最新中考数学必背知识点
- 格式:doc
- 大小:216.00 KB
- 文档页数:5
中考数学必考知识点大全1.整数的加减乘除运算:掌握整数的加减乘除运算法则,包括加法、减法、乘法和除法。
2.分数的加减乘除运算:掌握分数的加减乘除运算法则,包括分数的加法、减法、乘法和除法。
3.百分数的计算:掌握百分数的计算方法,包括百分数的转化和百分数之间的比较。
4.小数的加减乘除运算:掌握小数的加减乘除运算法则,包括小数的加法、减法、乘法和除法。
5.整式的加减乘除运算:掌握整式的加减乘除运算法则,包括整式的加法、减法、乘法和除法。
6.一元一次方程与一元一次不等式:掌握一元一次方程和一元一次不等式的解法和问题的应用。
7.二次根式:掌握二次根式的定义和性质,包括二次根式的化简和运算。
8.平方根与立方根:掌握平方根和立方根的计算方法和性质,包括平方根和立方根的开放计算和化简。
9.平面图形的面积和周长:掌握各种平面图形的面积和周长的计算方法,包括矩形、正方形、三角形、梯形、圆等。
10.空间图形的体积和表面积:掌握各种空间图形的体积和表面积的计算方法,包括长方体、正方体、三棱锥、四棱锥、棱柱、棱台、球等。
11.初等概率与统计:掌握初等概率和统计的基本概念和计算方法,包括样本空间、事件、概率、频率、直方图等。
12.等比数列与等差数列:掌握等比数列和等差数列的定义和性质,包括等比数列和等差数列的通项公式和求和公式。
13.直角三角形的性质与应用:掌握直角三角形的性质和定理,包括勾股定理、正弦定理、余弦定理等。
14.平行线与相交线:掌握平行线和相交线的基本性质和判定方法,包括平行线的性质、相交线的性质和相交线的角度关系。
15.二次函数与二次方程:掌握二次函数和二次方程的定义和性质,包括二次函数的图像、二次方程的解法和二次函数和二次方程在实际问题中的应用。
中考数学必考知识点
1.整数和有理数:了解整数和有理数的概念及其性质,包括整数的正
负性、大小比较以及有理数的表示和运算法则。
2.分数与小数:掌握分数与小数的相互转换方法,包括分数的化简、
通分与约分,小数的读写与四则运算。
3.百分数与比例:理解百分数与比例的概念,掌握百分数的计算与应用,比例与比例关系的应用。
4.二次根式与简单的三角函数:了解二次根式的定义与性质,包括二
次根式的相互转换和计算,以及简单的三角函数的定义和运算。
5.一次函数与图像:掌握一次函数的概念,理解线性关系,掌握一次
函数的图像、性质和应用。
6.坐标系与图形:了解平面直角坐标系的概念及其性质,认识常见图
形的坐标特征,包括点、线、线段、角以及相关的距离和面积计算。
7.相似与全等:理解相似和全等的概念,掌握相似和全等的判定条件,以及相似比和全等的运用。
8.平面几何与立体几何:熟练掌握平面图形的性质和计算,包括三角形、四边形、圆等的周长、面积和相关性质,以及立体图形的性质和计算,包括长方体、正方体、圆柱体、圆锥体等的体积和表面积计算。
9.统计与概率:了解统计与概率的基本概念,掌握统计的方法和技巧,包括数据的整理和分析,概率的计算和应用。
10.代数式与方程:掌握代数式的基本运算法则,理解并掌握方程的
概念、解法及应用,包括一元一次方程、简单一元二次方程的解法。
这些是中考数学必考的基本知识点,学生在备考中应该重点掌握这些知识,加强对概念的理解,熟练掌握运算方法,能够应用灵活,灵活运用解题思路和方法解决各类数学问题。
数学知识点初中总结万唯一、数与代数1. 整数和有理数- 整数包括正整数、零和负整数,它们是实数的一个子集。
- 有理数是由整数和分数构成的数集,可以表示为两个整数的比,形式为a/b,其中a和b是整数,b不等于零。
2. 无理数和实数- 无理数是不能表示为分数的实数,例如圆周率π和黄金比例φ。
- 实数是包括有理数和无理数的数集,可以表示所有可能的数值。
3. 代数表达式- 代数表达式是由数字、字母(代表变量)和运算符(加、减、乘、除)组成的式子。
- 单项式和多项式是代数表达式的两种类型,其中多项式可以进一步分解为单项式的和或差。
4. 方程与不等式- 方程是两个表达式通过等号连接的式子,求解方程就是找到使得等式成立的变量值。
- 不等式表示两个表达式之间的大小关系,可以用符号>、<、≥、≤表示。
5. 函数- 函数是一种特殊的关系,每个输入值(自变量)对应一个确定的输出值(因变量)。
- 函数可以用公式、表格或图形表示,其中图形表示可以直观地展示函数的性质。
二、几何1. 平面几何- 平面几何研究二维空间中的图形,包括点、线、面的基本性质。
- 直线、射线和线段是线的基本类型,它们具有不同的特性和定义。
- 角是由两条射线共享一个端点形成的图形,根据大小可以分为锐角、直角和钝角。
2. 三角形- 三角形是三条线段在平面上围成的图形,根据边和角的性质可以分为等边、等腰和直角三角形。
- 三角形的性质包括内角和定理、海伦公式等。
3. 圆- 圆是由所有与给定点(圆心)距离相等的点组成的平面图形。
- 圆的性质包括圆周率、直径、半径、弦、弧等。
4. 立体几何- 立体几何研究三维空间中的图形,包括多面体和旋转体。
- 常见的多面体有正方体、长方体、棱锥、棱柱等。
- 旋转体如圆柱、圆锥和球体,它们由平面图形旋转而成。
5. 坐标几何- 坐标几何使用坐标系来研究几何图形,通过点的坐标可以计算距离、斜率等。
- 直线和圆的方程可以在坐标系中表示,便于分析和解决几何问题。
数学中考知识点归纳数学中考是学生学习生涯中的一个重要环节,它不仅考察学生对基础知识的掌握,也考察学生解决问题的能力。
以下是对数学中考知识点的归纳:一、数与代数1. 有理数:包括正数、负数和零的概念,有理数的四则运算。
2. 代数式:单项式和多项式的概念,代数式的加减乘除运算。
