【K12小初高学习】高考物理大二轮复习浙江专用优选习题:专题二 能量与动量 提升训练9
- 格式:doc
- 大小:582.50 KB
- 文档页数:9
第1讲动量观点和能量观点在力学中的应用网络构建备考策略1.解决力学综合题目的关键要做好“三选择〞(1)当运动物体受到恒力作用而且又涉与时间时,一般选择用动力学方法解题。
(2)当涉与功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系解题,题目中出现相对位移时,应优先选择能量守恒定律。
(3)当涉与多个物体与时间时,一般考虑动量定理、动量守恒定律。
2.碰撞中的“三看〞和“三想〞(1)看到“弹性碰撞〞,想到“动量守恒与机械能守恒〞。
(2)看到“非弹性碰撞〞,想到“动量守恒但机械能有损失〞。
(3)看到“完全非弹性碰撞或者碰后连体〞,想到“动量守恒,机械能损失最大〞。
能量观点在力学中的应用功和功率的理解与计算【典例1】 (2019·浙江省杭州市期末)如下表述中最符合实际情况的是( ) A.某高中同学做一次引体向上的上升过程中抑制重力做功约为25 J B.将一个鸡蛋从胸前举过头顶,抑制重力做功约为10 JC.篮球从2 m 高处自由下落到地面的过程中,重力做功的功率约为20 WD.某高中同学步行上楼时抑制重力做功的功率约为10 kW解析 高中的同学质量约60 kg ,在一次引体向上的过程中向上的位移约0.5 m ,如此抑制重力做的功W =mgh =60×10×0.5 J=300 J ,故A 错误;一个鸡蛋的质量约为50 g =0.05 kg ,将一个鸡蛋从胸前举过头顶,位移约0.4 m ,抑制重力做功约为W =mgh =0.05×10×0.4 J=0.2 J ,故B 错误;篮球的质量约0.6 kg ,篮球从2 m 高处自由下落到地面的过程中,重力做的功W =mgh =0.6×10×2 J=12 J ,篮球下落的时间t =2h g=2×210s≈0.63 s,功率约为P -=W t =120.63W≈20 W,故C 正确;高中的同学质量约60 kg ,楼层的高度约为3 m ,如此高中同学步行上楼时,每秒钟向上的高度约为0.3 m(两个台阶),每秒钟上楼抑制重力做功W=mgh =50×10×0.3 J=150 J ,功率P -=W t =1501W≈150 W,故D 错误。
提升训练8机械能守恒和能量守恒定律1.海洋能是一种蕴藏量极大的可再生能源,具有广阔的应用前景。
下列能源不属于海洋能的是()A.潮汐能B.波浪能C.太阳能D.海流能2.如图所示,具有一定初速度的物块,沿倾角为30°的粗糙斜面向上运动的过程中,受一个恒定的沿斜面向上的拉力F作用,这时物块的加速度大小为4 m/s2,方向沿斜面向下,那么,在物块向上运动的过程中,下列说法正确的是()A.物块的机械能一定增加B.物块的机械能一定减小C.物块的机械能可能不变D.无法确定3.市面上出售一种装有太阳能电扇的帽子(如图所示)。
在阳光的照射下,小电扇快速转动,能给炎热的夏季带来一丝凉爽。
该装置的能量转化情况是()A.太阳能→电能→机械能B.太阳能→机械能→电能C.电能→太阳能→机械能D.机械能→太阳能→电能4.物体做自由落体运动,E k表示动能,E p表示势能,h表示下落的距离,以水平地面为零势能面,下列所示图象中,能正确反映各物理量之间的关系的是()5.如图所示,竖直放置的等螺距螺线管高为h,该螺线管是用长为l的硬质直管(内径远小于h)弯制而成。
一光滑小球从上端管口由静止释放,关于小球的运动,下列说法正确的是()A.小球到达下端管口时的速度大小与l有关B.小球到达下端管口时重力的功率为mgC.小球到达下端的时间为D.小球在运动过程中受管道的作用力大小不变6.如图所示,一个人把质量为m的石块,从距地面高为h处,以初速度v0斜向上抛出。
以水平地面为参考平面,不计空气阻力,重力加速度为g,则()A.石块离开手的时刻机械能为B.石块刚落地的时刻动能为mghC.人对石块做的功是+mghD.人对石块做的功是7.如图所示,质量为m的物体(可视为质点)以某一速度从A点冲上倾角为30°的固定斜面,其运动的加速度为g,此物体在斜面上上升的最大高度为h,则在这个过程中物体()A.重力势能增加了mghB.动能损失了mghC.克服摩擦力做功mghD.机械能损失mgh8.2016年巴西里约奥运会上,中国选手邓薇以262 kg(抓举115 kg,挺举147 kg)的总成绩打破奥运会纪录、世界纪录。
功和功率 功能关系专题定位 1.掌握功、功率相关的分析与计算方法;2.深刻理解功能关系;3.综合应用动能定理、机械能守恒定律和能量守恒定律,结合动力学方法解决多运动过程问题;4.掌握动量定理和动量守恒定律;5.综合应用动量和能量观点解决复杂问题.第4讲 功和功率 功能关系[相关知识链接] 1.功的计算(1)单个恒力的功W =Fl cos α (2)合力为恒力的功①先求合力,再求W =F 合l cos α ②W =W 1+W 2+… 2.功率的计算(1)P =W t,适用于计算平均功率;(2)P =Fv ,若v 为瞬时速度,P 为瞬时功率,若v 为平均速度,P 为平均功率. 注意:力F 与速度v 方向不在同一直线上时功率为Fv cos θ. (3)机车启动问题[规律方法提炼]变力功的计算(1)若力大小恒定,且方向始终沿轨迹切线方向,可用力的大小跟路程的乘积计算(2)力的方向不变,大小随位移线性变化可用W=F l cosα计算(3)已知F-l图象,功的大小等于“面积”(4)一般变力只能用动能定理求解例1(2019·嘉、丽3月联考)如图所示,篮球运动员平筐扣篮,起跳后头顶与篮筐齐平.若图中篮筐距地高度2.9m,球员竖直起跳,则其平筐扣篮过程中克服重力所做的功及离地时重力瞬时功率约为( )A.900J,-2000W B.900J,-4000WC.500J,-1000W D.2000J,-4000W答案 B解析篮球运动员的身高约为1.8m,则跳起的高度h=2.9m-1.8m=1.1m篮球运动员的体重约为mg=800N,则起跳过程中克服重力做的功W=mgh=880J≈900J起跳时的速度为v,则根据位移速度关系可得:v2=2gh,解得v=2gh≈4.7m/s离地时重力瞬时功率约为P=-mgv=-3760W≈-4000W,故B正确,A、C、D错误.拓展训练1(2019·山东烟台市第一学期期末)把两个相同的小球从离地面相同高度处,以相同大小的初速度v分别沿竖直向上和水平向右方向抛出,不计空气阻力.则下列说法中正确的是( )A.两小球落地时速度相同B.两小球落地时,重力的瞬时功率相同C.从小球抛出到落地,重力对两小球做的功相等D.从小球抛出到落地,重力对两小球做功的平均功率相等答案 C拓展训练2 (2019·浙南名校联盟高三期末)袋鼠跳是一项很有趣的运动.如图所示,一位质量m =60kg 的老师参加袋鼠跳游戏,全程10m ,假设该老师从起点到终点用了相同的10跳,每一次跳起后,重心上升最大高度为h =0.2m .忽略空气阻力,下列说法正确的是( )A .该老师起跳时,地面对该老师做正功B .该老师每跳跃一次克服重力做功的功率约为300WC .该老师从起点到终点的时间可能是7sD .该老师从起点到终点的时间可能是4s 答案 C例2 (多选)发动机额定功率为P 0的汽车在水平路面上从静止开始先匀加速启动,最后达到最大速度并做匀速直线运动,已知汽车所受路面阻力恒为F f ,汽车刚开始启动时的牵引力和加速度分别为F 0和a 0,如图所示描绘的是汽车在这一过程中速度随时间以及加速度、牵引力和功率随速度变化的图象,其中正确的是( )答案 AC解析 汽车由静止开始匀加速启动时,a 一定,根据v =at 知v 增大,由F =ma +F f 知F 一定,根据P =Fv 知v 均匀增大,功率P 也均匀增大,达到P 额后,功率保持不变,v 继续增大,所以F =Pv 减小,a =F -F f m 减小,当F =F f 时,a =0,v m =PF f,此后汽车做匀速运动,故A 、C 正确.[相关知识链接]1.表达式:W 总=E k2-E k1.2.五点说明(1)W 总为物体在运动过程中所受各力做功的代数和.(2)动能增量E k2-E k1一定是物体在末、初两状态的动能之差. (3)动能定理既适用于直线运动,也适用于曲线运动. (4)动能定理既适用于恒力做功,也适用于变力做功.(5)力可以是各种性质的力,既可以同时作用,也可以分阶段作用. [规律方法提炼] 1.基本思路(1)确定研究对象和物理过程;(2)进行运动分析和受力分析,确定初、末速度和各力做功情况,利用动能定理全过程或者分过程列式. 2.“两点一过程”(1)“两点”:指初、末状态及对应的动能E k1、E k2.(2)“一过程”:指从初状态到末状态的运动过程及合力做的功W 合. 3.在功能关系中的应用(1)对于物体运动过程中不涉及加速度和时间,而涉及力和位移、速度的问题时,一般选择动能定理,尤其是曲线运动、多过程的直线运动等.(2)动能定理也是一种功能关系,即合外力做的功(总功)与动能变化量一一对应.例3 如图所示为一滑梯的实物图,滑梯的斜面段长度L =5.0m ,高度h =3.0m ,为保证小朋友的安全,在水平地面上铺设了安全地垫.水平段与斜面段平滑连接,小朋友在连接处速度大小不变.某小朋友从滑梯顶端由静止开始滑下,经斜面底端后水平滑行一段距离,停在水平地垫上.已知小朋友质量为m =20kg ,小朋友在斜面上受到的平均阻力F f1=88N ,在水平段受到的平均阻力F f2=100N .不计空气阻力,取重力加速度g =10m/s 2.求:(1)小朋友在斜面顶端滑下的过程中克服摩擦力做的功; (2)小朋友滑到斜面底端时的速度v 的大小;(3)为使小朋友不滑出水平地垫,地垫的长度x 至少多长. 答案 (1)440J (2)4m/s (3)1.6m解析 (1)小朋友在斜面滑下的过程中克服摩擦力做的功为:W f1=F f1L =88×5J=440J (2)小朋友在斜面上运动,由动能定理得mgh -W f1=12mv 2代入数据解得:v =4m/s(3)小朋友在水平地垫上运动的过程,由动能定理得: -F f2x =0-12mv 2解得:x =1.6m.拓展训练3 (多选)(2019·宁夏银川市质检)如图所示为一滑草场.某条滑道由上、下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin37°=0.6,cos37°=0.8).则( )A .动摩擦因数μ=67B .载人滑草车最大速度为2gh 7C .载人滑草车克服摩擦力做功为mghD .载人滑草车在下段滑道上的加速度大小为35g答案 AB解析 对整段过程,由动能定理知mg ·2h -μmg cos45°·h sin45°-μmg cos37°·hsin37°=0解得μ=67,载人滑草车克服摩擦力做功为mg ·2h ,故A 正确,C 错误;滑草车在下段滑道时,对其受力分析如图: 沿斜面方向:F 合=mg sin37°-μF N 垂直斜面方向:F N =mg cos37°联立知F 合=-335mg ,负号表示合力方向沿斜面向上知滑草车在下段滑道做匀减速直线运动 加速度大小为a =|F 合|m =335g ,故D 错误.由以上分析知滑草车到达两段滑道交接处时速度最大,由动能定理知:mgh -μmg cos45°hsin45°=12mv m 2解得v m =2gh7,故B 正确. 拓展训练4 在赛车场上,为了安全起见,车道外围都固定上废旧轮胎作为围栏,当车碰撞围栏时起缓冲器作用.为了检验废旧轮胎的缓冲效果,在一次模拟实验中用轻弹簧来代替废旧轮胎,实验情景如图所示,水平放置的轻弹簧左侧固定于墙上,处于自然状态,开始赛车在A 处且处于静止状态,距弹簧自由端的距离L 1=1m .当赛车启动时,产生水平向左的恒为F =24N 的牵引力使赛车向左匀加速前进,当赛车接触轻弹簧的瞬间立即关闭发动机,赛车继续压缩轻弹簧,最后被弹回到B 处停下.已知赛车的质量m =2kg ,A 、B 之间的距离L 2=3m ,赛车被弹回的过程中离开弹簧时的速度大小v =4m/s ,方向水平向右.取g =10 m/s 2.