高中数学必修二导学案
- 格式:doc
- 大小:738.00 KB
- 文档页数:5
高中数学必修2导学案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高一数学必修2 编制:廖信山审核:王育仁使用时间:2013年11月___日班级:__________ 组别:_________ 组号:_________ 姓名:___________空间几何体的结构(1)【学习目标】1.通过观察模型、图片,使学生理解并能归纳出棱柱、棱锥、棱台的结构特征。
2.通过对棱柱、棱锥、棱台的观察分析,培养学生的观察能力、空间想象能力和抽象概括能力。
3.通过教学活动,逐步培养学生探索问题的精神。
【自主学习】任务一阅读教材第2~3页,回答下列问题:1.空间几何体:____________________________________________________ 。
2.什么是多面体、多面体的面、棱、顶点?3.什么是旋转体、旋转体的轴?任务二阅读教材第3~4页,回答下列问题:1.什么是棱柱、棱柱的底、侧面、侧棱、顶点有什么特征如何表示如何分类思考:正方体、长方体是棱柱吗?2.什么是棱锥、棱锥的底、侧面、侧棱、顶点有什么特征如何表示如何分类思考:有一个面是多边形,其余各面是三角形的多面体是棱锥吗?3.什么是棱台、棱台的底、侧面、侧棱、顶点有什么特征如何表示如何分类2【合作探究】1.棱柱、棱锥、棱台都是多面体,当底面发生变化时,它们能否互相转化呢?【目标检测】A级:必做题1.一个多面体至少有________个面,面数最少的棱柱有_________个顶点。
2.在三棱锥A-BCD,可以当作棱锥底面的三角形的个数为()A.1B.2C.3D.43.在棱柱中()A、只有两个面平行B、所有的棱都平行C、所有的面都是平行四边形D、两底面平行,且各侧棱也互相平行4.棱台不具有的性质是()A.两底面平行且相似B.侧面都是梯形C.侧棱都平行D.侧棱延长后必交于一点B级:选做题1、若一个棱锥的侧面都是等边三角形,这个棱锥最多是()棱锥。
9.2.4 总体离散程度的估计【学习目标】1.会求样本的标准差、方差;2.理解离散程度参数的统计含义;3.会应用相关知识解决实际统计问题.【知识梳理】一、请同学们预习课本9.2.4节(第209-213页),完成下列知识梳理。
1、预习课本中的问题3,回答下列问题(1)计算甲乙两名运动员射击成绩的平均数、中位数、众数是、、。
(2)作出两名运动员射击成绩的频率图(如下)甲的成绩比较,乙的成绩相对,即甲的成绩波动幅度比较大,而乙的成绩比较稳定。
可见,他们的射击成绩是存在差异的。
2、度量数据离散程度的方法-极差度量数据程度的一种方法是用极差。
极差在一定程度上刻画了数据的程度.但因为极差只使用了数据中、两个值的信息,对其他数据的取值情况没有涉及,所以极差所含的信息量很少。
3、平均距离的一种表示形式假设一组数据是x1,x2,⋯,x n,用x̅表示这组数据的平均数. 我们用每个数据与平均数的差的绝对值作为“距离”,即|x i−x̅|(i=1,2,⋯,n)作为x i到x̅的“距离”.可以得到这组数据x1,x2,⋯,x n到x̅的“平均距离”为1 n ∑|x i−x| ni=14、方差和标准差(1)一组数据是x1,x2,⋯,x n,这组数据的方差是1 n ∑(x i−x)2ni=1,或1n∑x i2ni=1−x̅2,(你能证明两者是相等的吗?)(2)由于方差的单位是原始数据的单位的,为了使二者数据单位一致,我们取方差的算术平方根,得到这组数据的标准差√1n∑(x i−x)2ni=1,或 √1n∑x i2ni=1−x̅2,(3)总体方差S2和总体标准差S=√S2S2=1N∑(Y i−Y)2Ni=1=1N∑Y i2Ni=1−Y̅2,也可以写成加权的形式S2=1N∑f i(Y i−Y)2ki=1,(4)样本方差s2和样本标准差s=√s2s2=1n∑(y i−y)2ni=1(5)标准差刻画了数据的程度或幅度,标准差越大,数据的离散程度越;标准差越小,数据的离散程度越。
高中数学必修二导学案一、直线与方向1. 直线与线段的定义直线是由无数个点组成的,在两个点之间确定的线段称为直线段。
2. 直线的性质直线上的每个点都位于同一条直线上,直线没有起点和终点。
3. 直线的方向直线上的箭头表示直线的方向,箭头由起点指向终点。
4. 直线的倾斜程度直线的倾斜程度可以用斜率来表示,斜率是指直线的倾斜程度的数值大小。
5. 直线的平行与垂直直线的平行表示两条直线在同一平面上永远不会相交,直线的垂直表示两条直线之间的夹角为90度。
6. 直线的角度直线与水平线所成的角度为零度,直线与垂直线所成的角度为90度。
7. 直线与线段的关系直线可以分割线段,线段的两个端点分别位于直线的两侧。
8. 直线的长度直线没有长度,长度是指两点之间的距离。
二、平面向量1. 平面向量的定义平面向量是由有向线段表示的,有向线段是指有起点和终点的线段,有一个方向和大小。
2. 平面向量的性质平面向量可以进行平移、相加、数量乘法和点乘等运算。
3. 平面向量的加法平面向量的加法是指将两个平面向量的起点相连,使其终点成为新向量的终点。
4. 平面向量的数量乘法平面向量的数量乘法是指将一个向量的大小与一个实数相乘,得到新的向量。
5. 平面向量的点乘平面向量的点乘是指将两个向量的大小相乘再乘以夹角的余弦值。
6. 平面向量的模长平面向量的模长是指向量的大小,即有向线段的长度。
7. 平面向量的夹角平面向量的夹角是指两个向量之间的夹角,可以通过点乘计算。
8. 平面向量的投影平面向量的投影是指一个向量在另一个向量上的投影长度。
三、直线与平面的位置关系1. 直线与平面的位置关系直线与平面可以相互交叉,平行或垂直。
2. 直线与平面的距离直线与平面的距离是指直线上离平面最近点到平面的距离。
3. 平面与平面的位置关系平面与平面可以相互平行、相交或者垂直。
4. 平面与平面的位置判断通过两个向量的法向量来判断两个平面的位置关系。
四、空间中的向量1. 空间中的向量定义空间中的向量是三维空间中的有向线段,具有方向和大小。