3. 方程与不等式:一元一次方程、一元二次方程的解法,不等式的基本性质和解法。
4. 函数:函数的概念,一次函数、二次函数的图像和性质。
二、几何1. 平面图形:包括线段、角、三角形、四边形、圆等基本图形的性质和计算。
2. 立体图形:立方体、长方体、圆柱、圆锥、球等立体图形的表面积和体积计算。
3. 图形的变换:平移、旋转、反射等几何变换的性质。
4. 相似与全等:相似三角形、全等三角形的判定和性质。
三、统计与概率1. 数据的收集与处理:数据的收集方法,数据的分类、整理和描述。
2. 统计图表:条形图、折线图、饼图等图表的绘制和解读。
3. 平均数、中位数和众数:计算方法和意义。
4. 概率:事件的概率计算,包括古典概型和几何概型。
四、解题技巧1. 审题:仔细阅读题目,理解题目要求。
2. 画图:对于几何题,画出图形有助于理解问题。
3. 列方程:对于需要求解的题目,列出相应的方程或不等式。
4. 检查:解题后要检查答案是否合理,是否满足题目的所有条件。
结束语数学中考的知识点覆盖面广,要求学生不仅要掌握基础概念和计算方法,还要具备一定的逻辑推理能力和问题解决能力。
通过系统的复习和大量的练习,相信每位学生都能在中考中取得优异的成绩。
中考数学的所有知识点归纳中考数学是初中阶段数学学习的重要总结,它涵盖了多个数学领域的知识点。
以下是中考数学所有知识点的归纳:一、数与代数1. 数的认识:包括自然数、整数、有理数、无理数、实数等。
2. 数的运算:四则运算、乘方、开方、绝对值、倒数等。
3. 代数式:代数式的基本运算、同类项、合并同类项、代数式的化简等。
4. 方程与不等式:一元一次方程、一元二次方程、不等式、方程组的解法等。
5. 函数:函数的概念、性质、图象、一次函数、二次函数等。
二、几何1. 平面图形:线段、角、三角形、四边形、圆等基本图形的性质。
2. 图形的变换:平移、旋转、反射等。
3. 相似与全等:相似三角形、全等三角形的判定与性质。
4. 圆的性质:圆周角、切线、弧长、扇形面积等。
5. 立体几何:立体图形的表面积、体积计算。
三、统计与概率1. 数据的收集与处理:数据的收集、整理、描述。
2. 统计图:条形统计图、折线统计图、饼图等。
3. 平均数、中位数、众数:计算方法及其意义。
4. 方差:衡量数据的离散程度。
5. 概率:事件的概率、概率的计算方法。
四、综合应用1. 数学建模:将实际问题转化为数学问题进行求解。
2. 问题解决:运用数学知识解决实际问题。
3. 创新思维:培养创新思维,解决新颖的数学问题。
结束语中考数学的知识点广泛,要求学生具备扎实的数学基础和灵活的解题能力。
通过系统地复习和练习,学生可以更好地掌握数学知识,为中考做好充分的准备。
希望以上的归纳能够帮助学生更好地理解和复习中考数学的知识点。
中考数学知识点归纳总结一、数与代数。
(一)有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 例如:3是正整数, - 5是负整数,0.25(可化为(1)/(4))是有限小数属于分数,0.3̇(可化为(1)/(3))是无限循环小数属于分数。
2. 有理数的运算。
- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
- 例如:3 + 5=8;-3+(-5)= - 8;3+(-5)= - 2;5+(-5)=0。
- 减法:减去一个数,等于加上这个数的相反数。
即a - b=a+(-b)。
- 例如:5 - 3 = 5+(-3)=2;3 - 5=3+(-5)= - 2。
- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0;几个不为0的数相乘,负因数的个数为偶数时,积为正,负因数的个数为奇数时,积为负。
- 例如:3×5 = 15;-3×(-5)=15;3×(-5)= - 15;0×5 = 0;(-2)×(-3)×(-4)= - 24(3个负因数,积为负)。
- 除法:除以一个不等于0的数,等于乘这个数的倒数。
即a÷b=a×(1)/(b)(b≠0)。
两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 例如:15÷3 = 5;-15÷(-3)=5;15÷(-3)= - 5;0÷5 = 0。
- 乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
a^n 中,a叫做底数,n叫做指数。
- 例如:2^3 = 2×2×2 = 8;(-2)^3=-2× - 2× - 2=-8。
中考数学必背知识点(精简必背)中考数学必背知识点一、不为零的量1.分式 $\frac{A}{B}$,分母 $B\neq 0$;2.二次方程 $ax^2+bx+c=0$($a\neq 0$);3.一次函数 $y=kx+b$($k\neq 0$);4.反比例函数 $y=\frac{k}{x}$($k\neq 0$);5.二次函数 $y=ax^2+bx+c=0$($a\neq 0$)。
二、非负数1.$|a|\geq 0$;2.$a\geq 0$($a\geq 0$);3.$a^{2n}\geq 0$($n$ 为自然数)。
三、绝对值:$|a|=\begin{cases}a。
& a\geq 0\\-a。
& a<0\end{cases}$四、重要概念1.平方根与算术平方根:如果 $x^2=a$($a\geq 0$),则称 $x$ 为 $a$ 的平方根,记作:$x=\pm\sqrt{a}$,其中$x=\sqrt{a}$ 称为 $x$ 的算术平方根;2.负指数:$a^{-p}=\frac{1}{a^p}$;3.零指数:$a=1$($a\neq 0$);4.科学计数法:$a\times 10^n$($n$ 为整数,$1\leqa<10$)。