求:(1)赛车和地面间的动摩擦因数; (2)弹簧被压缩的最大距离. 答案 (1)0.2 (2)0.5m解析 (1)从赛车离开弹簧到B 处停下, 由动能定理得-μmg (L 1+L 2)=0-12mv 2解得μ=0.2(2)设轻弹簧被压缩的最大距离为L ,从赛车加速到离开弹簧,由动能定理得FL 1-μmg (L 1+2L )=12mv 2-0解得L =0.5m.1.功能关系的理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化可以通过做功来实现. (2)功是能量转化的量度.①重力做功是重力势能改变的量度,W G =-ΔE p . ②弹簧弹力做功是弹性势能改变的量度,W 弹=-ΔE p . ③电场力做功是电势能改变的量度,W =-ΔE p . ④合外力做功是动能改变的量度.⑤除重力或弹簧弹力外的其他力做功是物体机械能改变的量度.⑥一对滑动摩擦力做功是系统内能改变的量度. 2.功能关系的应用(1)分析物体运动过程中受哪些力,有哪些力做功,有哪些形式的能发生变化 (2)根据自己习惯用动能定理或能量守恒定律理解或计算例4 (2017·全国卷Ⅲ·16)如图,一质量为m ,长度为l 的均匀柔软细绳PQ 竖直悬挂.用外力将绳的下端Q 缓慢地竖直向上拉起至M 点,M 点与绳的上端P 相距13l .重力加速度大小为g .在此过程中,外力做的功为( )A.19mglB.16mglC.13mglD.12mgl 答案 A解析 由题意可知,PM 段细绳的机械能不变,MQ 段细绳的重心升高了l6,则重力势能增加ΔE p=23mg ·l 6=19mgl ,由功能关系可知,在此过程中,外力做的功为W =19mgl ,故选项A 正确,B 、C 、D 错误.拓展训练5 (2019·超级全能生2月联考)“竹蜻蜓”是一种儿童玩具,双手用力搓柄可使“竹蜻蜓”向上升,某次实验,“竹蜻蜓”离手后沿直线上升到最高点,在该过程中( )A .空气对“竹蜻蜓”的作用力大于“竹蜻蜓”对空气的作用力B .“竹蜻蜓”的动能一直增加C .“竹蜻蜓”的重力势能一直增加D .“竹蜻蜓”的机械能守恒 答案 C解析 根据牛顿第三定律可知,空气对“竹蜻蜓”的力一定等于“竹蜻蜓”对空气的力,A 错误;“竹蜻蜓”离手后沿直线上升到最高点,从运动描述可知它是先加速后减速,所以动能先增加后减少,高度升高,重力势能一直增加,B 错误,C 正确;空气对“竹蜻蜓”做功,故“竹蜻蜓”的机械能不守恒,D 错误.拓展训练6 (2019·福建龙岩市3月质量检查)如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与一根轻质弹性橡皮绳相连,橡皮绳的另一端固定在地面上的A点,橡皮绳竖直且处于原长h,让圆环沿杆从静止开始下滑,滑到杆的底端时速度为零.则在圆环下滑过程中(整个过程中橡皮绳的形变始终处于弹性限度内),下列说法中正确的是( )A.圆环的机械能守恒B.圆环的机械能先增大后减小C.圆环滑到杆的底端时机械能减少了mghD.橡皮绳再次恰好伸直时圆环动能最大答案 C解析圆环沿光滑杆滑下,滑到杆的底端的过程中有两个力对圆环做功,即环的重力和橡皮绳的拉力,所以圆环的机械能不守恒,如果把圆环和橡皮绳组成的系统作为研究对象,则系统的机械能守恒,因为橡皮绳的弹性势能先不变再增大,所以圆环的机械能先不变后减小,故A、B错误;圆环的机械能减少了mgh,故C正确;在圆环下滑过程中从开始下滑到橡皮绳再次到达原长时,动能一直增大,但不是最大,沿杆方向合力为零的时刻,圆环的速度最大,故D错误.1.做好两个分析(1)综合受力分析、运动过程分析,由牛顿运动定律做好动力学分析.(2)分析各力做功情况,做好能量的转化与守恒的分析,由此把握运动各阶段的运动性质,各连接点、临界点的力学特征、运动特征和能量特征.2.做好四个选择(1)当物体受到恒力作用发生运动状态的改变而且又涉及时间时,一般选择用动力学方法解题;(2)当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系或能量守恒定律解题,题目中出现相对位移时,应优先选择能量守恒定律;(3)当涉及细节并要求分析力时,一般选择牛顿运动定律,对某一时刻进行分析时选择牛顿第二定律求解;(4)复杂问题的分析一般需选择能量的观点、运动与力的观点综合解题.例5(2019·浙南名校联盟高三期末)儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手配合能力.某弹珠游戏可简化成如图所示的竖直平面内OABCD透明玻璃管道,管道的半径较小.为研究方便建立平面直角坐标系,O 点为抛物口,下方接一满足方程y =59x2的光滑抛物线形状管道OA ;AB 、BC 是半径相同的光滑圆弧管道,CD 是动摩擦因数μ=0.8的粗糙直管道;各部分管道在连接处均相切.A 、B 、C 、D 的横坐标分别为x A =1.20m 、x B =2.00m 、x C =2.65m 、x D =3.40m .已知,弹珠质量m =100g ,直径略小于管道内径.E 为BC 管道的最高点,在D 处有一反弹膜能无能量损失的反弹弹珠,sin37°=0.6,sin53°=0.8,g 取10m/s 2,求:(1)若要使弹珠不与管道OA 触碰,在O 点抛射速度v 0应该多大;(2)若要使弹珠第一次到达E 点时对轨道压力等于弹珠重力的3倍,在O 点抛射速度v 0应该多大;(3)游戏设置3次通过E 点获得最高分,若要获得最高分在O 点抛射速度v 0的范围. 答案 见解析解析 (1)由y =59x 2得:A 点坐标(1.20m,0.80m)由平抛运动规律:x A =v 0t ,y A =12gt 2,v Ay =gt ,v A =v 02+v Ay 代入数据,求得t =0.4s ,v 0=3m/s ,v Ay =4 m/s ,v A =5m/s ;(2)由平抛运动速度关系,可得θ=53°,求得AB 、BC 圆弧的半径R =0.5m对E 点:3mg +mg =m v E 2R,求得:v E =25m/s对弹球由O 点到E 点的过程由动能定理得:mgy A -mgR (1-cos53°)=12mv E 2-12mv 02求得:v 0=22m/s ;(3)sin α=2.65-2.00-0.400.5=0.5,α=30°,CD 与水平面的夹角也为α=30°(可不求)设3次通过E 点的速度最小值为v 1,有:mgy A -mgR (1-cos53°)-2μmgL CD cos30°=0-12mv 12,求得:v 1=23m/s设3次通过E 点的速度最大值为v 2,有:mgy A -mgR (1-cos53°)-4μmgL CD cos30°=0-12mv 22,求得:v 2=6m/s考虑2次经过E 后不从O 点离开,有:-2μmgL CD cos30°=0-12mv 32,求得:v 3=26m/s因v 2>v 3,所以23m/s<v 0<26m/s拓展训练7 (2019·宁波市3月模拟)如图所示,竖直面内用光滑钢管弯成的“9”字形固定轨道与水平桌面的右端相接,“9”字全高H =0.8m ,“9”字上半部分四分之三圆弧半径为R =0.2m ,钢管的内径大小忽略不计.桌面左端固定轻质弹簧,开始弹簧处于锁定状态,其右端处于A 位置,此时弹簧具有的弹性势能为E p =2.16J ,将质量m =0.1kg 的可看作质点的小球放在A 位置与弹簧相接触,解除弹簧锁定后,小球从A 被弹出后经过B 点进入“9”字形轨道最后从D 点水平抛出,AB 间水平距离为L =1.2m ,小球与桌面间的动摩擦因数为μ=0.3,重力加速度g 取10m/s 2,不计空气阻力,假设水平地面足够长,试求:(1)弹簧解除锁定后,小球到B 点时的速度大小; (2)小球运动到轨道最高点C 时对轨道的作用力;(3)若小球从“9”字形轨道D 点水平抛出后,第一次与地面碰撞前速度方向与水平地面倾角θ=45°,每一次与地面碰撞过程中小球水平速度分量保持不变,小球弹起来的竖直速度分量减小为碰撞前的一半,直到最后沿着水平地面滚动,求小球开始沿地面滚动的位置与D 点的水平距离以及碰撞过程中小球损失的机械能. 答案 (1)6m/s (2)9N ,方向竖直向上 (3)8.4m 1.4J解析 (1)设小球到B 点时的速度为v 0,弹簧解除锁定后,由动能定理得E p -μmgL =12mv 02 v 0=6m/s(2)对小球由B 到C 运动,由动能定理得: -mgH =12mv C 2-12mv 02在C 点:F N +mg =m v C 2R解得:F N =9N由牛顿第三定律得:小球对轨道的作用力大小为9N ,方向竖直向上(3)小球由B 到D 运动:-mg (H -2R )=12mv D 2-12mv 02解得:v D =28m/s 第1次到达地面时:v y =v Dtan45°,v y =v D =28m/s竖直方向有:2gh =v y 2,解得:h =1.4m.小球离开D 点直到最后在水平地面做直线运动,在竖直方向运动的总时间:t 总=v y g +2×[12×v y g +(12)2×v y g +(12)3×v yg+…]代入:t 总≈2810s +2×2810×121-12s =357s小球离开D 点直到最后在水平地面做直线运动,在水平方向运动的位移大小:x =v D t 总=8.4m损失的机械能为:ΔE =mgh ΔE =mgh =1.4J.专题强化练基础题组1.(多选)(2019·温州市联考)一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离.假定空气阻力可忽略,运动员可视为质点,下列说法正确的是( )A .运动员到达最低点前重力势能始终减小B .蹦极绳张紧后的下落过程中,弹力做负功,弹性势能增加C .蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D .蹦极过程中,重力势能的改变与重力势能零点的选取有关 答案 ABC解析 运动员到达最低点前重力始终做正功,重力势能始终减小,故A 正确;蹦极绳张紧后的下落过程中,弹力方向与位移方向始终相反,弹力做负功,弹性势能增加,故B 正确;以运动员、地球和蹦极绳所组成的系统,只有重力和弹力做功,系统的机械能守恒,故C 正确;重力势能的改变与重力做功有关,取决于初末位置的高度差,与重力势能零点的选取无关,故D 错误.2.(2019·诸暨市期末)人们用一块弹性毯子将小孩竖直抛起,再保持弹性毯子水平,接住小孩,这是阿拉斯加当地人的一种娱乐方式.若不计空气阻力,下列说法中正确的是( ) A.用毯子将小孩上抛,毯子对小孩做正功,小孩机械能增加B.小孩在空中上升时处于超重状态,下落过程处于失重状态C.小孩由最高点下落,一接触到弹性毯子就立刻做减速运动D.小孩由最高点下落至速度为零的过程中,小孩机械能守恒答案 A3.(2019·金华十校高三期末)“反向蹦极”是蹦极运动的一种类型,如图所示,将弹性绳拉长后固定在运动员身上,并通过其他力作用使运动员停留在地面上,当撤去其他力后,运动员从A点被“发射”出去冲向高空,当上升到B点时弹性绳恢复原长,运动员继续上升到最高点C,若运动员始终沿竖直方向运动并视为质点,忽略弹性绳质量与空气阻力.下列说法正确的是( )A.运动员在A点时弹性绳的弹性势能最小B.运动员在B点时的动能最大C.运动员在C点时的加速度大小为0D.运动员从A点运动到B点的过程,弹性绳的弹性势能减小量大于运动员重力势能的增加量答案 D4.(2019·广东深圳市第一次调研)在水平地面上方某处,把质量相同的P、Q两小球以相同速率沿竖直方向抛出,P向上,Q向下,不计空气阻力,两球从抛出到落地的过程中( ) A.P球重力做功较多B.两球重力的平均功率相等C.落地前瞬间,P球重力的瞬时功率较大D.落地前瞬间,两球重力的瞬时功率相等答案 D解析根据W=mgh可知两球重力做功相同,选项A错误;上抛的物体运动时间长,根据P=W t 可知两球重力的平均功率不相等,选项B错误;根据机械能守恒定律可知12mv2=mgh+12mv02,两球落地的速度相同,根据P=mgv可知落地前瞬间,两球重力的瞬时功率相等,选项C错误,D正确.5.