第二章第一节两条直线平行与垂直的判断三维目标1.理解从代数的角度判断两直线平行或垂直的方法;2.会运用条件判断两直线能否平行或垂直;3. 经过本节课的学习,学会用“联系”的看法看问题,进一步认识代数与几何的联系.________________________________________________________________________________目标三导学做思 1问题 1.上节课我们学习了影响直线倾斜程度的两个量:倾斜角和斜率,其定义、公式及其互相关系是什么?问题 2.假如两条直线平行,这两条直线的倾斜角相等吗?斜率必定相等吗?问题 3.两条直线的倾斜角(斜率)相等,则必定平行吗?问题 4.怎样归纳两直线l1、 l 2平行与斜率之间的关系?问题 5.你可否从向量的角度,对自学内容中例题 3 和例题 4 进行解决呢?问题 6.探究当直线l1⊥l2时,k1与k2需要知足的关系?【学做思2】1.判断以下各小题中的直线l1与 l2能否平行或垂直.(1)l1经过点 A (0,1),B(1,0), l2经过点M(-1,3),N(2,0);(2)l1经过点A(-3,2),B(-3,10), l 2经过点M(5,-2),N(5,5).(3)l1的斜率为-10, l2经过点A(10,2),B(20,3);(4)l1经过点A(3,4),B(3,100), l 2经过点M(-10,40),N(10,40).【变式】此题中,若直线l1与 l 2分别知足以下条件,则两直线的地点关系分别是什么?(1) l1的斜率为 1,l2经过点 A (1,1) , B(2,2) ;(2) l1经过点 A( - 1,- 2), B(1,2) ,l2经过点 M( - 2,- 1), N(2,1).2.已知四边形ABCD 的四个极点的坐标分别为A(0,1) ,B(1,0) , C(3,2) ,D(2, 3),试判断该四边形的形状 .*【变式】在平面直角坐标系下,有三个点A ( 2, 2), B (- 5, 1),C( 3,- 5),( 1)试求第四个点 D 的坐标,使得四边形ABCD 构成平行四边形.( 2)试求第四个点 D 的坐标,使得这四个点构成平行四边形.达标检测1.以下说法正确的选项是()A .若直线l1与l2斜率相等,则l1∥ l2B .若直线l1∥l2,则k l1 kl2C.若直线l1,l2的斜率都不存在,则 l1∥ l2D .若两条直线的斜率存在且不等,则两直线不平行.2.按序连接 A(1 ,- 1), B(2 ,- 1), C(0,1) , D(0,0) 四点所构成的图形是 ________.3.已知长方形 ABCD 的三个极点的坐标分别为A(0,1) ,B(1,0) ,C(4,3) ,则第四个极点 D 的坐标为 ________.4. 直线l1的斜率为2,直线l2上有三点A(3,5) 、 B(x,7) 、 C(-1,y), 若l1⊥l2,求值: x , y5.试确立 m 的值,使过点 A(2m,2) 、 B(- 2,3m) 的直线与过点 P(1,2)、Q(- 6,0)的直线(1)平行;(2)垂直.。
人教版高中数学必修2全册导学案及答案全文表达流畅,无影响阅读体验的问题。
为了确保文章的质量,我认为在回答你的提问之前,有必要对导学案和答案的特点进行一下了解。
人教版高中数学必修2全册导学案是教师在备课过程中为了引导学生自主学习而准备的一份辅助教材。
它通常包含了本课时的学习目标、学习内容的整理、学习方法指导和相关习题等。
这些内容对于学生来说是非常重要的,因为通过导学案,学生可以在自主学习的过程中得到更好的指导和帮助。
作为导学案的一部分,答案的提供也是非常重要的。
学生在自学过程中,可以通过对答案的核对来检验自己的学习情况,找出自己的问题所在,并及时进行纠正和补充学习。
根据题目要求,我将按照导学案的格式布局,提供必修2全册的导学案及答案。
这样你可以更方便地进行自主学习,并通过对答案的核对来加深对数学知识的理解。
导学案及答案第一章函数与导数1.1 函数的概念与表示学习目标:1. 了解函数的基本概念;2. 掌握用集合、映射等方法表示函数的方法。
学习内容:1. 函数的定义;2. 函数的表示方法;3. 函数的性质。
学习方法指导:1. 仔细阅读教材相关内容,理解函数的定义;2. 注意区分自变量和因变量的概念;3. 多做一些例题,加深对函数表示方法的理解。
习题:1. 设函数f(x) = 2x + 3,求f(1)的值;2. 函数y = x^2的图象为抛物线,确定该函数的定义域和值域。
答案:1. 将x = 1带入函数f(x),得到f(1) = 2(1) + 3 = 5。
2. 函数y = x^2的定义域为全体实数集R,值域为非负实数集[0,+∞)。
......根据上述导学案的格式,我将为你提供人教版高中数学必修2全册的导学案及答案。
由于篇幅限制,本文无法将全册的导学案及答案一一列出。
但你可以根据此示例并借鉴此格式,自行拟定其他章节的导学案及答案。
希望上述内容对你有所帮助,祝你学习顺利!。
第二章第三节直线与平面垂直的性质
三维目标
1.研究直线与平面垂直的性质定理;
2.掌握直线与平面垂直的性质定理.
________________________________________________________________________________目标三导学做思 1
问题 1. 如下图,侧棱与地面什么关系?
D1C1
a b
A1
1 B
C
B
图 2.3-5
图 2.3-4
问题 2. 证明线面垂直的性质定理,并请用符号语言、图形语言表示线面垂直的性质定理.
问题 3. 怎样在黑板面上画一条与地面垂直的直线?
【学做思2】
1.如图,已知PA⊥矩形 ABCD 所在平面, M 、 N 分别是 AB 、 PC 的中点 .
(1)求证: MN ⊥ CD;
(2)若∠ PDA=45°,求证 :MN ⊥面 PCD.
达标检测
* 1 .在空间,以下哪些命题是正确的()
①平行于同一条直线的两条直线相互平行;
②垂直于同一条直线的两条直线相互平行;
③平行于同一个平面的两条直线相互平行;
④垂直于同—个平面的两条直线相互平行.
A .仅②不正确
B .仅①、④正确
C.仅①正确 D .四个命题都正确
*2. 已知l, EA于点A,EB于点B,a, a AB .求证 : a // l
3.如图 2,已知正方体 ABCD — A 1B1C1D1的棱长为 a,
(1)求证: BD 1⊥平面 B 1AC;
(2)求 B 到平面 B 1AC 的距离 .