五、重要公式一)幂的运算性质1.同底数幂的乘法法则:$a^m\timesa^n=a^{m+n}$($a\neq 0$,$m$,$n$ 都是正数);2.幂的乘方法则:$(a^m)^n=a^{mn}$($m$,$n$ 都是正数);3.积的乘方法则:$(ab)^n=a^n\times b^n$($n$ 为正整数);4.同底数幂的除法法则:$\frac{a^m}{a^n}=a^{m-n}$($a\neq 0$,$m$,$n$ 都是正数,且 $m>n$)。
二)整式的运算1.平方差公式:$(a+b)(a-b)=a^2-b^2$;2.完全平方公式:$(a\pm b)^2=a^2\pm 2ab+b^2$。
初中中考必会知识点总结一、数与式1. 整数及其应用整数的概念及表示方法,绝对值,相反数的概念,正、负数的比较,整数运算中的规律,整数的应用。
2. 分数及其应用分数的概念及表示方法,分数的大小比较,分数的四则运算,分数的应用。
3. 有理数及其应用有理数的概念,有理数的大小比较,有理数的四则运算,有理数的应用。
4. 整式整式的概念及性质,整式的基本运算。
5. 方程与不等式方程的概念及解法,一元一次方程及其应用,不等式的概念及解法,一元一次不等式及其应用。
二、图形的性质1. 二维图形的认识椭圆、圆、双曲线、抛物线等的性质。
2. 三角形的性质三角形的分类,三角形的内角和,三角形的外角和,直角三角形的性质等。
3. 四边形的性质四边形的分类及特性,四边形的性质。
4. 圆的性质圆的性质及相关定理。
5. 相似与全等相似三角形的性质及应用,全等三角形的性质及应用。
三、代数1. 一元二次方程一元二次方程的基本概念,一元二次方程的解法及应用。
2. 整式的加减多项式的加减,多项式的化简。
3. 整式的乘法多项式的乘法,多项式的乘法公式。
4. 整式的除法多项式的除法,多项式除法的定理。
5. 因式分解多项式的因式分解,多项式因式分解的方法及技巧。
6. 分式分式的基本概念,分式的四则运算。
7. 幂与指数幂的概念,指数的概念,幂的运算法则。
8. 方程一元一次方程,一元一次方程的解法及应用。
9. 不等式一元一次不等式,一元一次不等式的解法及应用。
四、函数1. 函数的概念函数的定义及性质,函数的概念和性质。
2. 一次函数一次函数的性质及图像,一次函数的应用。
3. 二次函数二次函数的性质及图像,二次函数的应用。
4. 反比例函数反比例函数的性质及图像,反比例函数的应用。
五、数列1. 等差数列等差数列的概念,等差数列的通项公式及性质。
2. 等比数列等比数列的概念,等比数列的通项公式及性质。
3. 数列的概念数列的基本概念及性质。
六、概率1. 概率的概念概率的定义及性质,概率的计算方法。
中考数学必考知识点中考数学的必考知识点主要包括以下内容:一、数与代数运算1.数的基本概念:整数、有理数、实数、自然数、负数、正数等2.整数的加减乘除运算及性质3.分数的加减乘除运算及性质4.百分数、纯小数、循环小数的相互转换和运算5.正比例、反比例关系及其应用6.代数式的概念和基本运算:加法、乘法、合并同类项、分配律等7.一次方程与一次方程组的概念、解法及应用二、几何与空间1.图形的分类与性质:点、线、面、角2.直角、全等、相似三角形及其性质3.平行线与平行线的性质:同位角、内错角、对顶角等4.三角形内外角的关系、三角形中位线、高线的性质5.平面镶嵌、园的常见性质、多边形的周长和面积计算三、函数与方程1.函数的概念:自变量、函数值、定义域、值域等2.一次函数和二次函数的概念、图像和性质3.代数方程的解法:一次方程、二次方程的解法及应用4.不等式的解法及其应用四、数据与统计1.数据的收集和整理:频数、频率、众数等2.统计图的绘制:折线图、柱状图、饼图等3.平均数的计算:算术平均数、加权平均数等4.相关系数和回归直线的概念及计算方法五、概率与统计1.基本概念:试验、随机事件、样本空间、事件等2.概率的计算:古典概型、条件概率、事件的独立性等3.概率树的绘制及应用4.排列与组合的概念和计算方法六、应用题1.复合运算:综合运用多个知识点解决实际问题2.数学建模:运用数学知识解决实际问题3.空间几何、概率统计等知识在实际问题中的应用以上是中考数学的必考知识点的一个大致概括,具体考纲可能因不同地区、不同年份而有所不同。
在备考中,一定要结合教材进行系统学习,并进行大量的练习和题型熟悉,同时特别重视基础知识的巩固和应用题的拓展训练,这样才能全面提升数学水平,取得好成绩。
初中数学的中考知识点归纳
初中数学是学生数学学习的重要阶段,中考作为初中阶段的总结性考试,其知识点覆盖了初中数学的各个方面。
以下是初中数学中考的知
识点归纳:
1. 数与式:包括有理数、实数、代数式、整式、分式、二次根式等基
本概念和运算规则。
2. 方程与不等式:一元一次方程、一元二次方程、分式方程、不等式
和不等式组的解法。
3. 函数:一次函数、反比例函数、二次函数的性质、图象和应用。
4. 几何基础:点、线、面、角的概念,平行线的性质,相交线的性质。
5. 三角形:三角形的分类、性质、全等三角形、相似三角形的判定和
性质。
6. 四边形:平行四边形、矩形、菱形、正方形的性质和判定。
7. 圆:圆的性质、圆周角、切线的性质、弧长和扇形面积的计算。
8. 图形变换:平移、旋转、反射等基本图形变换的性质和应用。
9. 统计与概率:数据的收集、整理、描述,条形统计图、折线统计图、饼图的绘制和解读,概率的基本概念和简单事件的概率计算。
10. 空间几何:立体图形的认识,包括棱柱、棱锥、球等的基本性质。