(2019·绍兴市3月选考)一高度为d 的仓库起火,现需要利用仓库前方固定在地面上的消防水炮给它灭火.如图所示,水炮与仓库的距离为d ,出水口的横截面积为S ,喷水方向可自由调节、功率也可以变化.火势最猛的那层楼窗户上、下边缘离地高度分别为0.75d 和0.25d ,(要使灭火效果最好)要求水喷入时的方向与窗户面垂直.已知水炮的效率为η,水的密度为ρ,重力加速度为g ,不计空气阻力,忽略水炮离地高度.下列说法正确的是( )A .若水从窗户下边缘进入,则进入时的速度大小为gdB .若水从窗户上边缘进入,则进入时的速度大小为2gdC .若水从窗户的正中间进入,则此时的水炮功率最小D .满足水从窗户进入的水炮功率最小值为12ρS (gd )32答案 C解析 将水的运动逆向看作是平抛运动,上边缘进入,由d =v 1t,0.75d =12gt 2,得v 1=32gd . 下边缘进入d =v 2t,0.25d =12gt 2,得v 2=2gd ,故A 、B 错误.设从h 处进入,由h =12gt2及d =v x t ,v y 2=2gh .则初速度v 02=v x 2+v y 2=gd 22h +2gh ,当gd 22h =2gh ,即h =d2时v 0有最小值v 0=gd ,功率最小;由F ·Δt =ρv 0S Δtv 0,得F =ρSv 02,功率P =Fv 0=ρSv 03=ρS (gd )32,故C 正确,D 错误.6.(2019·绍兴诸暨市期末) 某三层书架放在1m 高的桌面上,书架的层高均为30cm ,隔板厚度不计.假设每本书质量为1kg ,高度为20cm ,每层书架可竖直摆放10本书,一开始所有书全部都平铺在水平地面上.现将书搬到书架上并竖直放满书架,需要做的功为(g 取10m/s 2) ( )A .435JB .420JC .120JD .390J 答案 B解析 放满书的三层书架,三层书的重心分别上升1.1m ,1.4m,1.7m ,由W =mg (h 1+h 2+h 3)=420J.7.放置于水平地面上的物体在水平恒力F 作用下,以不同的速度沿着力F 的方向匀速运动了距离L .第一次的速度为v 1,恒力F 做的功为W 1,功率为P 1;第二次的速度为v 2,恒力F 做的功为W 2,功率为P 2.已知v 1>v 2,则下列判断正确的是( ) A .W 1>W 2,P 1=P 2 B .W 1>W 2,P 1>P 2 C .W 1=W 2,P 1=P 2 D .W 1=W 2,P 1>P 2答案 D解析 根据W =FL 可知,两次做功相同则W 1=W 2;由于v 1>v 2,所以第一次做功时间短,根据P =Wt可得P 1>P 2,选项D 正确. 8.(2019·天津市和平区上学期期末)如图所示,两个半径不同、内壁光滑的半圆轨道,固定于地面,两轨道的球心O 、O ′在同一水平高度上,一小球先后从与轨道球心在同一高度上的A 、B 两点从静止开始滑下,以轨道球心所在位置为零势能面,通过最低点时,下列说法中不正确的是( )A .小球对轨道的压力是相同的B .小球的速度相同C .小球向心加速度是相同的D .小球的机械能相同 答案 B解析 设小球通过最低点的速度大小为v ,半圆的半径为R .在落到最低点的过程中.根据动能定理得mgR =12mv 2-0,解得v =2gR ,可知R 越大v 越大,故B 错误;在最低点,竖直方向上的合力提供向心力,由牛顿第二定律有F N -mg =m v 2R,联立解得F N =3mg ,可知轨道对小球的支持力与半圆轨道的半径无关,由牛顿第三定律可知小球对两轨道的压力大小圴为重力的3倍,方向均竖直向下,故A 正确;在最低点,a =F N -mgm=2g ,方向竖直向上,故C 正确;两球下滑都只有重力做功,满足机械能守恒,故D 正确.9.一名外卖送餐员用电动自行车沿平直公路行驶给客户送餐,中途因电瓶“没电”,只能改用脚蹬车以5m/s 的速度匀速前行,骑行过程中所受阻力大小恒为车和人总重力的0.02倍(取g =10 m/s 2),该送餐员骑电动自行车以5m/s 的速度匀速前行过程做功的功率最接近( )A .10WB .100WC .1kWD .10kW答案 B解析 设送餐员和车的总质量为100kg ,匀速行驶时的速率为5m/s ,匀速行驶时的牵引力与阻力大小相等,F =0.02mg =20N ,则送餐员骑电动自行车匀速行驶时的功率为P =Fv = 100W ,故B 正确. 能力题组10.(2018·全国卷Ⅰ·18)如图,abc 是竖直面内的光滑固定轨道,ab 水平,长度为2R ;bc 是半径为R 的四分之一圆弧,与ab 相切于b 点.一质量为m 的小球,始终受到与重力大小相等的水平外力的作用,自a 点处从静止开始向右运动.重力加速度大小为g .小球从a 点开始运动到其轨迹最高点,机械能的增量为( )A .2mgRB .4mgRC .5mgRD .6mgR答案 C解析 小球从a 运动到c ,根据动能定理,得F ·3R -mgR =12mv 12,又F =mg ,故v 1=2gR ,小球离开c 点在竖直方向做竖直上抛运动,水平方向做初速度为零的匀加速直线运动.且水平方向与竖直方向的加速度大小相等,都为g ,故小球从c 点到最高点所用的时间t =v 1g=2R g ,水平位移x =12gt 2=2R , 根据功能关系,小球从a 点到轨迹最高点机械能的增量为力F 做的功,即ΔE =F ·(2R +R +x )=5mgR .11.(2019·宁波市“十校联考”)如图所示,一水平圆盘绕过圆心的竖直轴转动,圆盘半径R =0.2m ,圆盘边缘有一质量m =1kg 的小滑块.当圆盘转动的角速度达到某一数值时,滑块恰从圆盘边缘A 沿过渡圆管滑落,进入轨道ABC ,AB 粗糙,BCD 光滑,CD 面足够长且离地面高为h ′=0.4m ,经C 点后突然给滑块施加水平向右的恒力F =1033N .已知AB 段斜面倾角为60°,BC 段斜面倾角为30°,小滑块与圆盘的动摩擦因数μ=0.5,A 点离B 点所在水平面的高度h =1.2m ,运动到B 点时的速度为3m/s ,滑块从A 至C 运动过程中始终未脱离轨道,不计在过渡圆管处和B 点的机械能损失,最大静摩擦力近似等于滑动摩擦力,重力加速度g 取10 m/s 2,求:(1)滑出A 点时,圆盘转动的角速度ω; (2)小滑块在从A 到B 时,摩擦力做的功; (3)小滑块在CD 面上的落点距C 点的水平距离. 答案 (1)5rad/s (2)-8J (3)315m 解析 (1)滑块在圆盘上做圆周运动时,静摩擦力充当向心力, 根据牛顿第二定律得:μmg =m ω2R , 代入数据解得:ω=5rad/s (2)v A =ωR =5×0.2m/s=1 m/s ,从A 到B 的运动过程由动能定理:mgh +W f =12mv B 2-12mv A 2,解得W f =-8J(3)-mgh ′=12mv C 2-12mv B 2解得v C =1m/s对小滑块经C 点后受力分析可知,F 合=2033N ,则合加速度大小为a =2033m/s 2,方向与C点速度方向垂直v y =v C sin30°,小滑块经C 点到落地的过程,用时t =2v yg,小滑块在C 点时,水平方向的速度v x =v C cos30°,水平方向加速度a =F m ,小滑块在CD 面上的落点距C 点的水平距离x =v x t +12at 2,联立解得x=315m. 12.(2019·诸暨市期末)如图所示是滑块翻越碰撞游戏的示意图.弹射装置将滑块以一定初速度从A 点弹出,滑块沿粗糙桌面运动,从B 点进入竖直光滑圆轨道,沿圆轨道运动一周后离开轨道,向桌面边缘的C 点运动.滑块在C 点水平抛出,恰好在D 点沿DE 方向进入光滑倾斜轨道.固定在轨道底端的弹性板EF 与轨道垂直,滑块与弹性板碰撞后反弹,碰撞过程中有能量损失.已知可视为质点的滑块质量m =0.1kg ,滑块与桌面间的动摩擦因数μ=0.2,桌面AB 和桌面BC 长度分别为x 1=2.25m 与x 2=1.0m ,C 、D 两点高度差h =0.2m ,轨道的倾角θ为30°,DE 长度L =0.9m ,每次滑块与弹性板碰撞后速度大小变为碰前的0.6倍,重力加。
功的理解与计算【典题1】(2017浙江慈溪调研)如图所示的°、b、c、〃中,质量为加的物体甲受到相同的恒力F的作用,在力F作用下使物体甲在水平方向移动相同的位移。
“表示物体甲与水平面间的动摩擦因数,乙是随物体甲一起运动的小物块,比较物体甲移动的过程中力F对甲所做的功的大小(AW最小B.Wd最大C.WpWcD・一样大甲a.”=0答案:D解析:依据功的定义式W=FlcosO,在本题的四种情况下,F、I、0均相同,这样四种情况下力F所做的功一样大,故选项D正确。
解题技法1.判断力是否做功及做功正负的方法(1)看力F的方向与位移Z的方向的夹角a。
(2)看力F的方向与速度u的方向的夹角%•恒力做功的计算方法3 •合力做功的计算方法方法一:先求合力F合,再用W合二F合Zcosa求功。
方法二:先求各个力做的功可1,巴,晒,…再应用W合二W1+W2+W3+…求合力做的功。
4•变力做功的计算方法将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数个无穷小的位移上的恒力所做功的代数和。
此法在中学阶段常应用于求解大小不变、方向改变的变力做功问题。
当堂练1 (2017浙江建德学考模拟)运动员跳伞将经历加速下降和减速下降两个过程,将运动员和伞看成一个系统,在这两个过程中,下列说法正确的是()A.阻力始终对系统做负功B.系统受到的合外力始终向下C.合外力始终对系统做正功关闭在这两个过程中,阻力始终对系统做负功'选项A正确。
加速下降时'系统受到的合外力向下'合外力对系统做正功;减速运动时'系统受到的合外力向上,合外力对系统做负功'选项B、C错误。
在任意相等时间内,系统下降关闭功率的理解与计算【典题2】(2017浙江“七彩阳光”新高考研究联盟期初联考)周末放学了,小黄高兴地骑着电动自行车沿平直公路回家,中途因电瓶“没电只能改用脚蹬车以5 m/s的速度匀速前行,骑行过程中所受1阻力恒为车和人总重力的丽,重力加速度g取10 m/s2o根据估算,用脚蹬车时,小黄骑此电动车做功的功率最接近()A.10WB.100WC.l kWD.lOkW答案:B解析:车和人总质量大约为100 kg,1则Ff二丽G=20 N,P=Fv=F f v=100 Wo解题技法计算瞬时功率时应明确是哪个力在哪个时刻(或状态) 的功率。