图 2。
平面向量的概念【学习过程】一、问题导学预习教材P2-P4的内容,思考以下问题: 1.向量是如何定义的?向量与数量有什么区别? 2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.如何判断相等向量或共线向量?向量AB →与向量BA →是相等向量吗?二、合作探究探究点1: 向量的相关概念例1:给出下列命题:①若AB→=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.解析:AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC→|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.答案:②③ 探究点2: 向量的表示例2:在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA→,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC→,使|BC →|=6,点C 在点B 北偏东30°方向上. 解:(1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA→|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB→,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC →|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.探究点3:共线向量与相等向量例3:如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?解:(1)与a 的长度相等、方向相反的向量有OD→,BC →,AO →,FE →.(2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →. 互动探究1.变条件、变问法:本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. 2.变问法:本例条件不变,与AD→共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.三、学习小结1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB→. ④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|.(3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素.(2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b . ■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同. 四、精炼反馈1.如图,在▱ABCD 中,点E ,F 分别是AB ,CD 的中点,图中与AE →平行的向量的个数为( )A .1B .2C .3D .4解析:选C.图中与AE→平行的向量为BE →,FD →,FC →共3个.2.下列结论中正确的是( ) ①若a ∥b 且|a |=|b |,则a =b ; ②若a =b ,则a ∥b 且|a |=|b |;③若a 与b 方向相同且|a |=|b |,则a =b ; ④若a ≠b ,则a 与b 方向相反且|a |≠|b |. A .①③ B .②③ C .③④D .②④解析:选B .两个向量相等需同向等长,反之也成立,故①错误,a ,b 可能反向;②③正确;④两向量不相等,可能是不同向或者长度不相等或者不同向且长度不相等.3.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC→相等的向量;(2)与OB→长度相等的向量;(3)与DA→共线的向量.解:画出图形,如图所示.(1)易知BC ∥AD ,BC =AD ,所以与BC→相等的向量为AD →.(2)由O 是正方形ABCD 对角线的交点知OB =OD =OA =OC ,所以与OB→长度相等的向量为BO →,OC →,CO →,OA →,AO →,OD →,DO →.(3)与DA→共线的向量为AD →,BC →,CB →.平面向量的应用【第一学时】学习重难点学习目标核心素养向量在平面几何中的应用会用向量方法解决平面几何中的平行、垂直、长度、夹角等问题数学建模、逻辑推理向量在物理中的应用会用向量方法解决物理中的速度、力学问题数学建模、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.利用向量可以解决哪些常见的几何问题?2.如何用向量方法解决物理问题? 二、合作探究探究点1:向量在几何中的应用角度一:平面几何中的垂直问题如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE .证明:法一:设AD→=a ,AB →=b ,则|a |=|b |,a·b =0, 又DE→=DA →+AE →=-a +12b ,AF →=AB →+BF →=b +12a , 所以AF →·DE →=⎝ ⎛⎭⎪⎫b +12a ·⎝ ⎛⎭⎪⎫-a +12b =-12a 2-34a ·b +12b 2=-12|a |2+12|b |2=0.故AF→⊥DE →,即AF ⊥DE . 法二:如图,建立平面直角坐标系,设正方形的边长为2,则A (0,0),D (0,2),E (1,0),F (2,1),AF →=(2,1),DE →=(1,-2).因为AF→·DE →=(2,1)·(1,-2)=2-2=0, 所以AF→⊥DE →,即AF ⊥DE . 角度二:平面几何中的平行(或共线)问题如图,点O 是平行四边形ABCD 的中心,E ,F 分别在边CD ,AB 上,且CE ED =AFFB=12.求证:点E ,O ,F 在同一直线上.证明:设AB→=m ,AD →=n ,由CE ED =AF FB =12,知E ,F 分别是CD ,AB 的三等分点, 所以FO →=F A →+AO→=13BA →+12AC → =-13m +12(m +n )=16m +12n , OE→=OC →+CE →=12AC →+13CD → =12(m +n )-13m =16m +12n .所以FO→=OE →. 又O 为FO→和OE →的公共点,故点E ,O ,F 在同一直线上.角度三:平面几何中的长度问题如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,求对角线AC的长.解:设AD→=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD→|=|a -b |=a 2-2a ·b +b 2=1+4-2a ·b =5-2a ·b =2, 所以5-2a ·b =4,所以a ·b =12,又|AC →|2=|a +b |2=a 2+2a ·b +b 2=1+4+2a ·b =6,所以|AC →|=6,即AC =6.探究点2:向量在物理中的应用(1)在长江南岸某渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25km/h .渡船要垂直地渡过长江,其航向应如何确定?(2)已知两恒力F 1=(3,4),F 2=(6,-5)作用于同一质点,使之由点A (20,15)移动到点B (7,0),求F 1,F 2分别对质点所做的功.解:(1)如图,设AB →表示水流的速度,AD →表示渡船的速度,AC →表示渡船实际垂直过江的速度.因为AB→+AD →=AC →,所以四边形ABCD 为平行四边形. 在Rt △ACD 中,∠ACD =90°,|DC→|=|AB →|=12.5.|AD→|=25,所以∠CAD =30°,即渡船要垂直地渡过长江,其航向应为北偏西30°. (2)设物体在力F 作用下的位移为s ,则所做的功为W =F ·s .因为AB →=(7,0)-(20,15)=(-13,-15). 所以W 1=F 1·AB→=(3,4)·(-13,-15) =3×(-13)+4×(-15)=-99(焦),W 2=F 2·AB→=(6,-5)·(-13,-15)=6×(-13)+(-5)×(-15)=-3(焦). 三、学习小结1.用向量方法解决平面几何问题的“三个步骤”2.向量在物理学中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的减法和加法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,即为力F 与位移s 的数量积,即W =F·s =|F ||s |cos θ(θ为F 与s 的夹角). 四、精炼反馈1.河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( )A .10 m/sB .226 m/sC .4 6 m/sD .12 m/s解析:选B .由题意知|v 水|=2 m/s ,|v 船|=10 m/s ,作出示意图如图. 所以小船在静水中的速度大小 |v |=102+22=226(m/s ).2.