11. 解析几何:坐标系的引入,点在平面直角坐标系中的坐标,以及
简单的坐标几何问题。
12. 数学思维与方法:包括归纳推理、演绎推理、类比推理等逻辑推
理方法,以及数学建模、问题解决等思维技巧。
结束语:
掌握这些知识点是应对中考数学的关键。
学生应该在平时的学习中注
重基础知识的积累和基本技能的训练,同时培养良好的数学思维习惯,提高解决问题的能力。
通过不断的练习和反思,相信每位学生都能在
中考中取得优异的成绩。
中考数学必背知识点1.整数的运算性质:加法交换律、加法结合律、加法零元、乘法交换律、乘法结合律、乘法分配律。
2.整数的数量关系:相反数、绝对值、相反数的乘积、绝对值的乘积。
3.分数的基本性质:分数的大小比较、分数的大小变化、化简分数、增减乘除分数。
4.百分数与分数的互化:将百分数转化为分数、将分数转化为百分数。
5.实数的基本算术运算:加法、减法、乘法、除法。
6.整式的加减法:合并同类项、去括号运算。
7.整式的乘法:乘法运算法则、乘法公式、特殊乘法公式。
8.因式分解:提取公因式、公式法、差平方、完全平方变量。
9.分式的基本运算:分式的加减乘除。
10.方程与方程组:一元一次方程、一元一次方程组。
11.二次根式:二次根式的平方、二次根式的加减乘除。
12.一次函数基本概念:函数、自变量、因变量、函数图象。
13.一次函数的性质:函数值、自变量的变化、图象在坐标系中的特点。
14.直角三角形的性质:勾股定理、勾股定理的逆定理、勾股定理的适用条件。
15.三角比的概念:正弦、余弦、正切、余切。
16.角的度和弧度:角度与弧度的换算。
17.三角函数的计算:正弦、余弦、正切、余切的计算。
18.圆的基本性质:圆心角、弧、弧长。
19.面积的计算:平行四边形、梯形、菱形、圆。
20.体积的计算:长方体、正方体、圆柱体、圆锥体、球体。
21.统计图表的构造与分析:直方图、折线图、饼图。
22.数据的分析与应用:中位数、众数、平均数。
23.几何图形的判定:三角形的形状与大小、正方形、矩形、菱形、平行四边形的条件。
24.统计与概率:概率的概念、事件的概率计算。
25.连线与构造:点到直线的距离、点到平面的距离、直线与平面的关系。
以上就是中考数学必背的知识点,通过掌握这些知识点,可以在中考数学中取得较好的成绩。
同时,还需要进行大量的练习和实践,提高自己解题的能力。
中考数学所有知识点一、代数与函数1. 实数- 实数的性质与分类- 实数的运算法则2. 代数式与方程式- 代数式的加减乘除运算- 一元一次方程与一元一次不等式- 二元一次方程组的解法- 一元二次方程的解法- 绝对值不等式3. 函数- 函数与自变量的关系- 函数的图像、定义域与值域- 线性函数- 平方函数- 反比例函数- 根据函数和实际问题求解二、图形和空间几何1. 图形的性质- 点、线、线段、角的性质与分类- 平行线与垂直线的判定- 三角形的性质与分类- 四边形的性质与分类2. 平面图形- 直角坐标系与平面直角坐标- 各种平面图形的性质和特点- 三角形的面积计算- 相似三角形与三角形的比例关系3. 空间几何- 空间几何中的点、线、面等基本概念- 空间几何中的距离计算- 空间几何中的立体图形的性质和计算- 空间几何中的投影计算三、数据和概率统计1. 数据的处理- 数据的收集、整理和呈现- 数据的中心趋势与离散程度- 数据的分组与频率分布- 数据的统计图表绘制2. 概率与统计- 随机事件与概率的概念- 事件的排列与组合- 事件的概率计算- 实际问题中的统计与概率计算四、函数与图像的应用1. 函数的最值与极值- 函数的最大值与最小值- 函数图像的顶点与最值的关系2. 函数与图像的画法- 函数的图像和特点- 函数与实际问题的关系3. 函数的增减性与导数- 函数增减性的判定与应用- 函数导数的概念与计算- 函数与导数的应用五、几何证明题1. 平面几何证明- 几何命题的证明- 平行线的性质与证明- 三角形的性质与证明- 四边形的性质与证明2. 空间几何证明- 空间几何命题的证明- 空间几何图形的投影证明- 空间几何图形的平行关系的证明- 空间几何图形的垂直关系的证明综上所述,中考数学涵盖了代数与函数、图形和空间几何、数据和概率统计、函数与图像的应用以及几何证明题等各个知识点。
掌握了这些知识点,就能够在中考中熟练运用数学的方法进行解题,取得良好的成绩。
初三数学知识点归纳总结第1篇1、矩形的概念有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质。
(2)矩形的四个角都是直角。
(3)矩形的对角线相等。
(4)矩形是轴对称图形。
3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形。
(2)定理1:有三个角是直角的四边形是矩形。
(3)定理2:对角线相等的平行四边形是矩形。
4、矩形的面积:S矩形=长×宽=ab初三数学重点知识点(四)1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的.等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形;再证明它是菱形(或矩形);最后证明它是矩形(或菱形)。
初三数学知识点归纳总结第2篇第一轮数学复习主要知识点总结1第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。
数学中考重难点知识点归纳数学中考是中学阶段的重要考试之一,它不仅考察学生对数学基础知识的掌握,还考察学生运用数学知识解决问题的能力。
以下是数学中考中的一些重难点知识点归纳:1. 数与代数:- 有理数的运算法则,包括加、减、乘、除和乘方。