第2讲 动量和能量观点的应用[历次选考考情分析]考点一 动量与冲量有关概念与规律的辨析1.动量定理(1)冲量:力与力的作用时间的乘积叫做力的冲量,即I =Ft ,冲量是矢量,其方向与力的方向相同,单位是N·s.(2)物理意义:动量定理表示了合外力的冲量与动量变化间的因果关系;冲量是物体动量变化的原因,动量发生改变是物体合外力的冲量不为零的结果.(3)矢量性:动量定理的表达式是矢量式,应用动量定理时需要规定正方向. 2.动量定理的应用(1)应用I =Δp 求变力的冲量:若作用在物体上的作用力是变力,不能直接用Ft 求变力的冲量,但可求物体动量的变化Δp ,等效代换变力的冲量I .(2)应用Δp =Ft 求恒力作用下物体的动量变化:若作用在物体上的作用力是恒力,可求该力的冲量Ft ,等效代换动量的变化. 3.动量守恒的适用条件(1)系统不受外力或所受外力的合力为零,不是系统内每个物体所受的合力都为零,更不能认为系统处于平衡状态.(2)近似适用条件:系统内各物体间相互作用的内力远大于它所受到的外力. (3)如果系统在某一方向上所受外力的合力为零,则系统在该方向上动量守恒. 4.动量守恒的表达式(1)m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(2)Δp 1=-Δp 2,相互作用的两个物体动量的增量等大反向. (3)Δp =0,系统总动量的增量为零.1.[动量定理的定性分析](多选)篮球运动员通常要伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前,如图1所示,下列说法正确的是( )图1A .球对手的冲量减小B .球对人的冲击力减小C .球的动量变化量不变D .球的动能变化量减小答案 BC解析 先伸出两臂迎接,手接触到球后,两臂随球引至胸前,这样可以增加球与手接触的时间,根据动量定理得:-Ft =0-mv 得F =mvt,当时间增大时,作用力减小,而冲量和动量变化量、动能变化量都不变,所以B 、C 正确.2.[动量定理的定量计算](多选)如图2所示为运动传感器探测到小球由静止释放后撞击地面弹跳的v -t 图象,小球质量为0.5 kg ,重力加速度g =10 m/s 2,不计空气阻力,根据图象可知( )图2A .横坐标每一小格表示的时间是0.1 sB .小球第一次反弹的最大高度为1.25 mC .小球下落的初始位置离地面的高度为1.25 mD .小球第一次撞击地面时地面给小球的平均作用力为55 N 答案 AB解析 小球下落时做自由落体运动,加速度为g ,则落地时速度为6 m/s ,用时t =610 s =0.6s ,图中对应6个小格,每一小格表示0.1 s ,故A 正确;第一次反弹后加速度也为g ,为竖直上抛运动,由题图可知,最大高度为:h =12×10×(0.5)2m =1.25 m ,故B 正确;小球下落的初始位置离地面的高度为:h ′=12×10×(0.6)2m =1.8 m ,故C 错误;设向下为正方向,由题图可知,碰撞时间约为t ′=0.1 s ,根据动量定理可知:mgt ′-Ft ′=mv ′-mv ,代入数据解得:F =60 N ,故D 错误.3.[动量守恒的应用](多选)如图3所示,在光滑水平面上,质量为m 的A 球以速度v 0向右运动,与静止的质量为5m 的B 球碰撞,碰撞后A 球以v =av 0(待定系数a <1)的速率弹回,并与固定挡板P 发生弹性碰撞,若要使A 球能再次追上B 球并相撞,则系数a 可以是( )图3A.14B.25C.23D.17 答案 BC解析 A 与B 发生碰撞,选取向右为正方向,根据动量守恒可知:mv 0=5mv B -mav 0.要使A 球能再次追上B 球并相撞,且A 与固定挡板P 发生弹性碰撞,则av 0>v B ,由以上两式可解得:a >14,故B 、C 正确,A 、D 错误.考点二 动量观点在电场和磁场中的应用例1 如图4所示,轨道ABCDP 位于竖直平面内,其中圆弧段CD 与水平段AC 及倾斜段DP 分别相切于C 点和D 点,水平段AB 、圆弧段CD 和倾斜段DP 都光滑,水平段BC 粗糙,DP 段与水平面的夹角θ=37°,D 、C 两点的高度差h =0.1 m ,整个轨道绝缘,处于方向水平向左、场强未知的匀强电场中.一个质量m 1=0.4 kg 、带正电、电荷量未知的小物块Ⅰ在A 点由静止释放,经过时间t =1 s ,与静止在B 点的不带电、质量m 2=0.6 kg 的小物块Ⅱ碰撞并粘在一起在BC 段上做匀速直线运动,到达倾斜段DP 上某位置.物块Ⅰ和Ⅱ与轨道BC 段间的动摩擦因数均为μ=0.2.g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图4(1)物块Ⅰ和Ⅱ在BC 段上做匀速直线运动的速度大小;(2)物块Ⅰ和Ⅱ第一次经过C 点时,圆弧段轨道对物块Ⅰ和Ⅱ的支持力的大小. 答案 (1)2 m/s (2)18 N解析 (1)物块Ⅰ和Ⅱ粘在一起在BC 段上做匀速直线运动,设电场强度为E ,物块Ⅰ带电荷量为q ,与物块Ⅱ碰撞前物块Ⅰ的速度为v 1,碰撞后共同速度为v 2,取水平向左为正方向,则qE =μ(m 1+m 2)g ,qEt =m 1v 1,m 1v 1=(m 1+m 2)v 2解得v 2=2 m/s(2)设圆弧段CD 的半径为R ,物块Ⅰ和Ⅱ第一次经过C 点时圆弧段轨道对物块Ⅰ和Ⅱ的支持力的大小为F N ,则R (1-cos θ)=hF N -(m 1+m 2)g =(m 1+m 2)v 22R解得F N =18 N4.(2018·诸暨市期末)在一个高为H =5 m 的光滑水平桌面上建立直角坐标系,x 轴刚好位于桌子的边缘,如图5所示为俯视平面图.在第一象限的x =0到x =4 3 m 之间有竖直向上的匀强磁场,磁感应强度B =1.0 T ,第二象限内的平行金属板MN 之间加有一定的电压.甲、乙为两个绝缘小球,已知甲球质量m 1=3×10-3kg ,带q =5×10-3C 的正电荷,乙球的质量m 2=10×10-3 kg ,静止在桌子边缘上的F 点,即x 轴上x =3 3 m 处;现让甲球从金属板M附近由静止开始在电场中加速,经y 轴上y =3 m 处的E 点,垂直y 轴射入磁场,甲球恰好能与乙球对心碰撞,碰后沿相反方向弹回,最后垂直于磁场边界PQ 射出,而乙球落到地面.假设在整个过程中甲球的电荷量始终保持不变,重力加速度g =10 m/s 2,则:图5(1)求平行金属板MN 之间的电压; (2)求甲球从磁场边界PQ 射出时速度大小;(3)求乙球的落地点到桌子边缘(即x 轴)的水平距离. 答案 (1)30 V (2)103m/s (3)2 3 m解析 (1)设甲球做第一次圆周运动的半径为R 1,则由几何关系可得(R 1-OE )2+OF 2=R 12R 1=6.0 m.设平行金属板MN 之间的电压为U ,甲球加速后的速度为v 1,则qv 1B =m 1v 12R 1,得v 1=10 m/sqU =12m 1v 12代入数据得U =30 V.(2)设甲球做第二次圆周运动的半径为R 2,则由几何关系可得R 2=2.0 m qv 2B =m 1v 22R 2代入数据得v 2=103m/s.(3)甲、乙两球对心碰撞,设碰后乙球的速度为v ,以碰撞前甲球的速度方向为正方向,由动量守恒定律有m 1v 1=-m 1v 2+m 2v ,代入数据得v =4 m/s.由几何关系可得甲球的碰前速度方向与x 轴成60°,因此乙球的碰后速度方向也与x 轴成θ=60°,开始做平抛运动,设水平位移为s ,沿y 轴方向位移分量为y .H =12gt 2, s =vt , y =s sin θ,代入数据得y =2 3 m.考点三 动量和能量观点在电磁感应中的简单应用例2 如图6所示,足够长的水平轨道左侧b 1b 2-c 1c 2部分的轨道间距为2L ,右侧c 1c 2-d 1d 2部分的轨道间距为L ,曲线轨道与水平轨道相切于b 1b 2,所有轨道均光滑且电阻不计.在水平轨道内有斜向下与竖直方向成θ=37°的匀强磁场,磁感应强度大小为B =0.1 T .质量为M =0.2 kg 的金属棒C 垂直于导轨静止放置在右侧窄轨道上,质量为m =0.1 kg 的导体棒A自曲线轨道上a 1a 2处由静止释放,两金属棒在运动过程中始终相互平行且与导轨保持良好接触,A 棒总在宽轨上运动,C 棒总在窄轨上运动.已知:两金属棒接入电路的有效电阻均为R =0.2 Ω,h =0.2 m ,L =0.2 m ,sin 37°=0.6,cos 37°=0.8,g =10 m/s 2,求:图6(1)金属棒A 滑到b 1b 2处时的速度大小; (2)金属棒C 匀速运动的速度大小;(3)在两棒整个的运动过程中通过金属棒A 某截面的电荷量;(4)在两棒整个的运动过程中金属棒A 、C 在水平导轨间扫过的面积之差. 答案 (1)2 m/s (2)0.44 m/s (3)5.56 C (4)27.8 m 2解析 (1)A 棒在曲线轨道上下滑,由机械能守恒定律得:mgh =12mv 02得:v 0=2gh =2×10×0.2 m/s =2 m/s(2)选取水平向右为正方向,对A 、C 利用动量定理可得: 对C :F C 安cos θ·t =Mv C 对A :-F A 安cos θ·t =mv A -mv 0 其中F A 安=2F C 安联立可知:mv 0-mv A =2Mv C两棒最后匀速运动时,电路中无电流:有BLv C =2BLv A 得:v C =2v A 解得v C ≈0.44 m/s(3)在C 加速过程中:Σ(B cos θ)iL Δt =Mv C -0q =Σi Δt得:q =509C≈5.56 C(4)根据法拉第电磁感应定律有:E =ΔΦΔt磁通量的变化量:ΔΦ=B ΔS cos θ 电路中的电流:I =E2R通过截面的电荷量:q =I ·Δt 得:ΔS =2509m 2≈27.8 m 25.如图7所示,两平行光滑金属导轨由两部分组成,左面部分水平,右面部分为半径r =0.5 m 的竖直半圆,两导轨间距离d =0.3 m ,导轨水平部分处于竖直向上、磁感应强度大小B =1 T 的匀强磁场中,两导轨电阻不计.有两根长度均为d 的金属棒ab 、cd ,均垂直导轨置于水平导轨上,金属棒ab 、cd 的质量分别为m 1=0.2 kg 、m 2=0.1 kg ,电阻分别为R 1=0.1 Ω、R 2=0.2 Ω.现让ab 棒以v 0=10 m/s 的初速度开始水平向右运动,cd 棒进入圆轨道后,恰好能通过轨道最高点PP ′,cd 棒进入圆轨道前两棒未相碰,重力加速度g =10 m/s 2,求:图7(1)ab 棒开始向右运动时cd 棒的加速度a 0; (2)cd 棒刚进入半圆轨道时ab 棒的速度大小v 1; (3)cd 棒进入半圆轨道前ab 棒克服安培力做的功W . 答案 (1)30 m/s 2(2)7.5 m/s (3)4.375 J解析 (1)ab 棒开始向右运动时,设回路中电流为I ,有E =Bdv 0 I =E R 1+R 2 BId =m 2a 0解得:a 0=30 m/s 2(2)设cd 棒刚进入半圆轨道时的速度为v 2,系统动量定恒,有m 1v 0=m 1v 1+m 2v 212m 2v 22=m 2g ·2r +12m 2v P 2 m 2g =m 2v P 2r解得:v 1=7.5 m/s(3)由动能定理得12m 1v 12-12m 1v 02=-W解得:W =4.375 J.专题强化练1.(多选)下列说法正确的是( )A.物体运动的方向就是它的动量的方向B.如果物体的速度发生变化,则可以肯定它受到的合外力的冲量不为零C.如果合外力对物体的冲量不为零,则合外力一定使物体的动能增大D.作用在物体上的合外力的冲量不一定能改变物体速度的大小答案ABD解析物体动量的方向与物体的运动方向相同,A对;如果物体的速度变化,则物体的动量一定发生了变化,由动量定理知,物体受到的合外力的冲量不为零,B对;合外力对物体的冲量不为零,但合外力可以对物体不做功,物体的动能可以不变,C错;作用在物体上的合外力的冲量可以只改变物体速度的方向,不改变速度的大小,D对.2.(多选)关于动量、冲量,下列说法成立的是( )A.某段时间内物体的动量增量不为零,而物体在某一时刻的动量可能为零B.某段时间内物体受到的冲量不为零,而物体动量的增量可能为零C.某一时刻,物体的动量为零,而动量对时间的变化率可能不为零D.某段时间内物体受到的冲量变大,则物体的动量大小可能变大、变小或不变答案ACD解析自由落体运动,从开始运动的某一段时间内物体动量的增量不为零,而其中初位置物体的动量为零,故A正确;某一段时间内物体受到的冲量不为零,根据动量定理,动量的变化量不为零,故B错误;某一时刻物体的动量为零,该时刻速度为零,动量的变化率是合力,速度为零,合力可以不为零,即动量的变化率可以不为零,故C正确;根据动量定理,冲量等于动量的变化.某段时间内物体受到的冲量变大,则物体的动量的改变量变大,动量大小可能变大、变小或不变,故D正确.3.(多选)如图1所示,一段不可伸长的轻质细绳长为L,一端固定在O点,另一端系一个质量为m的小球(可以视为质点),保持细绳处于伸直状态,把小球拉到跟O点等高的位置由静止释放,在小球摆到最低点的过程中,不计空气阻力,重力加速度大小为g,则( )图1A.合外力做的功为0 B.合外力的冲量为m2gLC.重力做的功为mgL D.重力的冲量为m2gL答案BC4.(多选)(2018·新高考研究联盟联考)如图2所示是两名短道速滑选手在接力瞬间的照片,在短道速滑接力时,后面队员把前面队员用力推出(推出过程中可忽略运动员受到的冰面水平方向的作用力),以下说法正确的是( )图2A.接力过程中前面队员的动能增加量等于后面队员的动能减少量B.接力过程中前面队员受到的冲量和后面队员受到的冲量大小相等方向相反C.接力过程中前后两名队员总动量增加D.