已知三个力f 1=(-2,-1),f 2=(-3,2),f 3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f 4,则f 4=( )A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)解析:选D .由物理知识知f 1+f 2+f 3+f 4=0,故f 4=-(f 1+f 2+f 3)=(1,2). 3.设P ,Q 分别是梯形ABCD 的对角线AC 与BD 的中点,AB ∥DC ,试用向量证明:PQ ∥AB .证明:设DC →=λAB →(λ>0且λ≠1),因为PQ →=AQ →-AP →=AB →+BQ →-AP →=AB →+12(BD→-AC →) =AB→+12[(AD →-AB →)-(AD →+DC →)] =AB→+12(CD →-AB →) =12(CD →+AB →)=12(-λ+1)AB→, 所以PQ →∥AB →,又P ,Q ,A ,B 四点不共线,所以PQ ∥AB .【学习过程】一、问题导学预习教材内容,思考以下问题: 1.余弦定理的内容是什么?2.余弦定理有哪些推论?二、合作探究探究点1:已知两边及一角解三角形(1)(2018·高考全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A .42 B .30 C .29D .25(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =5,c =2,cos A =23,则b =( )A .2B .3C .2D .3 解析:(1)因为cos C =2cos 2 C 2-1=2×15-1=-35,所以由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos C =25+1-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =42,故选A .(2)由余弦定理得5=22+b 2-2×2b cos A ,因为cos A =23,所以3b 2-8b -3=0,所以b =3⎝ ⎛⎭⎪⎫b =-13舍去.故选D .答案:(1)A (2)D 互动探究:变条件:将本例(2)中的条件“a =5,c =2,cos A =23”改为“a =2,c =23,cos A =32”,求b 为何值?解:由余弦定理得: a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32, 即b 2-6b +8=0,解得b =2或b =4. 探究点2:已知三边(三边关系)解三角形(1)在△ABC 中,已知a =3,b =5,c =19,则最大角与最小角的和为( ) A .90°B .120°C .135°D .150°(2)在△ABC 中,若(a +c )(a -c )=b (b -c ),则A 等于( ) A .90° B .60° C .120°D .150°解析:(1)在△ABC 中,因为a =3,b =5,c =19,所以最大角为B ,最小角为A ,所以cos C =a 2+b 2-c 22ab =9+25-192×3×5=12,所以C =60°,所以A +B =120°,所以△ABC 中的最大角与最小角的和为120°.故选B .(2)因为(a +c )(a -c )=b (b -c ),所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.因为A ∈(0°,180°),所以A =60°.答案:(1)B (2)B 探究点3: 判断三角形的形状在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状.解:将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得b 2+c 2-b 2⎝⎛⎭⎪⎫a 2+b 2-c 22ab 2-c 2⎝ ⎛⎭⎪⎫a 2+c 2-b 22ac 2 =2bc ×a 2+c 2-b 22ac ×a 2+b 2-c22ab ,所以b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a 2=a 2.所以A =90°.所以△ABC 是直角三角形. 三、学习小结2.余弦定理的推论cos A=b2+c2-a22bc;cos B=a2+c2-b22ac;cos C=a2+b2-c22ab.3.三角形的元素与解三角形(1)三角形的元素三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.(2)解三角形已知三角形的几个元素求其他元素的过程叫做解三角形.四、精炼反馈1.在△ABC中,已知a=5,b=7,c=8,则A+C=()A.90°B.120°C.135°D.150°解析:选B.cos B=a2+c2-b22ac=25+64-492×5×8=12.所以B=60°,所以A+C=120°.2.在△ABC中,已知(a+b+c)(b+c-a)=3bc,则角A等于()A.30°B.60°C.120°D.150°解析:选B.因为(b+c)2-a2=b2+c2+2bc-a2=3bc,所以b2+c2-a2=bc,所以cos A=b2+c2-a22bc=12,所以A=60°.3.若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则ab =________.解析:因为C=60°,所以c2=a2+b2-2ab cos 60°,即c2=a2+b2-ab.①又因为(a +b )2-c 2=4, 所以c 2=a 2+b 2+2ab -4.②由①②知-ab =2ab -4,所以ab =43. 答案:434.在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca+c ·c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.所以a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.【学习过程】一、问题导学预习教材内容,思考以下问题:1.在直角三角形中,边与角之间的关系是什么?2.正弦定理的内容是什么?二、合作探究探究点1:已知两角及一边解三角形在△ABC中,已知c=10,A=45°,C=30°,解这个三角形.解:因为A=45°,C=30°,所以B=180°-(A+C)=105°.由asin A=csin C得a=c sin Asin C=10×sin 45°sin 30°=102.因为sin 75°=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64,所以b=c sin Bsin C=10×sin(A+C)sin 30°=20×2+64=52+56.探究点2:已知两边及其中一边的对角解三角形已知△ABC中的下列条件,解三角形:(1)a=10,b=20,A=60°;(2)a=2,c=6,C=π3.解:(1)因为bsin B=asin A,所以sin B=b sin Aa=20sin 60°10=3>1,所以三角形无解.(2)因为asin A=csin C,所以sin A=a sin Cc=22.因为c>a,所以C>A.所以A=π4.所以B=5π12,b=c sin Bsin C=6·sin5π12sinπ3=3+1.互动探究:变条件:若本例(2)中C=π3改为A=π4,其他条件不变,求C,B,b.解:因为asin A=csin C,所以sin C=c sin Aa=32.所以C=π3或2π3.当C=π3时,B=5π12,b=a sin Bsin A=3+1.当C=2π3时,B=π12,b=a sin Bsin A=3-1.探究点3:判断三角形的形状已知在△ABC中,角A,B所对的边分别是a和b,若a cos B=b cos A,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形解析:由正弦定理得:a cos B=b cos A⇒sin A cos B=sin B cos A⇒sin(A-B)=0,由于-π<A-B<π,故必有A-B=0,A=B,即△ABC为等腰三角形.答案:A变条件:若把本例条件变为“b sin B=c sin C”,试判断△ABC的形状.解:由b sin B=c sin C可得sin2B=sin2C,因为三角形内角和为180°,所以sin B=sin C.所以B=C.故△ABC为等腰三角形.三、学习小结1.正弦定理2.正弦定理的变形若R为△ABC外接圆的半径,则(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)sin A∶sin B∶sin C=a∶b∶c;(4)a+b+csin A+sin B+sin C=2R.四、精炼反馈1.(2019·辽宁沈阳铁路实验中学期中考试)在△ABC中,AB=2,AC=3,B=60°,则cos C=()A.33B.63C.32D.62解析:选B.由正弦定理,得ABsin C=ACsin B,即2sin C=3sin 60°,解得sin C=33.因为AB<AC,所以C<B,所以cos C=1-sin2C=6 3.2.