- 代数式的简化,包括合并同类项、幂的运算法则等。
- 一元一次方程和一元二次方程的解法,包括直接开平方法、因式分解法、配方法和公式法。
- 不等式的性质和解法,包括不等式的解集表示、基本不等式解法等。
2. 几何:- 平面几何中的图形性质,如三角形、四边形、圆的性质。
- 相似三角形和全等三角形的判定与性质。
- 圆的切线性质、圆周角定理、垂径定理等。
- 空间几何中的立体图形,如长方体、圆柱、圆锥、球的体积和表面积计算。
3. 函数与图象:- 一次函数、二次函数的图象与性质,包括函数的增减性、对称性等。
- 反比例函数的图象与性质,理解其在不同象限内的变化趋势。
- 函数的解析式,包括如何根据图象或实际问题写出函数的解析式。
4. 统计与概率:- 数据的收集、整理与描述,包括条形统计图、折线统计图、饼图等。
- 算术平均数、中位数、众数的计算方法。
- 概率的基本概念,包括事件的独立性、互斥性,以及概率的计算公式。
5. 综合应用题:- 将数学知识应用于实际问题,如行程问题、工程问题、经济问题等。
- 解决问题时需要运用多种数学知识,如方程、不等式、函数等。
结束语:掌握这些重难点知识点是数学中考取得好成绩的关键。
学生应该在平时的学习中注重基础知识的积累,通过大量的练习来提高解题能力。
同时,培养良好的思维习惯和解题策略,以便在考试中能够迅速准确地解决问题。
希望每位学生都能在数学中考中取得优异的成绩。
初中数学中考部编版必备核心知识点1. 数的性质与运算
- 自然数、整数、有理数和实数的概念及其性质
- 四则运算的基本规则和性质
- 有理数的加减乘除运算法则
- 分数的加减乘除运算法则
- 百分数的基本概念和运算
2. 代数基础
- 代数式的概念及其基本性质
- 一元一次方程的概念和解法
- 一元一次方程组的概念和解法
- 平方根的概念和计算
- 整式的基本运算法则
3. 几何基础
- 平面图形的基本概念和性质
- 点、线、面的基本概念
- 角的概念、性质和计算
- 直线和平面的相交关系
- 三角形的基本性质和分类
4. 数据的收集、整理与描述
- 调查数据的收集和整理方法
- 数据的图表表示和分析
- 平均数、中位数和众数的概念和计算- 简单概率的实际问题解决
5. 数的应用
- 百分数在实际问题中的应用
- 比例的基本概念和计算
- 比例与百分数的应用
- 商业运算问题的解决
6. 统计与概率
- 统计调查的方法和过程
- 频数统计和频率分布表
- 统计图表的制作和分析
- 概率的概念和计算
- 事件与概率的关系
以上是初中数学中考部编版必备的核心知识点。
通过学习和掌握这些知识点,学生们能够更好地应对数学中考,并取得好成绩。
电子版中考知识点总结数学
一、整数
1. 整数的概念
2. 整数的比较和大小关系
3. 整数的加减法
4. 整数的乘法
5. 整数的除法
6. 整数的应用
二、分数
1. 分数的概念
2. 分数的加减法
3. 分数的乘法
4. 分数的除法
5. 分数的化简
6. 分数的应用
三、小数
1. 小数的概念
2. 小数的加减法
3. 小数的乘法
4. 小数的除法
5. 小数的化简
6. 小数的应用
四、代数
1. 代数的基本概念
2. 一元一次方程
3. 一元一次方程的应用
4. 一元一次不等式
5. 一元一次不等式的应用
6. 一次函数
7. 一次函数的图象和性质
8. 一次函数的应用
五、平面图形
1. 点、线、角的概念
2. 直线与角
3. 三角形的基本概念
4. 三角形的分类和性质
5. 四边形的基本概念
6. 四边形的分类和性质
7. 多边形的基本概念
8. 圆的基本概念
9. 平面图形的应用
六、空间图形
1. 空间图形的基本概念
2. 空间图形的展开与折叠
3. 空间图形的表面积
4. 空间图形的体积
5. 空间图形的应用
七、统计与概率
1. 统计的基本概念
2. 统计图表的绘制和分析
3. 概率的基本概念
4. 概率的计算及应用
这些是中考数学的主要知识点,考生们在备考时应该重点掌握这些知识点。
希望大家能够认真复习,做到心中有数,考出好成绩!。
初三数学常考知识点一、实数与代数1.有理数:整数、分数、相反数、绝对值、有理数的乘方、平方根、算术平方根等。
2.实数:实数的定义、实数的分类、实数的性质、实数的运算等。
3.代数式:代数式的定义、代数式的分类、代数式的运算等。
4.一元一次方程:一元一次方程的定义、一元一次方程的解法、一元一次方程的应用等。
5.不等式:不等式的定义、不等式的性质、不等式的解法、不等式的应用等。
6.二元一次方程组:二元一次方程组的定义、二元一次方程组的解法、二元一次方程组的应用等。
7.点、线、面:点的定义、线的定义、面的定义、点、线、面的关系等。
8.平面几何基本概念:邻补角、对顶角、同位角、内错角、同旁内角、平行线、相交线、垂直、平行的性质等。
9.三角形:三角形的定义、三角形的分类、三角形的性质、三角形的判定、三角形的计算等。
10.四边形:四边形的定义、四边形的分类、四边形的性质、四边形的判定、四边形的计算等。
11.圆:圆的定义、圆的性质、圆的方程、圆的计算、扇形、弧、弦等。
12.空间几何:长方体、正方体、球、棱柱、棱锥等空间几何图形的性质、计算和应用。
13.一次函数:一次函数的定义、一次函数的图像、一次函数的性质、一次函数的应用等。
14.二次函数:二次函数的定义、二次函数的图像、二次函数的性质、二次函数的应用等。
15.反比例函数:反比例函数的定义、反比例函数的图像、反比例函数的性质、反比例函数的应用等。
16.函数图像:函数图像的性质、函数图像的变换、函数图像的分析等。
四、统计与概率1.统计:统计的基本概念、统计的运算、数据的收集与处理、图表的制作等。