接力过程中前后两名队员总动量不变答案BD5.(多选)(2018·诸暨中学段考)向空中发射一物体(不计空气阻力),当物体的速度恰好沿水平方向时,物体炸裂为a、b两块.若质量较大的a的速度方向仍沿原来的方向,则( ) A.b的速度方向一定与原速度方向相反B.从炸裂到落地这段时间里,a飞行的水平距离一定比b的大C.a、b一定同时到达地面D.炸裂的过程中,a、b的动量变化大小一定相等答案CD6.(多选)一辆小车静止在光滑的水平面上,小车立柱上固定一条长L(小于立柱高)、拴有小球的细线,将小球拉至和悬点在同一水平面处由静止释放,如图3所示,小球摆动时,不计一切阻力,重力加速度为g,下面说法中正确的是( )图3A.小球和小车的总机械能守恒B.小球和小车的动量守恒C.小球运动到最低点的速度为2gLD.小球和小车只在水平方向上动量守恒答案AD7.(多选)质量相同的子弹、橡皮泥和钢球以相同的水平速度射向竖直墙壁,结果子弹穿墙而过,橡皮泥粘在墙上,钢球被弹回.不计空气阻力,关于它们对墙的水平冲量的大小,下列说法正确的是( ) A .子弹对墙的冲量最小 B .橡皮泥对墙的冲量最小 C .钢球对墙的冲量最大D .子弹、橡皮泥和钢球对墙的冲量大小相等 答案 AC解析 由于子弹、橡皮泥和钢球的质量相等、初速度相等,取初速度的方向为正方向,则它们动量的变化量Δp =mv -mv 0,子弹穿墙而过,末速度的方向为正,橡皮泥粘在墙上,末速度等于0,钢球被弹回,末速度的方向为负,可知子弹的动量变化量最小,钢球的动量变化量最大.由动量定理I =Δp ,则子弹受到的冲量最小,钢球受到的冲量最大.结合牛顿第三定律可知,子弹对墙的冲量最小,钢球对墙的冲量最大,故A 、C 正确,B 、D 错误. 8.(多选)如图4所示,质量为m 的物体在一个与水平方向成θ角的拉力F 作用下,一直沿水平面向右匀速运动,则下列关于物体在t 时间内所受力的冲量,正确的是( )图4A .拉力F 的冲量大小为Ft cos θB .摩擦力的冲量大小为Ft cos θC .重力的冲量大小为mgtD .物体所受支持力的冲量大小是mgt 答案 BC解析 拉力F 的冲量大小为Ft ,故A 错误;物体做匀速直线运动,可知摩擦力F f =F cos θ,则摩擦力的冲量大小为F f t =Ft cos θ,故B 正确;重力的冲量大小为mgt ,故C 正确;支持力的大小为F N =mg -F sin θ,则支持力的冲量大小为(mg -F sin θ)t ,故D 错误.9.如图5所示,粗糙水平地面上方以PQ 为界,左边有水平向右的匀强电场,场强大小为E =mg q,右边有垂直纸面向里的匀强磁场,磁感应强度大小为B ,磁场以MN 为右边界,一个质量为2m 的带电荷量为+q 的物体从地面上O 点出发,在电场力作用下运动到Q 点时与另一质量为m 、不带电的物体发生正碰,碰后两者粘为一体,并恰好能在QN 间做匀速直线运动,已知两物体与地面间的动摩擦因数μ=0.1,g 为重力加速度,sin 37°=0.6,cos 37°=0.8.图5(1)求O 、Q 之间的距离x 1;(2)若MN 右侧有一倾角θ=37°的倾斜传送带正以速度v 0逆时针转动,物体系统通过N 点到传送带时无动能损失,且传送带足够大,已知物体系统与传送带间的动摩擦因数为μ1=0.5,求物体系统在传送带上上升过程中运动的最大距离.答案 (1)405m 2g 16B 2q 2 (2)9m 2g 2B 2q 2 解析 (1)设两物体碰后的瞬间速度为v 2,则有:Bqv 2=3mg设带电物体的碰撞前速度为v 1,取向右为正方向,由动量守恒定律有:2mv 1=3mv 2对2m ,从O 到Q 由动能定理可得:Eqx 1-μ·2mgx 1=12×2mv 12,则x 1=405m 2g 16B 2q 2 (2)物体系统沿传送带向上做匀减速运动,由牛顿第二定律得:3mg sin θ+μ1·3mg cos θ=3ma则a =g . 故物体系统上升的最大距离为:x 2=v 222a =9m 2g 2B 2q 2 10.(2017·名校协作体联考)用质量为m 、电阻率为ρ、横截面积为S 的均匀薄金属条制成边长为L 的闭合正方形框abb ′a ′,如图6甲所示,金属方框水平放在磁极的狭缝间,方框平面与磁场方向平行.设匀强磁场仅存在于相对磁极之间,其他地方的磁场忽略不计.可认为方框的aa ′边和bb ′边都处在磁极间,磁极间磁感应强度大小为B .方框从静止开始释放,其平面在下落过程中保持水平(不计空气阻力,重力加速度为g ).甲 装置纵截面示意图 乙 装置俯视示意图图6(1)请判断图乙金属方框中感应电流的方向;(2)当方框下落的加速度为g 3时,求方框的发热功率P ; (3)当方框下落的时间t =2m ρB 2LS时,速度恰好达到最大,求方框的最大速度v m 和此过程中产生的热量.答案 (1)顺时针 (2)4m 2g 2ρ9B 2LS (3)mg ρB 2LS m 3g 2ρ22B 4L 2S 2 解析 (1)由右手定则可知:感应电流方向为顺时针.(2)方框受到的安培力:F 安=2BIL由牛顿第二定律有mg -F 安=mg 3 解得I =mg 3BL由电阻定律得金属方框电阻R =ρ4L S方框的发热功率P =I 2R =4m 2g 2ρ9B 2LS (3)当方框下落的加速度为零时,速度达到最大,即mg =F 安′=2B2BLv m R L 解得v m =mg ρB 2LS将下落过程分成若干微元,由动量定理得mgt -∑2B2BLv i R Lt =mv m -0∑v i t =h 解得h =m 2g ρ2B 4L 2S 2 由能量守恒定律得mgh -Q =12mv m 2 解得Q =m 3g 2ρ22B 4L 2S 2 11.(2017·鲁迅中学月考)如图7所示,两根平行金属导轨MN 和PQ 放在水平面上,左端向上弯曲且光滑,导轨间距为L ,电阻不计.水平段导轨所处空间有两个有界匀强磁场,相距一段距离不重叠,磁场Ⅰ左边界在水平段导轨的最左端,磁感应强度大小为B ,方向竖直向上;磁场Ⅱ的磁感应强度大小为2B ,方向竖直向下.质量均为m 、电阻均为R 的金属棒a 和b 垂直放置在导轨上,金属棒b 置于磁场Ⅱ的右边界CD 处.现将金属棒a 从弯曲导轨上某一高处由静止释放,使其沿导轨运动.设两金属棒运动过程中始终与导轨垂直且接触良好.图7(1)若水平段导轨粗糙,两金属棒与水平段导轨间的最大静摩擦力均为15mg ,将金属棒a 从距水平面高度为h 处由静止释放.①金属棒a 刚进入磁场Ⅰ时,求通过金属棒b 的电流大小;②若金属棒a 在磁场Ⅰ内运动过程中,金属棒b 能在导轨上保持静止,通过计算分析金属棒a 释放时的高度h 应满足的条件;(2)若水平段导轨是光滑的,将金属棒a 仍从高度为h 处由静止释放,使其进入磁场Ⅰ.设两磁场区域足够大,金属棒a 在磁场Ⅰ内运动过程中,求金属棒b 中可能产生的电热的最大值.答案 (1)①BL 2gh 2R ②h ≤m 2gR 250B 4L 4 (2)110mgh 解析 (1)①a 棒从h 高处释放后在弯曲导轨上滑动时机械能守恒,有mgh =12mv 02 解得v 0=2gha 棒刚进入磁场Ⅰ时,E =BLv 0,此时通过a 、b 的感应电流大小为I =E 2R, 解得I =BL 2gh 2R. ②a 棒刚进入磁场Ⅰ时,b 棒受到的安培力大小F =2BIL为使b 棒保持静止,应有F ≤15mg 联立解得h ≤m 2gR 250B 4L4. (2)当金属棒a 进入磁场Ⅰ时,由左手定则判断,a 棒向右做减速运动,b 棒向左做加速运动. 二者产生的感应电动势相反,当二者产生的感应电动势大小相等时,闭合回路的电流为零,此后二者均匀速运动,故金属棒a 、b 均匀速运动时,金属棒b 中产生的电热最大. 设此时a 、b 的速度大小分别为v 1与v 2,有BLv 1=2BLv 2对金属棒a 应用动量定理,有-B I L Δt =mv 1-mv 0对金属棒b 应用动量定理,有2B I L Δt =mv 2联立解得v 1=45v 0,v 2=25v 0 根据能量守恒定律,电路中产生的总电热Q 总=12mv 02-12mv 12-12mv 22=15mgh 故金属棒b 中产生的电热最大值为Q =12Q 总=110mgh。
第2讲 动量和能量观点的应用[历次选考考情分析]考点一 动量与冲量有关概念与规律的辨析1.动量定理(1)冲量:力与力的作用时间的乘积叫做力的冲量,即I =Ft ,冲量是矢量,其方向与力的方向相同,单位是N·s.(2)物理意义:动量定理表示了合外力的冲量与动量变化间的因果关系;冲量是物体动量变化的原因,动量发生改变是物体合外力的冲量不为零的结果.(3)矢量性:动量定理的表达式是矢量式,应用动量定理时需要规定正方向. 2.动量定理的应用(1)应用I =Δp 求变力的冲量:若作用在物体上的作用力是变力,不能直接用Ft 求变力的冲量,但可求物体动量的变化Δp ,等效代换变力的冲量I .(2)应用Δp =Ft 求恒力作用下物体的动量变化:若作用在物体上的作用力是恒力,可求该力的冲量Ft ,等效代换动量的变化. 3.动量守恒的适用条件(1)系统不受外力或所受外力的合力为零,不是系统内每个物体所受的合力都为零,更不能认为系统处于平衡状态.(2)近似适用条件:系统内各物体间相互作用的内力远大于它所受到的外力. (3)如果系统在某一方向上所受外力的合力为零,则系统在该方向上动量守恒. 4.动量守恒的表达式(1)m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(2)Δp 1=-Δp 2,相互作用的两个物体动量的增量等大反向. (3)Δp =0,系统总动量的增量为零.1.[动量定理的定性分析](多选)篮球运动员通常要伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前,如图1所示,下列说法正确的是( )图1A .球对手的冲量减小B .球对人的冲击力减小C .球的动量变化量不变D .球的动能变化量减小答案 BC解析 先伸出两臂迎接,手接触到球后,两臂随球引至胸前,这样可以增加球与手接触的时间,根据动量定理得:-Ft =0-mv 得F =mvt,当时间增大时,作用力减小,而冲量和动量变化量、动能变化量都不变,所以B 、C 正确.2.[动量定理的定量计算](多选)如图2所示为运动传感器探测到小球由静止释放后撞击地面弹跳的v -t 图象,小球质量为0.5 kg ,重力加速度g =10 m/s 2,不计空气阻力,根据图象可知( )图2A .横坐标每一小格表示的时间是0.1 sB .小球第一次反弹的最大高度为1.25 mC .小球下落的初始位置离地面的高度为1.25 mD .小球第一次撞击地面时地面给小球的平均作用力为55 N 答案 AB解析 小球下落时做自由落体运动,加速度为g ,则落地时速度为6 m/s ,用时t =610 s =0.6s ,图中对应6个小格,每一小格表示0.1 s ,故A 正确;第一次反弹后加速度也为g ,为竖直上抛运动,由题图可知,最大高度为:h =12×10×(0.5)2m =1.25 m ,故B 正确;小球下落的初始位置离地面的高度为:h ′=12×10×(0.6)2m =1.8 m ,故C 错误;设向下为正方向,由题图可知,碰撞时间约为t ′=0.1 s ,根据动量定理可知:mgt ′-Ft ′=mv ′-mv ,代入数据解得:F =60 N ,故D 错误.3.[动量守恒的应用](多选)如图3所示,在光滑水平面上,质量为m 的A 球以速度v 0向右运动,与静止的质量为5m 的B 球碰撞,碰撞后A 球以v =av 0(待定系数a <1)的速率弹回,并与固定挡板P 发生弹性碰撞,若要使A 球能再次追上B 球并相撞,则系数a 可以是( )图3A.14B.25C.23D.17 答案 BC解析 A 与B 发生碰撞,选取向右为正方向,根据动量守恒可知:mv 0=5mv B -mav 0.要使A 球能再次追上B 球并相撞,且A 与固定挡板P 发生弹性碰撞,则av 0>v B ,由以上两式可解得:a >14,故B 、C 正确,A 、D 错误.