在△ABC中,角A,B,C的对边分别为a,b,c,且A∶B∶C=1∶2∶3,则a∶b∶c =()A.1∶2∶3B.3∶2∶1C.2∶3∶1D.1∶3∶2解析:选D.在△ABC中,因为A∶B∶C=1∶2∶3,所以B=2A,C=3A,又A+B+C =180°,所以A=30°,B=60°,C=90°,所以a∶b∶c=sin A∶sin B∶sin C=sin 30°∶sin 60°∶sin 90°=1∶3∶2.3.在△ABC中,角A,B,C的对边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形解析:选D.已知c-a cos B=(2a-b)cos A,由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin(A+B)-sin A cos B=2sin A cos A-sin B cos A,化简得cos A(sin B-sin A)=0,所以cos A=0或sin B-sin A=0,则A=90°或A=B,故△ABC为等腰三角形或直角三角形.【学习过程】一、问题导学预习教材内容,思考以下问题:1.什么是基线?2.基线的长度与测量的精确度有什么关系?3.利用正、余弦定理可解决哪些实际问题?二、合作探究探究点1:测量距离问题海上A,B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B岛与C岛间的距离是________.解析:如图,在△ABC中,∠C=180°-(∠B+∠A)=45°,由正弦定理,可得BCsin 60°=ABsin 45°,所以BC=32×10=56(海里).答案:56海里互动探究:变条件:在本例中,若“从B岛望C岛和A岛成75°的视角”改为“A,C两岛相距20海里”,其他条件不变,又如何求B岛与C岛间的距离呢?解:由已知在△ABC中,AB=10,AC=20,∠BAC=60°,即已知两边和两边的夹角,利用余弦定理求解即可.BC2=AB2+AC2-2AB·AC·cos 60°=102+202-2×10×20×12=300.故BC=103.即B,C间的距离为103海里.探究点2测量高度问题如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.解析:由题意,在△ABC中,∠BAC=30°,∠ABC=180°-75°=105°,故∠ACB=45°.又AB=600 m,故由正弦定理得600sin 45°=BCsin 30°,解得BC=300 2 m.在Rt△BCD中,CD=BC·tan 30°=3002×33=1006(m).答案:1006互动探究:变问法:在本例条件下,汽车在沿直线AB方向行驶的过程中,若测得观察山顶D点的最大仰角为α,求tan α的值.解:如图,过点C,作CE⊥AB,垂足为E,则∠DEC=α,由例题可知,∠CBE=75°,BC=3002,所以CE=BC·sin∠CBE=3002sin 75°=3002×2+6 4=150+1503.所以tan α=DCCE=1006150+1503=32-63.探究点3:测量角度问题岛A观察站发现在其东南方向有一艘可疑船只,正以每小时10海里的速度向东南方向航行(如图所示),观察站即刻通知在岛A正南方向B处巡航的海监船前往检查.接到通知后,海监船测得可疑船只在其北偏东75°方向且相距10海里的C处,随即以每小时103海里的速度前往拦截.(1)问:海监船接到通知时,在距离岛A多少海里处?(2)假设海监船在D处恰好追上可疑船只,求它的航行方向及其航行的时间.解:(1)根据题意得∠BAC=45°,∠ABC=75°,BC=10,所以∠ACB=180°-75°-45°=60°,在△ABC中,由ABsin∠ACB=BCsin∠BAC,得AB=BC sin∠ACBsin∠BAC=10sin 60°sin 45°=10×3222=56.所以海监船接到通知时,在距离岛A 5 6 海里处.(2)设海监船航行时间为t小时,则BD=103t,CD=10t,又因为∠BCD=180°-∠ACB=180°-60°=120°,所以BD2=BC2+CD2-2BC·CD cos 120°,所以300t 2=100+100t 2-2×10×10t ·⎝ ⎛⎭⎪⎫-12,所以2t 2-t -1=0,解得t =1或t =-12(舍去). 所以CD =10,所以BC =CD ,所以∠CBD =12(180°-120°)=30°, 所以∠ABD =75°+30°=105°.所以海监船沿方位角105°航行,航行时间为1个小时. (或海监船沿南偏东75°方向航行,航行时间为1个小时) 三、学习小结1.基线在测量过程中,我们把根据测量的需要而确定的线段叫做基线. 2.基线与测量精确度的关系一般来说,基线越长,测量的精确度越高. 图示南偏西60°(指以正南方向为始边,转向目标方向线形成的角)四、精炼反馈1.若P 在Q 的北偏东44°50′方向上,则Q 在P 的( ) A .东偏北45°10′方向上 B .东偏北45°50′方向上 C .南偏西44°50′方向上D .西偏南45°50′方向上解析:选C.如图所示.2.如图,D,C,B三点在地面同一直线上,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知CD=200米,点C位于BD上,则山高AB等于()A.1002米B.50(3+1)米C.100(3+1)米D.200米解析:选C.设AB=x米,在Rt△ACB中,∠ACB=45°,所以BC=AB=x.在Rt△ABD中,∠D=30°,则BD=3AB=3x.因为BD-BC=CD,所以3x-x=200,解得x=100(3+1).故选C.3.已知台风中心位于城市A东偏北α(α为锐角)度的150公里处,以v公里/小时沿正西方向快速移动,2.5小时后到达距城市A西偏北β(β为锐角)度的200公里处,若cos α=34cos β,则v=()A.60B.80C.100D.125解析:选C.画出图象如图所示,由余弦定理得(2.5v)2=2002+1502+2×200×150cos(α+β)①,由正弦定理得150sin β=200sin α,所以sin α=43sin β.又cos α=34cos β,sin2α+cos2α=1,解得sin β=35,故cos β=45,sin α=45,cos α=35,故cos(α+β)=1225-1225=0,代入①解得v=100.4.某巡逻艇在A处发现在北偏东45°距A处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇的航行方向.解:设经过t 小时在点C 处刚好追上走私船,依题意:AC =123t ,BC =12t ,∠ABC =120°,在△ABC 中,由正弦定理得123tsin 120°=12tsin ∠BAC,所以sin ∠BAC =12,所以∠BAC =30°,所以AB =BC =8=12t ,解得t =23,航行的方向为北偏东75°.即巡逻艇最少经过23小时可追到走私船,沿北偏东75°的方向航行.平面向量的运算【第一课时】向量的加法运算【学习重难点】【学习目标】【核心素养】平面向量加法的几何意义理解向量加法的概念以及向量加法的几何意义数学抽象、直观想象平行四边形法则 和三角形法则掌握向量加法的平行四边形法则和三角形法则, 会用它们解决实际问题 数学抽象、直观想象平面向量加法的运算律 掌握向量加法的交换律和结合律,会用它们进行计算数学抽象、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则?2.向量加法的运算律有哪两个?二、新知探究探究点1:平面向量的加法及其几何意义例1:如图,已知向量a ,b ,c ,求作和向量a +b +c .解:法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA→=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA →=a ,OB →=b ;(2)作平行四边形AOBC ,则OC→=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE , 则OE→=OC →+c =a +b +c .OE →即为所求.探究点2:平面向量的加法运算 例2:化简:(1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.解:(1)BC→+AB →=AB →+BC →=AC →.(2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0. 探究点3:向量加法的实际应用例3:某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?解:如图,设此人游泳的速度为OB→,水流的速度为OA →,以OA →,OB →为邻边作▱OACB ,则此人的实际速度为OA→+OB →=OC →.由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时. 三、学习小结即a +b =AB+BC =AC对角线OC就是a 与b 的和2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. 四、精炼反馈1.