老少皆可适用。
只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。
今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。
A. B. C. D.
在高中复习阶段,大家一定要多练习题,掌握考题的规律,掌握常考的知识,这样有助于提高大家的分数。
查字典数学网为大家整理了高二上册文科数学期末试卷,供大家参考。