考点二 动量观点在电场和磁场中的应用例1 如图4所示,轨道ABCDP 位于竖直平面内,其中圆弧段CD 与水平段AC 及倾斜段DP 分别相切于C 点和D 点,水平段AB 、圆弧段CD 和倾斜段DP 都光滑,水平段BC 粗糙,DP 段与水平面的夹角θ=37°,D 、C 两点的高度差h =0.1 m ,整个轨道绝缘,处于方向水平向左、场强未知的匀强电场中.一个质量m 1=0.4 kg 、带正电、电荷量未知的小物块Ⅰ在A 点由静止释放,经过时间t =1 s ,与静止在B 点的不带电、质量m 2=0.6 kg 的小物块Ⅱ碰撞并粘在一起在BC 段上做匀速直线运动,到达倾斜段DP 上某位置.物块Ⅰ和Ⅱ与轨道BC 段间的动摩擦因数均为μ=0.2.g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图4(1)物块Ⅰ和Ⅱ在BC 段上做匀速直线运动的速度大小;(2)物块Ⅰ和Ⅱ第一次经过C 点时,圆弧段轨道对物块Ⅰ和Ⅱ的支持力的大小. 答案 (1)2 m/s (2)18 N解析 (1)物块Ⅰ和Ⅱ粘在一起在BC 段上做匀速直线运动,设电场强度为E ,物块Ⅰ带电荷量为q ,与物块Ⅱ碰撞前物块Ⅰ的速度为v 1,碰撞后共同速度为v 2,取水平向左为正方向,则qE =μ(m 1+m 2)g ,qEt =m 1v 1,m 1v 1=(m 1+m 2)v 2解得v 2=2 m/s(2)设圆弧段CD 的半径为R ,物块Ⅰ和Ⅱ第一次经过C 点时圆弧段轨道对物块Ⅰ和Ⅱ的支持力的大小为F N ,则R (1-cos θ)=hF N -(m 1+m 2)g =(m 1+m 2)v 22R解得F N =18 N4.(2018·诸暨市期末)在一个高为H =5 m 的光滑水平桌面上建立直角坐标系,x 轴刚好位于桌子的边缘,如图5所示为俯视平面图.在第一象限的x =0到x =4 3 m 之间有竖直向上的匀强磁场,磁感应强度B =1.0 T ,第二象限内的平行金属板MN 之间加有一定的电压.甲、乙为两个绝缘小球,已知甲球质量m 1=3×10-3kg ,带q =5×10-3C 的正电荷,乙球的质量m 2=10×10-3 kg ,静止在桌子边缘上的F 点,即x 轴上x =3 3 m 处;现让甲球从金属板M附近由静止开始在电场中加速,经y 轴上y =3 m 处的E 点,垂直y 轴射入磁场,甲球恰好能与乙球对心碰撞,碰后沿相反方向弹回,最后垂直于磁场边界PQ 射出,而乙球落到地面.假设在整个过程中甲球的电荷量始终保持不变,重力加速度g =10 m/s 2,则:图5(1)求平行金属板MN 之间的电压; (2)求甲球从磁场边界PQ 射出时速度大小;(3)求乙球的落地点到桌子边缘(即x 轴)的水平距离. 答案 (1)30 V (2)103m/s (3)2 3 m解析 (1)设甲球做第一次圆周运动的半径为R 1,则由几何关系可得(R 1-OE )2+OF 2=R 12R 1=6.0 m.设平行金属板MN 之间的电压为U ,甲球加速后的速度为v 1,则qv 1B =m 1v 12R 1,得v 1=10 m/sqU =12m 1v 12代入数据得U =30 V.(2)设甲球做第二次圆周运动的半径为R 2,则由几何关系可得R 2=2.0 m qv 2B =m 1v 22R 2代入数据得v 2=103m/s.(3)甲、乙两球对心碰撞,设碰后乙球的速度为v ,以碰撞前甲球的速度方向为正方向,由动量守恒定律有m 1v 1=-m 1v 2+m 2v ,代入数据得v =4 m/s.由几何关系可得甲球的碰前速度方向与x 轴成60°,因此乙球的碰后速度方向也与x 轴成θ=60°,开始做平抛运动,设水平位移为s ,沿y 轴方向位移分量为y .H =12gt 2, s =vt , y =s sin θ,代入数据得y =2 3 m.考点三 动量和能量观点在电磁感应中的简单应用例2 如图6所示,足够长的水平轨道左侧b 1b 2-c 1c 2部分的轨道间距为2L ,右侧c 1c 2-d 1d 2部分的轨道间距为L ,曲线轨道与水平轨道相切于b 1b 2,所有轨道均光滑且电阻不计.在水平轨道内有斜向下与竖直方向成θ=37°的匀强磁场,磁感应强度大小为B =0.1 T .质量为M =0.2 kg 的金属棒C 垂直于导轨静止放置在右侧窄轨道上,质量为m =0.1 kg 的导体棒A自曲线轨道上a 1a 2处由静止释放,两金属棒在运动过程中始终相互平行且与导轨保持良好接触,A 棒总在宽轨上运动,C 棒总在窄轨上运动.已知:两金属棒接入电路的有效电阻均为R =0.2 Ω,h =0.2 m ,L =0.2 m ,sin 37°=0.6,cos 37°=0.8,g =10 m/s 2,求:图6(1)金属棒A 滑到b 1b 2处时的速度大小; (2)金属棒C 匀速运动的速度大小;(3)在两棒整个的运动过程中通过金属棒A 某截面的电荷量;(4)在两棒整个的运动过程中金属棒A 、C 在水平导轨间扫过的面积之差. 答案 (1)2 m/s (2)0.44 m/s (3)5.56 C (4)27.8 m 2解析 (1)A 棒在曲线轨道上下滑,由机械能守恒定律得:mgh =12mv 02得:v 0=2gh =2×10×0.2 m/s =2 m/s(2)选取水平向右为正方向,对A 、C 利用动量定理可得: 对C :F C 安cos θ·t =Mv C 对A :-F A 安cos θ·t =mv A -mv 0 其中F A 安=2F C 安联立可知:mv 0-mv A =2Mv C两棒最后匀速运动时,电路中无电流:有BLv C =2BLv A 得:v C =2v A 解得v C ≈0.44 m/s(3)在C 加速过程中:Σ(B cos θ)iL Δt =Mv C -0q =Σi Δt得:q =509C≈5.56 C(4)根据法拉第电磁感应定律有:E =ΔΦΔt磁通量的变化量:ΔΦ=B ΔS cos θ 电路中的电流:I =E2R通过截面的电荷量:q =I ·Δt 得:ΔS =2509m 2≈27.8 m 25.如图7所示,两平行光滑金属导轨由两部分组成,左面部分水平,右面部分为半径r =0.5 m 的竖直半圆,两导轨间距离d =0.3 m ,导轨水平部分处于竖直向上、磁感应强度大小B =1 T 的匀强磁场中,两导轨电阻不计.有两根长度均为d 的金属棒ab 、cd ,均垂直导轨置于水平导轨上,金属棒ab 、cd 的质量分别为m 1=0.2 kg 、m 2=0.1 kg ,电阻分别为R 1=0.1 Ω、R 2=0.2 Ω.现让ab 棒以v 0=10 m/s 的初速度开始水平向右运动,cd 棒进入圆轨道后,恰好能通过轨道最高点PP ′,cd 棒进入圆轨道前两棒未相碰,重力加速度g =10 m/s 2,求:图7(1)ab 棒开始向右运动时cd 棒的加速度a 0; (2)cd 棒刚进入半圆轨道时ab 棒的速度大小v 1; (3)cd 棒进入半圆轨道前ab 棒克服安培力做的功W . 答案 (1)30 m/s 2(2)7.5 m/s (3)4.375 J解析 (1)ab 棒开始向右运动时,设回路中电流为I ,有E =Bdv 0 I =E R 1+R 2 BId =m 2a 0解得:a 0=30 m/s 2(2)设cd 棒刚进入半圆轨道时的速度为v 2,系统动量定恒,有m 1v 0=m 1v 1+m 2v 212m 2v 22=m 2g ·2r +12m 2v P 2 m 2g =m 2v P 2r解得:v 1=7.5 m/s(3)由动能定理得12m 1v 12-12m 1v 02=-W解得:W =4.375 J.专题强化练1.(多选)下列说法正确的是( )A.物体运动的方向就是它的动量的方向B.如果物体的速度发生变化,则可以肯定它受到的合外力的冲量不为零C.如果合外力对物体的冲量不为零,则合外力一定使物体的动能增大D.作用在物体上的合外力的冲量不一定能改变物体速度的大小答案ABD解析物体动量的方向与物体的运动方向相同,A对;如果物体的速度变化,则物体的动量一定发生了变化,由动量定理知,物体受到的合外力的冲量不为零,B对;合外力对物体的冲量不为零,但合外力可以对物体不做功,物体的动能可以不变,C错;作用在物体上的合外力的冲量可以只改变物体速度的方向,不改变速度的大小,D对.2.(多选)关于动量、冲量,下列说法成立的是( )A.某段时间内物体的动量增量不为零,而物体在某一时刻的动量可能为零B.某段时间内物体受到的冲量不为零,而物体动量的增量可能为零C.某一时刻,物体的动量为零,而动量对时间的变化率可能不为零D.某段时间内物体受到的冲量变大,则物体的动量大小可能变大、变小或不变答案ACD解析自由落体运动,从开始运动的某一段时间内物体动量的增量不为零,而其中初位置物体的动量为零,故A正确;某一段时间内物体受到的冲量不为零,根据动量定理,动量的变化量不为零,故B错误;某一时刻物体的动量为零,该时刻速度为零,动量的变化率是合力,速度为零,合力可以不为零,即动量的变化率可以不为零,故C正确;根据动量定理,冲量等于动量的变化.某段时间内物体受到的冲量变大,则物体的动量的改变量变大,动量大小可能变大、变小或不变,故D正确.3.(多选)如图1所示,一段不可伸长的轻质细绳长为L,一端固定在O点,另一端系一个质量为m的小球(可以视为质点),保持细绳处于伸直状态,把小球拉到跟O点等高的位置由静止释放,在小球摆到最低点的过程中,不计空气阻力,重力加速度大小为g,则( )图1A.合外力做的功为0 B.合外力的冲量为m2gLC.重力做的功为mgL D.重力的冲量为m2gL答案BC4.(多选)(2018·新高考研究联盟联考)如图2所示是两名短道速滑选手在接力瞬间的照片,在短道速滑接力时,后面队员把前面队员用力推出(推出过程中可忽略运动员受到的冰面水平方向的作用力),以下说法正确的是( )图2A.接力过程中前面队员的动能增加量等于后面队员的动能减少量B.接力过程中前面队员受到的冲量和后面队员受到的冲量大小相等方向相反C.接力过程中前后两名队员总动量增加D.接力过程中前后两名队员总动量不变答案BD5.(多选)(2018·诸暨中学段考)向空中发射一物体(不计空气阻力),当物体的速度恰好沿水平方向时,物体炸裂为a、b两块.若质量较大的a的速度方向仍沿原来的方向,则( ) A.b的速度方向一定与原速度方向相反B.从炸裂到落地这段时间里,a飞行的水平距离一定比b的大C.a、b一定同时到达地面D.炸裂的过程中,a、b的动量变化大小一定相等答案CD6.(多选)一辆小车静止在光滑的水平面上,小车立柱上固定一条长L(小于立柱高)、拴有小球的细线,将小球拉至和悬点在同一水平面处由静止释放,如图3所示,小球摆动时,不计一切阻力,重力加速度为g,下面说法中正确的是( )图3A.小球和小车的总机械能守恒B.小球和小车的动量守恒C.小球运动到最低点的速度为2gLD.小球和小车只在水平方向上动量守恒答案AD7.(多选)质量相同的子弹、橡皮泥和钢球以相同的水平速度射向竖直墙壁,结果子弹穿墙而过,橡皮泥粘在墙上,钢球被弹回.不计空气阻力,关于它们对墙的水平冲量的大小,下列说法正确的是( ) A .子弹对墙的冲量最小 B .橡皮泥对墙的冲量最小 C .钢球对墙的冲量最大D .子弹、橡皮泥和钢球对墙的冲量大小相等 答案 AC解析 由于子弹、橡皮泥和钢球的质量相等、初速度相等,取初速度的方向为正方向,则它们动量的变化量Δp =mv -mv 0,子弹穿墙而过,末速度的方向为正,橡皮泥粘在墙上,末速度等于0,钢球被弹回,末速度的方向为负,可知子弹的动量变化量最小,钢球的动量变化量最大.由动量定理I =Δp ,则子弹受到的冲量最小,钢球受到的冲量最大.结合牛顿第三定律可知,子弹对墙的冲量最小,钢球对墙的冲量最大,故A 、C 正确,B 、D 错误. 8.(多选)如图4所示,质量为m 的物体在一个与水平方向成θ角的拉力F 作用下,一直沿水平面向右匀速运动,则下列关于物体在t 时间内所受力的冲量,正确的是( )图4A .拉力F 的冲量大小为Ft cos θB .摩擦力的冲量大小为Ft cos θC .重力的冲量大小为mgtD .