化简OP→+PQ →+PS →+SP →的结果等于( )A .QP →B .OQ →C .SP →D .SQ→ 解析:选B .OP→+PQ →+PS →+SP →=OQ →+0=OQ →.2.在四边形ABCD 中,AC →=AB →+AD →,则一定有( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形解析:选D .由AC→=AB →+AD →得AD →=BC →,即AD =BC ,且AD ∥BC ,所以四边形ABCD的一组对边平行且相等,故为平行四边形.3.已知非零向量a ,b ,|a |=8,|b |=5,则|a +b |的最大值为______. 解析:|a +b |≤|a |+|b |,所以|a +b |的最大值为13. 答案:134.已知▱ABCD ,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO→+AC →; (2)DE→+BA →.解:(1)延长AC ,在延长线上截取CF =AO ,则向量AF→为所求.(2)在AB 上取点G ,使AG =13AB , 则向量BG→为所求.【第二课时】【学习过程】一、问题导入预习教材内容,思考以下问题: 1.a 的相反向量是什么?2.向量减法的几何意义是什么? 二、新知探究探究点1: 向量的减法运算例1:化简下列各式:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.解:(1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB→. 法二:原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →. 探究点2:向量的减法及其几何意义例2:如图,已知向量a ,b ,c 不共线,求作向量a +b -c .解:法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC →=c ,连接BC ,则CB→=b -c . 过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA→=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB →=a +b -c .法三:如图③,在平面内任取一点O , 作OA→=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .探究点3:用已知向量表示其他向量例3:如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB →=a ,AC→=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.解:因为四边形ACDE 是平行四边形,所以CD→=AE →=c ,BC →=AC →-AB →=b -a , 故BD →=BC →+CD →=b -a +c . 三、学习小结1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. 2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA→=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. 四、精炼反馈1.在△ABC 中,D 是BC 边上的一点,则AD→-AC →等于( )A .CB → B .BC → C .CD→ D .DC→ 解析:选C .在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC→=CD →. 2.化简:AB→-AC →+BD →-CD →+AD →=________.解析:原式=CB →+BD →+DC →+AD →=CD →+DC →+AD →=0+AD →=AD →.答案:AD→3.已知错误!=10,|错误!|=7,则|错误!|的取值范围为______.解析:因为CB →=AB →-AC →,所以|CB→|=|AB →-AC →|. 又错误!≤|错误!-错误!|≤|错误!|+|错误!|, 3≤|AB→-AC →|≤17, 所以3≤|CB →|≤17.答案:[3,17]4.若O 是△ABC 所在平面内一点,且满足|OB→-OC →|=|OB →-OA →+OC →-OA →|,试判断△ABC 的形状.解:因为OB→-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →.又|OB→-OC →|=|OB →-OA →+OC →-OA →|, 所以|AB→+AC →|=|AB →-AC →|,所以以AB ,AC 为邻边的平行四边形的两条对角线的长度相等,所以该平行四边形为矩形,所以AB ⊥AC ,所以△ABC 是直角三角形.【第三课时】【学习过程】一、问题导学预习教材内容,思考以下问题:1.向量数乘的定义及其几何意义是什么?2.向量数乘运算满足哪三条运算律?3.向量共线定理是怎样表述的?4.向量的线性运算是指的哪三种运算? 二、新知探究探究1: 向量的线性运算 例1:(1)计算:①4(a +b )-3(a -b )-8a ;②(5a -4b +c )-2(3a -2b +c );③23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ). (2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ).解:(1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎝ ⎛⎭⎪⎫52a -1112b =53a -1118b .(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j )=⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j . 探究点2:向量共线定理及其应用例2:已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线; (2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.解:(1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB→. 所以AB→,BD →共线,且有公共点B , 所以A 、B 、D 三点共线. (2)因为k e 1+e 2与e 1+k e 2共线, 所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎨⎧k -λ=0,λk -1=0,所以k =±1. 探究点3:用已知向量表示其他向量例3:如图,ABCD 是一个梯形,AB →∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB→=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC→=________; (2)MN→=________.解析:因为AB→∥CD →,|AB →|=2|CD →|,所以AB→=2DC →,DC →=12AB →. (1)AC →=AD →+DC →=e 2+12e 1. (2)MN→=MD →+DA →+AN → =-12DC →-AD →+12AB →=-14e 1-e 2+12e 1=14e 1-e 2.答案:(1)e 2+12e 1(2)14e 1-e 2 互动探究变条件:在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN→=MD →+DA →+AN →,MN→=MC →+CB →+BN →, 所以2MN →=(MD →+MC →)+DA →+CB →+(AN →+BN →). 又因为M ,N 分别是DC ,AB 的中点,所以MD→+MC →=0,AN →+BN →=0. 所以2MN→=DA →+CB →, 所以MN →=12(-AD →-BC →)=-12e 2-12e 1. 三、学习小结1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.2.向量数乘的运算律 设λ,μ为实数,那么: (1)λ(μa )=(λμ)a .(2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb . 3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . 四、精炼反馈 1.13⎣⎢⎡⎦⎥⎤12(2a +8b )-(4a -2b )等于( )A .2a -bB .2b -aC .b -aD .a -b解析:选B .原式=16(2a +8b )-13(4a -2b )=13a +43b -43a +23b =-a +2b . 2.若点O 为平行四边形ABCD 的中心,AB →=2e 1,BC →=3e 2,则32e 2-e 1=( ) A .BO→ B .AO→ C .CO→ D .DO→ 解析:选A .BD →=AD →-AB →=BC →-AB →=3e 2-2e 1,BO →=12BD →=32e 2-e 1.3.