2.概率:概率的基本概念、概率的计算、概率的应用等。
五、解决问题的方法1.方程思想:列方程、求解方程、检验解等。
2.函数思想:建立函数关系、求解函数问题等。
3.几何思想:利用几何性质、定理解决问题等。
4.数形结合思想:利用数形结合的方法解决问题等。
以上是初三数学常考的知识点,希望对你有所帮助。
2024年中考数学必背知识点(考前复习)一、整数运算1.整数的概念及表示法2.整数的四则运算规则3.整数的加法和减法性质4.整数的乘法和除法性质5.正数、负数和零的概念及性质6.整数的乘方运算二、比例与比例应用1.倍数和约数的概念及性质2.比例的概念和性质3.比例的化简和扩大4.比例的倒数和反比例5.速度与时间的关系6.相似三角形的性质与判定三、图形的认识与运动1.图形的分类和性质2.直线、线段和射线的概念3.角度的概念和性质4.平行线和垂直线的性质5.三角形和四边形的性质6.圆、直线和角的关系四、分数与分数运算1.分数的概念及表示法2.分数的基本性质与运算规则3.分数的整数和因数分解4.分数的比较和化简5.分数的加法和减法6.分数的乘法和除法五、代数与方程1.代数式的概念和运算规则2.字母代数式的化简和展开3.代数式的加法和减法运算4.代数式的乘法和除法运算5.一元一次方程的概念和解法6.平均数和代数均值不等式六、空间几何体1.空间几何体的概念与分类2.空间几何体的性质与判定3.空间几何体的表面积计算4.空间几何体的体积计算5.空间几何体的折叠和展开6.空间几何图形的投影和相似七、统计与概率1.统计图形的概念和绘制2.统计数据的集中趋势和离散程度3.简单事件和复杂事件的概念4.概率的概念和计算5.独立事件和互斥事件6.相对频率和概率的近似计算八、函数与方程1.函数的概念和性质2.函数的增减性和奇偶性判断3.一次函数和二次函数的性质4.图像的平移、翻转和缩放5.方法、方程和不等式的解法6.函数的复合和反函数以上是2024年中考数学必背知识点,希望对你的考前复习有所帮助。
记得多做题多练习,相信你一定能取得好成绩!祝你成功!。
初三数学知识点大全一、代数知识1. 整数与有理数- 整数的加法、减法、乘法、除法- 有理数的概念及其运算- 绝对值与相反数2. 代数表达式- 单项式与多项式- 合并同类项- 因式分解3. 一元一次方程与不等式- 方程的解法- 解不等式的基本原理- 实际问题的建模与求解4. 二元一次方程组- 代入法与消元法- 三元一次方程组的解法5. 函数的基本概念- 函数的定义与表示- 常见函数:一次函数、二次函数、反比例函数 - 函数的性质与图象二、几何知识1. 平面几何- 点、线、面的基本性质- 角的概念与分类- 三角形的性质与分类- 四边形的性质与计算2. 圆的基本性质- 圆的定义与性质- 圆周角与圆心角的关系- 弧长与扇形面积的计算3. 空间几何- 空间图形的基本概念- 立体图形的表面积与体积计算- 棱柱、棱锥、圆柱、圆锥的结构特征4. 相似与全等- 全等三角形的判定与性质- 相似三角形的判定与性质- 相似多边形与相似比5. 解析几何初步- 坐标系的建立与应用- 直线与曲线的方程- 点、线、面间的距离与角度计算三、概率与统计1. 统计的基本概念- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读2. 概率的初步认识- 随机事件的概率- 概率的计算方法- 条件概率与独立事件3. 随机变量与分布- 离散型随机变量及其分布- 连续型随机变量及其分布- 期望值与方差的概念四、数列与数学归纳法1. 等差数列与等比数列- 数列的概念与表示- 等差数列的通项公式与求和公式 - 等比数列的通项公式与求和公式2. 数学归纳法- 数学归纳法的原理- 证明方法与步骤- 应用数学归纳法解决实际问题五、数论基础1. 质数与合数- 质数的定义与性质- 质数的分布与筛法2. 最大公约数与最小公倍数- 最大公约数的求法- 最小公倍数的求法3. 整数的性质- 整数的分解与因式分解- 整数的奇偶性六、解题技巧与策略1. 逻辑推理与证明- 演绎推理与归纳推理- 证明的基本方法2. 解题策略- 分析法与综合法- 归纳法与反证法3. 应试技巧- 时间管理与题目顺序- 常见错误分析与应对结语:初三数学的学习不仅要求掌握基础知识点,还要求能够灵活运用这些知识解决实际问题。
2024中考数学知识点大全一、常见基础知识点:1.分数的加减乘除运算:分数的加法、减法、乘法、除法的计算方法和规律。
2.整数的加减乘除运算:整数的加法、减法、乘法、除法的计算方法和规律。
3.小数的加减乘除运算:小数的加法、减法、乘法、除法的计算方法和规律。
4.百分数与小数互化:百分数与小数的相互转化方法。
5.用比例解决问题:利用比例关系解决实际问题的方法。
6.连分数:连分数的计算和转化。
7.数值的比较:根据数的大小进行比较的方法。
8.分数及整数运算的扩展:如各种形式的加减乘除运算。
9.小数及整数运算的扩展:如各种形式的加减乘除运算。
10.有理数及其运算扩展:有理数的加法、减法、乘法、除法的计算方法和规律。
11.全体实数的分布:实数的有理数和无理数的分布情况。
12.正数、负数的加减运算:正数、负数的加法、减法运算方法和规律。
13.小数的表示和读法:小数的表示方法和相关读法。
14.整合性的应用题:综合性的数学问题解决方法。
二、图形与几何知识点:1.直线的性质:直线的定义、直线的相交关系、直线的平行关系。
2.线段的性质:线段的定义、线段的相等关系。
3.角的概念:角的定义、角的分类。
4.父子角、对顶角、同位角、内错角等概念。
5.三角形的性质:三角形的定义、三角形的分类、三角形的内角和外角性质。
6.圆的性质:圆的定义、圆的元素。
7.四边形的概念和性质:四边形的定义、四边形的分类、四边形的性质。