物体所受支持力的冲量大小是mgt 答案 BC解析 拉力F 的冲量大小为Ft ,故A 错误;物体做匀速直线运动,可知摩擦力F f =F cos θ,则摩擦力的冲量大小为F f t =Ft cos θ,故B 正确;重力的冲量大小为mgt ,故C 正确;支持力的大小为F N =mg -F sin θ,则支持力的冲量大小为(mg -F sin θ)t ,故D 错误.9.如图5所示,粗糙水平地面上方以PQ 为界,左边有水平向右的匀强电场,场强大小为E =mg q,右边有垂直纸面向里的匀强磁场,磁感应强度大小为B ,磁场以MN 为右边界,一个质量为2m 的带电荷量为+q 的物体从地面上O 点出发,在电场力作用下运动到Q 点时与另一质量为m 、不带电的物体发生正碰,碰后两者粘为一体,并恰好能在QN 间做匀速直线运动,已知两物体与地面间的动摩擦因数μ=0.1,g 为重力加速度,sin 37°=0.6,cos 37°=0.8.图5(1)求O 、Q 之间的距离x 1;(2)若MN 右侧有一倾角θ=37°的倾斜传送带正以速度v 0逆时针转动,物体系统通过N 点到传送带时无动能损失,且传送带足够大,已知物体系统与传送带间的动摩擦因数为μ1=0.5,求物体系统在传送带上上升过程中运动的最大距离.答案 (1)405m 2g 16B 2q 2 (2)9m 2g 2B 2q 2 解析 (1)设两物体碰后的瞬间速度为v 2,则有:Bqv 2=3mg设带电物体的碰撞前速度为v 1,取向右为正方向,由动量守恒定律有:2mv 1=3mv 2对2m ,从O 到Q 由动能定理可得:Eqx 1-μ·2mgx 1=12×2mv 12,则x 1=405m 2g 16B 2q 2 (2)物体系统沿传送带向上做匀减速运动,由牛顿第二定律得:3mg sin θ+μ1·3mg cos θ=3ma则a =g . 故物体系统上升的最大距离为:x 2=v 222a =9m 2g 2B 2q 2 10.(2017·名校协作体联考)用质量为m 、电阻率为ρ、横截面积为S 的均匀薄金属条制成边长为L 的闭合正方形框abb ′a ′,如图6甲所示,金属方框水平放在磁极的狭缝间,方框平面与磁场方向平行.设匀强磁场仅存在于相对磁极之间,其他地方的磁场忽略不计.可认为方框的aa ′边和bb ′边都处在磁极间,磁极间磁感应强度大小为B .方框从静止开始释放,其平面在下落过程中保持水平(不计空气阻力,重力加速度为g ).甲 装置纵截面示意图 乙 装置俯视示意图图6(1)请判断图乙金属方框中感应电流的方向;(2)当方框下落的加速度为g 3时,求方框的发热功率P ; (3)当方框下落的时间t =2m ρB 2LS时,速度恰好达到最大,求方框的最大速度v m 和此过程中产生的热量.答案 (1)顺时针 (2)4m 2g 2ρ9B LS (3)mg ρB LS m 3g 2ρ22B L S 解析 (1)由右手定则可知:感应电流方向为顺时针.(2)方框受到的安培力:F 安=2BIL由牛顿第二定律有mg -F 安=mg 3 解得I =mg 3BL由电阻定律得金属方框电阻R =ρ4L S方框的发热功率P =I 2R =4m 2g 2ρ9B 2LS (3)当方框下落的加速度为零时,速度达到最大,即mg =F 安′=2B2BLv m R L 解得v m =mg ρB 2LS将下落过程分成若干微元,由动量定理得mgt -∑2B2BLv i R Lt =mv m -0∑v i t =h 解得h =m 2g ρ2B 4L 2S 2 由能量守恒定律得mgh -Q =12mv m 2 解得Q =m 3g 2ρ22B 4L 2S 2 11.(2017·鲁迅中学月考)如图7所示,两根平行金属导轨MN 和PQ 放在水平面上,左端向上弯曲且光滑,导轨间距为L ,电阻不计.水平段导轨所处空间有两个有界匀强磁场,相距一段距离不重叠,磁场Ⅰ左边界在水平段导轨的最左端,磁感应强度大小为B ,方向竖直向上;磁场Ⅱ的磁感应强度大小为2B ,方向竖直向下.质量均为m 、电阻均为R 的金属棒a 和b 垂直放置在导轨上,金属棒b 置于磁场Ⅱ的右边界CD 处.现将金属棒a 从弯曲导轨上某一高处由静止释放,使其沿导轨运动.设两金属棒运动过程中始终与导轨垂直且接触良好.图7(1)若水平段导轨粗糙,两金属棒与水平段导轨间的最大静摩擦力均为15mg ,将金属棒a 从距水平面高度为h 处由静止释放.①金属棒a 刚进入磁场Ⅰ时,求通过金属棒b 的电流大小;②若金属棒a 在磁场Ⅰ内运动过程中,金属棒b 能在导轨上保持静止,通过计算分析金属棒a 释放时的高度h 应满足的条件;(2)若水平段导轨是光滑的,将金属棒a 仍从高度为h 处由静止释放,使其进入磁场Ⅰ.设两磁场区域足够大,金属棒a 在磁场Ⅰ内运动过程中,求金属棒b 中可能产生的电热的最大值.答案 (1)①BL 2gh 2R ②h ≤m 2gR 250B 4L 4 (2)110mgh 解析 (1)①a 棒从h 高处释放后在弯曲导轨上滑动时机械能守恒,有mgh =12mv 02 解得v 0=2gha 棒刚进入磁场Ⅰ时,E =BLv 0,此时通过a 、b 的感应电流大小为I =E 2R, 解得I =BL 2gh 2R. ②a 棒刚进入磁场Ⅰ时,b 棒受到的安培力大小F =2BIL为使b 棒保持静止,应有F ≤15mg 联立解得h ≤m 2gR 250B 4L4. (2)当金属棒a 进入磁场Ⅰ时,由左手定则判断,a 棒向右做减速运动,b 棒向左做加速运动. 二者产生的感应电动势相反,当二者产生的感应电动势大小相等时,闭合回路的电流为零,此后二者均匀速运动,故金属棒a 、b 均匀速运动时,金属棒b 中产生的电热最大. 设此时a 、b 的速度大小分别为v 1与v 2,有BLv 1=2BLv 2对金属棒a 应用动量定理,有-B I L Δt =mv 1-mv 0对金属棒b 应用动量定理,有2B I L Δt =mv 2联立解得v 1=45v 0,v 2=25v 0 根据能量守恒定律,电路中产生的总电热Q 总=12mv 02-12mv 12-12mv 22=15mgh 故金属棒b 中产生的电热最大值为Q =12Q 总=110mgh。
提升训练9动量定理、动量守恒及其应用1.如图所示,两辆质量相同的小车置于光滑的水平面上,有一个人静止站在A车上,两车静止,若这个人自A车跳到B车上,接着又跳回A车,静止于A车上,则A车的速率()A.等于零B.小于B车的速率C.大于B车的速率D.等于B车的速率2.有甲、乙两碰碰车沿同一直线相向而行,在碰前双方都关闭了动力,且两车动量关系为p甲>p乙。
假设规定p甲方向为正,不计一切阻力,则()A.碰后两车可能以相同的速度沿负方向前进,且动能损失最大B.碰撞过程甲车总是对乙车做正功,碰撞后乙车一定沿正方向前进C.碰撞过程甲车可能反弹,且系统总动能减小,碰后乙车一定沿正方向前进D.两车动量变化量大小相等,方向一定是Δp甲沿正方向,Δp乙沿负方向3.(2017新课标Ⅰ卷)将质量为1.00 kg的模型火箭点火升空,50 g燃烧的燃气以大小为600 m/s的速度从火箭喷口在很短时间内喷出。
在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)()A.30 kg·m/sB.5.7×102 kg·m/sC.6.0×102 kg·m/sD.6.3×102 kg·m/s4.质量为m的物体,以v0的初速度沿斜面上滑,到达最高点处返回原处的速度为v t,且v t=0.5v0,则()A.上滑过程中重力的冲量比下滑时大B.上滑时和下滑时支持力的冲量都等于零C.合力的冲量在整个过程中大小为mv0D.整个过程中物体动量变化量为mv05.如图,一长木板位于光滑水平面上,长木板的左端固定一挡板,木板和挡板的总质量为M=3.0 kg,木板的长度为L=1.5 m,在木板右端有一小物块,其质量m=1.0 kg,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态,现令小物块以初速度v0沿木板向左运动,重力加速度g取10 m/s2。
(1)若小物块刚好能运动到左端挡板处,求v0的大小;(2)若初速度v0=3 m/s,小物块与挡板相撞后,恰好能回到右端而不脱离木板,求碰撞过程中损失的机械能。
提升训练7动能定理的应用1.图中给出一段“S”形单行盘山公路的示意图,弯道1、弯道2可看作两个不同水平面上的圆弧,圆心分别为O1,O2,弯道中心线半径分别为r1=10 m,r2=20 m,弯道2比弯道1高h=12 m,有一直道与两弯道圆弧相切。
质量m=1 200 kg的汽车通过弯道时做匀速圆周运动,路面对轮胎的最大径向静摩擦力是车重的1.25倍,行驶时要求汽车不打滑。
(sin 37°=0.6,sin 53°=0.8)(1)求汽车沿弯道1中心线行驶时的最大速度v1;(2)汽车以v1进入直道,以P=30 kW的恒定功率直线行驶了t=8.0 s,进入弯道2,此时速度恰为通过弯道2中心线的最大速度,求直道上除重力以外的阻力对汽车做的功;(3)汽车从弯道1的A点进入,从同一直径上的B点驶离,有经验的司机会利用路面宽度,用最短时间匀速安全通过弯道,设路宽d=10 m,求此最短时间(A、B两点都在轨道的中心线上,计算时视汽车为质点)。
2.(2017浙江金华十校期末)金华某商场门口根据金华“双龙”元素设计了一个精美的喷泉雕塑,两条龙喷出的水恰好相互衔接(不碰撞)形成一个“∞”字形。
某学习小组为了研究喷泉的运行原理,将喷泉简化成如图所示的模型,两个龙可以看成两个相同对称圆的一部分(近似看成在同一平面内),E、B两点为圆的最高点。
抽水机M使水获得一定的初速度后沿ABCDEFG运动,水在C、F两处恰好沿切线进入管道,最后回到池中。
圆半径为R=1 m,角度θ=53°,忽略一切摩擦。
(g取10 m/s2,sin53°=0.8,cos 53°=0.6)求:(1)水从B点喷出的速度多大?(2)取B处一质量为m=0.1 kg的一小段水,管道对这一小段水的作用力多大?方向如何?(3)若管道B处横截面积为S=4 cm2,则抽水机M的输出功率是多少?(水密度ρ=1×103 kg/m3)3.如图甲所示为一景区游乐滑道,游客坐在坐垫上沿着花岗岩滑道下滑,他可依靠手、脚与侧壁间的摩擦来控制下滑速度。
专题二能量与动量专题综合训练(二)1.质量为m=2 kg的物体沿水平面向右做直线运动,t=0时刻受到一个水平向左的恒力F,如图甲所示,取水平向右为正方向,此物体的v-t图象如图乙所示,g取10 m/s2,则()A.物体与水平面间的动摩擦因数μ=0.5B.10 s内恒力F对物体做功102 JC.10 s末物体在计时起点位置左侧2 m处D.10 s内物体克服摩擦力做功30 J2.如图所示,质量为m的物块从A点由静止开始下落,加速度是,下落H到B点后与一轻弹簧接触,又下落h后到达最低点C,在由A运动到C的过程中,空气阻力恒定,则()A.物块机械能守恒B.物块和弹簧组成的系统机械能守恒C.物块机械能减少D.物块和弹簧组成的系统机械能减少3.如图所示,A、B、C三个一样的滑块从粗糙斜面上的同一高度同时开始运动,A由静止释放,B的初速度方向沿斜面向下,大小为v0,C的初速度方向沿斜面水平,大小也为v0。
下列说法中正确的是()A.A和C将同时滑到斜面底端B.滑到斜面底端时,B的动能最大C.滑到斜面底端时,B的机械能减少最多D.滑到斜面底端时,C的重力势能减少最多4.图甲为竖直固定在水平面上的轻弹簧,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹簧弹起离开弹簧,上升到一定高度后再下落,如此反复。
通过安装在弹簧下端的压力传感器,测出此过程弹簧弹力F随时间t变化的图象如图乙所示,不计空气阻力,则()A.t1时刻小球的动能最大B.t2时刻小球的加速度最小C.t3时刻弹簧的弹性势能为零D.图乙中图线所围面积在数值上等于小球动量的变化量5.如图所示,某人在P点准备做蹦极运动,假设蹦极者离开跳台时的速度为零。
图中a是弹性绳的原长位置,c是人所到达的最低点。
b是人静止地悬吊着时的平衡位置。
不计空气阻力,下列说法中正确的是()A.从P到c过程中重力的冲量大于弹性绳弹力的冲量B.从P到c过程中重力做的功等于人克服弹力所做的功C.从P到b过程中人的速度不断减小D.从a到c过程中加速度方向保持不变6.如图所示,质量为m的小球从斜轨道高h处由静止滑下,然后沿竖直圆轨道内侧运动,已知圆形轨道半径为R,不计一切摩擦阻力,重力加速度为g。