已知e 1,e 2是两个不共线的向量,若AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,求证A ,B ,D 三点共线.证明:因为CB →=e 1+3e 2,CD →=2e 1-e 2,所以BD→=CD →-CB →=e 1-4e 2. 又AB →=2e 1-8e 2=2(e 1-4e 2),所以AB →=2BD →,所以AB →与BD →共线. 因为AB 与BD 有交点B ,所以A ,B ,D 三点共线.【第四课时】【学习过程】一、问题导学预习教材内容,思考以下问题: 1.什么是向量的夹角? 2.数量积的定义是什么? 3.投影向量的定义是什么? 4.向量数量积有哪些性质? 5.向量数量积的运算有哪些运算律? 二、新知探究探究点1:平面向量的数量积运算例1:(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求:①AD →·BC →;②AB →·DA →.解:(1)(a +2b )·(a +3b ) =a·a +5a·b +6b·b =|a |2+5a·b +6|b |2 =|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192.(2)①因为AD→∥BC →,且方向相同,所以AD→与BC →的夹角是0°, 所以AD→·BC →=|AD →||BC →|·cos 0°=3×3×1=9. ②因为AB→与AD →的夹角为60°,所以AB→与DA →的夹角为120°, 所以AB→·DA →=|AB →||DA →|·cos 120°=4×3×⎝ ⎛⎭⎪⎫-12=-6.互动探究:变问法:若本例(2)的条件不变,求AC→·BD →.解:因为AC→=AB →+AD →,BD →=AD →-AB →,所以AC →·BD →=(AB →+AD →)·(AD →-AB →) =AD →2-AB →2=9-16=-7. 探究点2: 向量模的有关计算例2:(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=( ) A .3 B .23C .4D .12(2)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=( )A .13B .12C .15D .14 解析:(1)|a +2b |=(a +2b )2=a 2+4a·b +4b 2 =|a |2+4|a ||b |cos 60°+4|b |2= 4+4×2×1×12+4=23.(2)由题意得|a -b |2=|a |2+|b |2-2|a ||b |·cos 60°=34,即1+|b |2-|b |=34,解得|b |=12. 答案:(1)B (2)B 探究点3: 向量的夹角与垂直命题角度一:求两向量的夹角例3:(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.解析:(1)设a 与b 的夹角为θ,(a +2b )·(a -3b )=a ·a -3a ·b +2b ·a -6b ·b =|a |2-a ·b -6|b |2=|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos θ-6×42=-72, 所以24cos θ=36+72-96=12,所以cos θ=12.又因为θ∈[]0,π,所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3.答案:(1)π3(2)π3命题角度二:证明两向量垂直例4:已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a +t b ).证明:因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值.此时b ·(a +t b )=b·a +t b 2=a·b +⎝ ⎛⎭⎪⎫-a·b |b |2·|b |2=a·b -a·b =0.所以b ⊥(a +t b ). 命题角度三:利用夹角和垂直求参数例5:(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k 的值为( )A .-32 B .32 C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.解析:(1)因为3a +2b 与k a -b 互相垂直, 所以(3a +2b )·(k a -b )=0, 所以3k a 2+(2k -3)a·b -2b 2=0. 因为a ⊥b ,所以a ·b =0, 又|a |=2,|b |=3, 所以12k -18=0,k =32.(2)由3a +λb +7c =0,可得7c =-(3a +λb ), 即49c 2=9a 2+λ2b 2+6λa ·b , 而a ,b ,c 为单位向量, 则a 2=b 2=c 2=1, 则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5. 答案:(1)B (2)-8或5 三、学习小结1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ; ③当θ=π时,向量a 与b 反向. 2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. 3.投影向量如图(1),设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为。
高中数学必修2优质导学案导学目的:通过本导学案的学习,能够全面理解高中数学必修2各个知识点的概念和应用,提高数学思维能力,做到知识点的灵活运用。
一、无理方程的解与判定1. 定义无理方程无理方程就是方程中包含有无理数的变量,如根式、π等。
例如:$\sqrt{3x+1}-2=5$。
2. 解无理方程的方法解无理方程的关键在于将无理数项逐步化简,最终得到可解的方程。
通过反复化简过程,得出方程解的过程。
3. 题目训练(1)求解方程$\sqrt{2x+3}-\sqrt{x-1}=1$。
(2)判定方程$\dfrac{\sqrt{x}}{x-1}=1$的解的有无。
二、二次函数及其性质1. 二次函数的概念二次函数是形如$f(x)=ax^2+bx+c$的函数,其中$a$、$b$、$c$是常数且$a\neq0$。
2. 二次函数的图像二次函数的图像是一个开口向上或者向下的抛物线,开口的方向由二次项系数$a$的正负来确定。
3. 二次函数的性质(1)顶点坐标:顶点坐标为$(-\dfrac{b}{2a},\dfrac{4ac-b^2}{4a})$。
(2)判别式$\Delta=b^2-4ac$的作用:$\Delta>0$时,二次函数有两个不同的实数根;$\Delta=0$时,二次函数有两个相等的实数根;$\Delta<0$时,二次函数无实数根。
4. 题目训练(1)已知二次函数$f(x)=2x^2-4x+1$,求其顶点坐标。
(2)讨论二次函数$g(x)=3x^2+5x+2$的实数解的情况。
三、圆的性质及相关定理1. 圆的定义圆是平面上到一个定点距离等于定长的所有点的集合。
2. 圆周角与圆心角(1)圆周角:圆周角是指顶点在圆的周长上的角,它的度数等于该角对应的弧度。
(2)圆心角:圆心角是指角的顶点是圆心的角,它的度数是圆心与角顶点两条射线的夹角。
3. 圆的相关定理(1)圆心角定理:同一个圆的圆心角相等。
(2)圆周角定理:顶点在同一个圆周上的圆周角相等。
1§2.1.1 平面学习目标1. 了解平面的描述性概念;2. 掌握平面的表示方法和基本画法;3. 掌握平面的基本性质;4. 能正确地用数学语言表示点、直线、平面以及它们之间的关系.学习过程一、课前准备4043引入:平面是构成空间几何体的基本要素.那么什么是平面呢?平面如何表示呢?平面又有哪些性质呢?二、新课导学※探索新知探究1:平面的概念与表示问题:生活中哪些物体给人以平面形象?你觉得平面可以拉伸吗?平面有厚薄之分吗?新知1:平面(plane)是平的;平面是可以无限延展的;平面没有厚薄之分.问题:通常我们用一条线段表示直线,那你认为用什么图形表示平面比较合适呢?新知2:如上图,通常用平行四边形来表示平面.平面可以用希腊字母,,αβγ来表示,也可以用平行四边形的四个顶点来表示,还可以简单的用对角线的端点字母表示.如平面α,平面ABCD,平面AC等.规定:①画平行四边形,锐角画成45°,横边长等于其邻边长的2倍;②两个平面相交时,画出交线,被遮挡部分用虚线画出来;③用希腊字母表示平面时,字母标注在锐角内.问题:点动成线、线动成面.联系集合的观点,点和直线、平面的位置关系怎么表示?直线和平面呢?新知3:⑴点A在平面α内,记作Aα∈;点A在平面α外,记作Aα∉.⑵点P在直线l上,记作P l∈,点P在直线外,记作P l∉.⑶直线l上所有点都在平面α内,则直线l在平面α内(平面α经过直线l),记作lα⊂;否则直线就在平面外,记作lα⊄.探究2:平面的性质问题:直线l与平面α有一个公共点P,直线l是否在平面α内?有两个公共点呢?新知4:公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.