8.正方形、矩形、菱形和平行四边形的性质。
9.直角三角形的性质:直角三角形的定义、直角三角形的定理。
10.锐角三角形和钝角三角形的性质。
11.三角形中的角平分线和三角形的外心、内心、重心、垂心的性质。
12.周长和面积的计算:各种图形的周长和面积的计算方法。
13.体积的计算:各种立体图形的体积的计算方法。
14.直角坐标系与坐标计算:直角坐标系的基本概念和坐标计算方法。
15.平面镶嵌:平面上的几何图形的镶嵌和组合。
16.圆盘等分:平面上的圆盘等分和圆盘的中心角度的计算。
一.不为0的量。
1.分式AB中,分母B ≠0; 2.二次方程ax 2+bx +c =0(a ≠0) 3.一次函数y =kx +b (k ≠0) 4.反比例函数ky x=(k ≠0) 5.二次函数y = ax 2+bx +c =0(a ≠0)二.非负数1.│a │≥02. (a ≥0)3. a 2n ≥0(n 为自然数)三.绝对值:(0)(0)aa a a a ≥⎧=⎨-⎩<四.重要概念1. 平方根与算术平方根:如果x 2=a (a ≥0),则称x 为a 的平方根,记作:x=,其中x 的算术平方根.2. 负指数:1p p a a-= 3. 零指数:a 0=1(a ≠0)4. 科学计数法:a ×10 n (n 为整数,1≤a <10) 五.重要公式(一)幂的运算性质1.同底数幂的乘法法则: m n m n a a a +⋅= ( a ≠0,m,n 都是正数)2.幂的乘方法则:()m n mn a a = (m,n 都是正数)3.积的乘方法则:()n n n ab a b =(n 为正整数)。
4.同底数幂的除法法则: m n m n a a a -÷= (a ≠0,m 、n 都是正数,且m >n ). (二)整式的运算1.平方差公式:22()()a b a b a b +-=-2.完全平方公式:222()2a b a ab b ±=±+ (三)二次根式的运算)0,00,0)a b a b =≥≥≥>(四)一元二次方程一元二次方程ax 2+bx +c =0(a ≠0)当△=b 2-4ac ≥0时,x x 1+x 2= -b a ;x 1x 2=ca(五)二次函数抛物线的三种表达形式:一般式:y = ax 2+bx +c =0(a ≠0) 顶点式:2()y a x h k =-+ 双根式:12()()y a x x x x =--其中2b h a=-,244ac b k a -=,12x x 、为抛物线与x 轴两交点的横坐标,且此两交点间距离为12x x a -=。
(六)统计1.平均数:121()n x x x x n=++… 2.加权平均数:11221()k k x x f x f x f n =++…,其中12k f f f n +++=3.方差:222212n 1()()()s x x x x x x n⎡⎤=-+-+-⎣⎦… (七)锐角三角函数1.2. sin A =cos(90°-A ),cos A =sin(90-A ),tan A =cot(90°-A )22sin sin cos 1tan cot 1tan cos ααααααα⋅+=,=,=(八)圆1.面积2S r π=, 周长2C r π=, 弧长180n rl π=, 213602n R S lR π==扇。
2.直角三角形内切圆半径1()2r a b c =+-3.n 边形内角和:(n -2)180° 正n 边形内角:(2)180n n - 正n 边形外角=中心角=360n正n 边形的边长=R sin 180n 正n 边形的边心距= R cos 180n正n 边形面积=21180180sin cos2nR n n ,n 边形对角线条数:1(3)2n n - (九)面积1. S △=12底×高=12ab sin ∠C =12(a +b +c )r (a 、b 、c 为三角形三边,∠C 为a 、b 边夹角,r 为三角形内切圆半径)2. S □ =底×高= ab sin ∠C (a 、b 为平行四边形两临边,∠C 为a 、b 边夹角,)3. S 菱形=1l 1·l 2 (l 1、l 2为菱形两对角线长)4. S 正△=24(a 为正三角形边长)(十)平面直角坐标系1.中点坐标公式:坐标平面内两点A (x 1,x 2)、B (y 1,y 2)的中点坐标为1212,22x x y y ++⎛⎫⎪⎝⎭ 2. 两点间坐标公式:A (x 1,x 2)、B (y 1,y 2六.重要定理(一)角平分线角平分线上一点到角两边距离相等;到角两边距离相等的点在角的平分线上. (二)线段中垂线线段中垂线上一点到线段两端点距离相等,到线段两端点距离相等的点在线段中垂线上. (三)三角形1.三角形第三边大于另两边之差,小于另两边之和.2.三角形的中位线平行于三角形第三边,并等于第三边的一半.3. 三角形的一个外角等于和它不相邻的两个内角的和4.重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍。
该点叫做三角形的重心。
重心定理:D 、E 、F 分别为ABC 三边中点,则A D 、BE 、CF 交于一点G ,且AG =2GD 、BG =2GE 、CG =2GFABC DEFG(四)直角三角形1. 直角三角形的两个锐角互余2. 直角三角形斜边上的中线等于斜边的一半。
3. 直角三角形中30°所对直角边等于斜边的一半4. ∠C =90°,则a 2+b 2=c 2 (五)等腰三角形 1.等边对等角 2.“三线合一”3. 有一个角等于60°的等腰三角形是等边三角形 (六)平行四边形1.两组对边分别平行的四边形是平行四边形2.两组对角分别相等的四边形是平行四边形3.两组对边分别相等的四边 形是平行四边形4. 对角线互相平分的四边形是平行四边形5. 一组对边平行相等的四边形是平行四边形 (七)矩形1.有一个内角是直角的平行四边形叫矩形。