提升训练6 功、功率1.小物块P位于光滑的斜面Q上,斜面位于光滑的水平地面上(如图所示),从地面上看,在小物块沿斜面下滑的过程中,斜面对小物块的作用力()A.垂直于接触面,做功为零B.垂直于接触面,做负功C.不垂直于接触面,做功为零D.不垂直于接触面,做正功2.如图所示,演员正在进行杂技表演。
由图可估算出他将一只鸡蛋抛出的过程中对鸡蛋所做的功最接近于()A.0.3 JB.3 JC.30 JD.300 J3.(2018年3月杭州命题比赛)质量为50 kg的同学在做仰卧起坐运动,若该同学上半身的质量约为全身质量的,她在1 min内做了50个仰卧起坐,每次上半身重心上升的距离均为0.3 m,则她克服重力做的功W和相应的功率P约为()A.W=4 500 J P=75 WB.W=450 J P=7.5 WC.W=3 600 J P=60 WD.W=360 J P=6 W4.(2018年2月宁波重点中学期末,7)如图所示,自动卸货车静止在水平地面上,在液压机的作用下,车厢与水平方向的夹角缓慢增大,在货物没有滑动之前的过程中,下列说法正确的是()A.货物受到的静摩擦力减小B.地面对货车有水平向右的摩擦力C.货物受到的摩擦力对货物做负功D.货物受到的支持力对货物做正功5.一质量为m的物体静止在粗糙的水平地面上,从t=0时刻开始受到方向恒定的水平拉力F作用,F 与时间t的关系如图甲所示。
物体在时刻开始运动,其v-t图象如图乙所示,若认为滑动摩擦力等于最大静摩擦力,则()A.物体与地面间的动摩擦因数为B.物体在t0时刻的加速度大小为C.物体所受合力在t0时刻的功率为2F0v0D.水平力F在t0到2t0这段时间内的平均功率为F06.(宁波诺丁汉大学附属中学2017—2018学年第二学期期中)美国研发的强力武器轨道电磁炮在试射中,将炮弹以5倍音速,击向200 km外的目标,射程为海军常规武器的10倍,且破坏力惊人。
电磁炮原理如图所示,若炮弹质量为m,水平轨道长L,宽为d,轨道摩擦不计,炮弹在轨道上做匀加速运动。
提升训练9动量定理、动量守恒及其应用1.如图所示,两辆质量相同的小车置于光滑的水平面上,有一个人静止站在A车上,两车静止,若这个人自A车跳到B车上,接着又跳回A车,静止于A车上,则A车的速率()A.等于零B.小于B车的速率C.大于B车的速率D.等于B车的速率2.有甲、乙两碰碰车沿同一直线相向而行,在碰前双方都关闭了动力,且两车动量关系为p甲>p乙。
假设规定p甲方向为正,不计一切阻力,则()A.碰后两车可能以相同的速度沿负方向前进,且动能损失最大B.碰撞过程甲车总是对乙车做正功,碰撞后乙车一定沿正方向前进C.碰撞过程甲车可能反弹,且系统总动能减小,碰后乙车一定沿正方向前进D.两车动量变化量大小相等,方向一定是Δp甲沿正方向,Δp乙沿负方向3.(2017新课标Ⅰ卷)将质量为1.00 kg的模型火箭点火升空,50 g燃烧的燃气以大小为600 m/s的速度从火箭喷口在很短时间内喷出。
在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)()A.30 kg·m/sB.5.7×102 kg·m/sC.6.0×102 kg·m/sD.6.3×102 kg·m/s4.质量为m的物体,以v0的初速度沿斜面上滑,到达最高点处返回原处的速度为v t,且v t=0.5v0,则()A.上滑过程中重力的冲量比下滑时大B.上滑时和下滑时支持力的冲量都等于零C.合力的冲量在整个过程中大小为mv0D.整个过程中物体动量变化量为mv05.如图,一长木板位于光滑水平面上,长木板的左端固定一挡板,木板和挡板的总质量为M=3.0 kg,木板的长度为L=1.5 m,在木板右端有一小物块,其质量m=1.0 kg,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态,现令小物块以初速度v0沿木板向左运动,重力加速度g取10 m/s2。
(1)若小物块刚好能运动到左端挡板处,求v0的大小;(2)若初速度v0=3 m/s,小物块与挡板相撞后,恰好能回到右端而不脱离木板,求碰撞过程中损失的机械能。
6.(启慧全国大联考2018届高三12月联考)如图所示,一质量为M=2.0×103 kg的平板小货车A载有一质量为m=1.0×103 kg的重物B,在水平直公路上以速度v0=36 km/h做匀速直线运动,重物与车厢前壁间的距离为L=1.5 m,因发生紧急情况,货车突然制动,已知货车车轮与地面间的动摩擦因数为μ1=0.4,重物与车厢底板之间的动摩擦因数为μ2=0.2,重力加速度g取10 m/s2,若重物与车厢前壁发生碰撞,则碰撞时间极短,碰后重物与车厢前壁不分开。
(1)请通过计算说明重物是否会与车厢前壁发生碰撞;(2)试求货车从开始刹车到停止运动所用的时间和刹车距离。
7.图中两根足够长的平行光滑导轨,相距1 m水平放置,磁感应强度B=0.4 T的匀强磁场竖直向上穿过整个导轨所在的空间。
金属棒ab、cd质量分别为0.1 kg和0.2 kg,电阻分别为0.4 Ω和0.2 Ω,并排垂直横跨在导轨上。
若两棒以大小相等的初速度3 m/s向相反方向分开,不计导轨电阻,求:(1)金属棒运动达到稳定后,ab棒的速度大小;(2)金属棒运动达到稳定的过程中,ab上产生的焦耳热;(3)金属棒运动达到稳定后,两棒间距离增加多少?8.(2018年2月杭州期末)某同学设计了一个电磁击发装置,其结构如图所示。
间距为L=10 cm的平行长直导轨置于水平桌面上,导轨中NO和N'O'段用绝缘材料制成,其余部分均为导电金属材料,两种材料导轨平滑连接。
导轨左侧与匝数为100、半径为5 cm的圆形线圈相连,线圈内存在垂直线圈平面的匀强磁场。
电容为1 F的电容器通过单刀双掷开关与导轨相连。
在轨道间MPP'M'矩形区域内存在垂直桌面向上的匀强磁场,磁感应强度为2 T。
磁场右侧边界PP'与OO'间距离为a=4 cm。
初始时金属棒A处于NN'左侧某处,金属棒B处于OO'左侧距OO'距离为a处。
当开关与1连接时,圆形线圈中磁场随时间均匀变化,变化率为 T/s;稳定后将开关拨向2,金属棒A被弹出,与金属棒B相碰,并在B棒刚出磁场时A棒刚好运动到OO'处,最终A棒恰在PP'处停住。
已知两根金属棒的质量均为0.02 kg、接入电路中的电阻均为0.1 Ω,金属棒与金属导轨接触良好,其余电阻均不计,一切摩擦不计。
问:(1)当开关与1连接时,电容器两端电压是多少?下极板带什么电?(2)金属棒A与B相碰后A棒的速度v是多少?(3)电容器所剩电荷量Q'是多少?9.(2017浙江湖州市高二考试)如图所示,为一种研究核反应的设备示意图,容器中为钚的放射性同位素Pu,可衰变为U并放出能量为E的γ光子(衰变前可视为静止,衰变放出的光子动量可忽略),衰变后速度大的粒子沿直线OQ向探测屏MN运动。
为简化模型,设衰变生成的U的质量为m、速度均为v,生成的另一种粒子每秒到达探测屏N个,打到Q点后40%穿透探测屏,60%被探测屏吸收,且粒子穿透时能量损失75%,则:(1)试写出衰变方程;(2)求打到Q点前该粒子的速度大小;(3)求一个Pu核衰变过程的质量亏损;(4)求探测屏受到的撞击力大小。
提升训练9动量定理、动量守恒及其应用1.B解析两车和人组成的系统位于光滑的水平面上,因而该系统动量守恒,设人的质量为m1,车的质量为m2,A、B车的速率分别为v1、v2,则由动量守恒定律得(m1+m2)v1-m2v2=0,所以,有v1=v2,<1,故v1<v2,所以B正确。
2.C解析由于规定p甲方向为正,两车动量关系为p甲>p乙,碰后两车可能以相同的速度沿正方向前进,且动能损失最大,选项A错误。
碰撞过程甲车先对乙车做负功,选项B错误。
碰撞过程甲车可能反弹,且系统总动能减小,碰后乙车一定沿正方向前进,选项C正确。
由动量守恒定律,两车动量变化量大小相等,方向可能是Δp甲沿负方向,Δp乙沿正方向,选项D错误。
3.A解析根据动量守恒定律得:0=Mv1-mv2,故火箭的动量与燃气的动量等大反向。
故p=Mv1=mv2=0.05 kg×600 m/s=30 kg·m/s。
4.C解析以v0的初速度沿斜面上滑,返回原处时速度为v t=0.5v0,说明斜面不光滑。
设斜面长为L,则上滑过程所需时间t1=,下滑过程所需时间t2=,t1<t2。
根据冲量的定义,可知上滑过程中重力的冲量比下滑时小,A错误。
上滑和下滑时支持力的大小都不等于零,B错误。
对全过程应用动量定理,则I合=Δp=-mv t-mv0=-mv0,C正确,D错误。
5.答案 (1)2 m/s(2)0.375 J解析 (1)设木板和物块最后共同的速度为v,由动量守恒定律mv0=(m+M)v①对木板和物块系统,由功能关系得μmgL=(M+m)v2②由①②两式解得v0== m/s=2 m/s。
(2)同样由动量守恒定律可知,木板和物块最后也要达到共同速度v。
设碰撞过程中损失的机械能为ΔE。
对木板和物块系统的整个运动过程,由功能关系有μmg2L+ΔE=(m+M)v2③由①③两式解得ΔE=-2μmgL=×32 J-2×0.1×10×1.5 J=0.375 J。
6.答案 (1)否(2)2.5 s12 m解析 (1)刚刹车时,货车的加速度大小为a1,重物的加速度大小为a2,由牛顿第二定律可知μ(M+m)g-μ2mg=Ma1,μ2mg=ma2,解得a1=5 m/s2,a2=2 m/s2假设B与A碰撞,且从开始刹车到碰撞所用时间为t1,则v0t1-a2-v0t1-a1=L,解得t1=1 s 此时货车A的速度为v A=v0-a1t1=5 m/s,重物B的速度为v B=v0-a2t1=8 m/s此时A、B均未停止运动,且v A<v B,故重物会与车厢前壁发生碰撞。
(2)碰前货车的运动时间为t1=1 s,运动的位移为x1=v0t1-a2=7.5 m由于碰撞时间极短,故满足动量守恒,设碰后共同的速度为v,则Mv A+mv B=(M+m)v,解得v=6 m/s 碰后一起减速运动的加速度大小为a,由牛顿第二定律可得μ1(M+m)g=(M+m)a,解得a=4 m/s2一起减速的时间为t2==1.5 s一起减速的位移为x2=vt2-=4.5 m所以货车刹车的总时间t=t1+t2=2.5 s,刹车距离x=x1+x2=12 m。
7.答案 (1)1 m/s(2)0.8 J(3)1.5 m解析 (1)ab、cd棒组成的系统动量守恒,最终具有共同速度v,以水平向右为正方向,则m cd v0-m ab v0=(m cd+m ab)v所以v=1 m/s。
(2)根据能量转化与守恒定律,产生的焦耳热为Q=ΔE k减=(m cd+m ab)(-v2)=1.2 JQ ab=Q=0.8 J。
(3)对cd棒利用动量定理:-BIL·Δt=m cdΔv又q=IΔt=所以Δs=∑Δx==1.5 m。
8.答案 (1)Nkπr2 1 C(2)0.4 m/s(3)0.88 C解析 (1)E=N=N·πr2=Nkπr2Q=CE=CNkπr2=1×100××π×0.052 C=1 C将开关拨向2时,A棒会弹出说明所受安培力向右,电流向上,故电容器下板带正电。
(2)A、B棒相碰时没有构成回路,没有感应电流,A、B棒均做匀速直线运动直至A棒到达OO'处,设碰后A棒速度为v,由于B棒的位移是A棒的两倍,故B棒速度是2v。
A棒过OO'后在安培力作用下减速。
由动量定理可知:-BIlΔt=mΔv即-·Δt=mΔv即-·Δx=mΔv两边求和可得-·a=-mv,即v= m/s=0.4 m/s。
(3)设A棒与B棒碰前的速度为v0,碰撞过程动量守恒,则有:mv0=mv+m∙2v0,可得v0=3vA棒在安培力作用下加速,则有:BIlΔt=mΔv,即BlΔq=mΔv两边求和得:Bl(Q-Q')=mv0得:Q'=Q-代入前面的数据可知,电容器所剩电荷量为Q'=1 C- C=0.88 C。
9.答案 (1Pu He+γ(2)-v(3)(4)解析 (1Pu He+γ(2)设生成的另一个粒子质量为m',速度为v',则mv+m'v'=0得到v'=-v。
(3)ΔE=mv2+m'v'2+E=mv2+EΔm=。