2.有三个角是直角的四边形是矩形3. 对角线相等的平行四边形是矩形 (八)菱形1.一组邻边相等的平行四边形是菱形。
2.四边都相等的四边形是菱形3.对角线互相垂直的平行四边形是菱形 (九)正方形正方形的四个角都是直角,四条边都相等 ,正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 (十)轴对称1.关于某条直线对称的两个图形是全等形2.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线3.两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 (十一)旋转与中心对称1.把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转。
点O 叫做旋转中心,转动的角叫做旋转角。
2.关于中心对称的两个图形是全等的3. 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分旋转与旋转角轴对称中心对称'B'A 'C 'D 'C 'A 'B 'C BADCB A O(十二)梯形与等腰梯形1.梯形的中位线平行于梯形的底边,并等于上、下两底和的一半2.等腰梯形在同一底上的两个角相等3.等腰梯形的两条对角线相等 (十三)相似形1. 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似2. 两角对应相等的两三角形相似3. 两边对应成比例且夹角相等,两三角形相似4. 三边对应成比例的两三角形相似5. 相似三角形对应边、对应高的比,对应中线的比与对应角平分线的比都等于相似比6. 相似三角形周长的比等于相似比7. 相似三角形面积的比等于相似比的平方 8.射影定理:射影定理:CB 2=BD ∙BAAC 2=AD ∙AB CD 2=AD ∙BD ''''D CBA9.位似图形:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
(十四)圆1.垂径定理:如果一条直线满足:①过圆心②垂直于弦③平分弦④平分弦所对优弧⑤平分弦所对劣弧 中的任意两条(当以①③为题设时,弦不能是直径),必满足其它三条.2. 在同圆或等圆中,如果两个圆心角、两个圆周角、两条弧、两条弦或两弦的弦心距中有一组量相等,那么它们所对应的其余各组量都相等3. 一条弧所对的圆周角等于它所对的圆心角的一半4. 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径5. 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形6. 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角7. 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线8. 切线的性质定理:如果一条直线满足:①过圆心②过切点③垂直于切线 中的任意两条,必满足第三条 9. 切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角 10. 圆的外切四边形的两组对边的和相等11. 弦切角定理 弦切角等于它所夹的弧对的圆周角12. 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等AB 切于P ,则∠CPB =∠D .切割线定理与割线定理:如果PT 切于T ,则PT 2=PA ∙PB=PC ∙PD 相交弦定理:PA ∙PB=PC ∙PDBCP13. 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等2017中考数学必背的8个知识点 知识点1:一元二次方程的基本概念 1.一元二次方程3x2+5x-2=0的常数项是-2. 2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x2-x-2=0. 知识点2:直角坐标系与点的位置 1.直角坐标系中,点A(3,0)在y 轴上。
2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A(1,1)在第一象限。
4.直角坐标系中,点A(-2,3)在第四象限。
5.直角坐标系中,点A(-2,1)在第二象限。
知识点3:已知自变量的值求函数值1.当x=2时,函数y=的值为1.2.当x=3时,函数y=的值为1.3.当x=-1时,函数y=的值为1.知识点4:基本函数的概念及性质1.函数y=-8x 是一次函数。
2.函数y=4x+1是正比例函数。
3.函数是反比例函数。
4.抛物线y=-3(x-2)2-5的开口向下。
5.抛物线y=4(x-3)2-10的对称轴是x=3.6.抛物线的顶点坐标是(1,2)。
7.反比例函数的图象在第一、三象限。
知识点5:数据的平均数中位数与众数 1.数据13,10,12,8,7的平均数是10.2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=根号3/2 。
2.sin260°+ cos260°= 1.3.2sin30°+ tan45°= 2.4.tan45°= 1.5.cos60°+ sin30°= 1. 知识点7:圆的基本性质 1.半圆或直径所对的圆周角是直角。