用集合符号表示为:,,A lB l∈∈且,A B lααα∈∈⇒⊂问题:两点确定一直线,两点能确定一个平面吗?任意三点能确定一个平面吗?新知5:公理2 过不在一条直线上的三点,有且只有一个平面. 如上图,三点确定平面ABC.问题:把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于点B?为什么?新知6:公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.如下图所示:平面α与平面β相交于直线l,记作lαβ=.公理3用集合符号表示为,P a∈且Pβ∈⇒lαβ=,且P l∈※典型例题例1 如图,用符号表示下列图形中点、直线、平面之间的位置关系.2例2 如图在正方体ABCD A B C D ''''-中,判断下列⑴直线AC 在平面ABCD ⑵设上下底面中心为,O O 则平面AA C C ''与平面BB D D '的交线为OO ';⑶点,,A O C '⑷平面AB C ''与平面AC '重合.※ 动手试试练 用符号表示下列语句,并画出相应的图形: ⑴点A 在平面α内,但点B 在平面α外; ⑵直线a 经过平面α外的一点M ; ⑶直线a 既在平面α内,又在平面β内.三、总结提升※ 学习小结1. 平面的特征、画法、表示;2. 平面的基本性质(三个公理);3. 用符号表示点、线、面的关系.※ 知识拓展平面的三个性质是公理(不需要证明,直接可以用),是用公理化方法证明命题的基础.其中公理1可以用来判断直线或者点是否在平面内;公理2用来确定一个平面,判断两平面重合,或者证明点、线共面;公理3用来判断两个平面相交,证明点共线或者线共点的问题.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下面说法正确的是( ).①平面ABCD 的面积为210cm ②100个平面重合比50个平面重合厚③空间图形中虚线都是辅助线④平面不一定用平行四边形表示.A.①B.②C.③D.④ 2. 下列结论正确的是( ).①经过一条直线和这条直线外一点可以确定一个平面②经过两条相交直线,可以确定一个平面③经过两条平行直线,可以确定一个平面④经过空间任意三点可以确定一个平面A.1个B.2个C.3个D.4个3. 们的交点一定( ) A.在直线DB 上B.在直线AB 上C.在直线CB 上D.都不对4. 直线12,l l 相交于点P ,并且分别与平面γ相交于点,A B 两点,用符号表示为____________________.5. 两个平面不重合,在一个面内取4点,另一个面内取3点,这些点最多能够确定平面_______个. 1. 画出满足下列条件的图形:⑴三个平面:一个水平,一个竖直,一个倾斜; ⑵ ,,,l AB CD αβαβ=⊂⊂AB ∥l ,CD ∥l .2.如图在正方体中,A 是顶点,,B C 都是棱的中点,请作出经过,,A B C 三点的平面与正方体的截面.3§2.1.2空间直线与直线之间的位置关系1. 正确理解异面直线的定义;2. 会判断空间两条直线的位置关系;3. 掌握平行公理及空间等角定理的内容和应用;4. 会求异面直线所成角的大小.一、课前准备(预习教材P 44~ P 47,找出疑惑之处) 复习1:平面的特点是______、 _______ 、_______.复习2:平面性质(三公理)公理1___________________________________; 公理2___________________________________; 公理3___________________________________.二、新课导学※ 探索新知探究1:异面直线及直线间的位置关系问题:平面内两条直线要么平行要么相交(重合不考虑),空间两条直线呢?观察:如图在长方体中,直线A B'与CC '的位置关系如何?结论:直线A B '与CC '既不相交,也不平行.新知1:像直线A B '与CC '这样不同在任何一个平面内的两条直线叫做异面直线(skew lines).试试:请在上图的长方体中,再找出3对异面直线.问题:作图时,怎样才能表示两条直线是异面的?新知2:异面直线的画法有如下几种(,a b 异面):试试:请你归纳出空间直线的位置关系.探究2:平行公理及空间等角定理问题:平面内若两条直线都和第三条直线平行,则这两条直线互相平行,空间是否有类似规律?观察:如图2-1,在长方体中,直线C D ''∥A B '',AB ∥A B '',那么直线AB 与C D ''平行吗?图2-1新知3: 公理4 (平行公理)平行于同一条直线的两条直线互相平行.问题:平面上,如果一个角的两边与另一个角的两边分别平行,则这两个角相等或者互补,空间是否有类似结论?观察:在图2-1中,ADC ∠与A D C '''∠,ADC ∠与A B C '''∠的两边分别对应平行,这两组角的大小关系如何?新知4: 定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.探究3:异面直线所成的角问题:平面内两条直线的夹角是如何定义的?想一想异面直线所成的角该怎么定义?图2-2新知5: 如图2-2,已知两条异面直线,a b ,经过空间任一点O 作直线 a '∥a ,b '∥b ,把a '与b '所成的锐角(或直角)叫做异面直线,a b 所成的角(夹角).如果两条异面直线所成的角是直角,就说这两条直线互相垂直,记作a b ⊥.反思:思考下列问题.⑴ 作异面直线夹角时,夹角的大小与点O 的位置有关吗?点O 的位置怎样取才比较简便? ⑵ 异面直线所成的角的范围是多少?4⑶ 两条互相垂直的直线一定在同一平面上吗?⑷ 异面直线的夹角是通过什么样的方法作出来的?它体现了什么样的数学思想?※ 典型例题例1 如图2-3,,,,E F G H 分别为空间四边形ABCD 各边,,,AB BC CD DA 的中点,若对角线2,BD = 4AC =,则22EG HF +的值为多少?(性质:平行四边形的对角线的平方和等于四条边的平方和).图2-3例2 如图2-4,在正方体中,求下列异面直线所成的角.⑴BA '和CC ' ⑵B D ''和C A '图2-4※ 动手试试练 正方体ABCD A B C D ''''-的棱长为a ,求异面直线AC 与A D ''所成的角.三、总结提升※ 学习小结1. 异面直线的定义、夹角的定义及求法;2. 空间直线的位置关系;3. 平行公理及空间等角定理.※ 知识拓展异面直线的判定定理:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.如图,,,,a A B B a ααα⊂∉∈∉,则直线AB 与直线※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. ,,a b c 为三条直线,如果,a c b c ⊥⊥,则,a b 的位置关系必定是( ).A.相交B.平行C.异面D.以上答案都不对 2. 已知,a b 是异面直线,直线c 平行于直线a ,那么c 与b ( ).A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线 3. 已知l αβ=,,a b αβ⊂⊂,且,a b 是异面直线,那么直线l ( ).A.至多与,a b 中的一条相交B.至少与,a b 中的一条相交C.与,a b 都相交D.至少与,a b 中的一条平行4. 正方体ABCD A B C D ''''-的十二条棱中,与直线AC '是异面直线关系的有___________条.5. 长方体1111ABCD A B C D -中,3AB =,2,BC =1AA =1,异面直线AC 与11AD 所成角的余弦值是______. 1. 已知,E E '是正方体AC '棱AD ,A D ''的中点,求证:CEB C E B '''∠=∠.2. 如图2-5,在三棱锥P ABC -中,PA BC ⊥,E 、F 分别是PC 和AB 上的点,且32PE AF EC FB ==,设EF 与PA 、BC 所成的角分别为,αβ, 求证:90αβ+=°.5图2-5§2.1.3空间直线与平面之间的位置关系 §2.1.4平面与平面之间的位置关系1. 掌握直线与平面之间的位置关系,理解直线在平面外的概念,会判断直线与平面的位置关系;2. 掌握两平面之间的位置关系,会画相交平面的图形.一、课前准备(预习教材P 48~ P 50,找出疑惑之处)复习1:空间任意两条直线的位置关系有_______、 _______、_______三种.复习2:异面直线是指________________________ 的两条直线,它们的夹角可以通过______________ 的方式作出,其范围是___________.复习3:平行公理:__________________________ ________________;空间等角定理:____________ ___________________________________________.二、新课导学※ 探索新知 探究1:空间直线与平面的位置关系 问题:用铅笔表示一条直线,作业本表示一个平面,你试着比画,它们之间有几种位置关系?观察:如图3-1,直线A B 与长方体的六个面有几种位置关系?图3-1新知1:直线与平面位置关系只有三种:⑴直线在平面内—— ⑵直线与平面相交—— ⑶直线与平面平行——其中,⑵、⑶两种情况统称为直线在平面外.反思:⑴从交点个数方面来分析,上述三种关系对应的交点有多少个?请把结果写在新知1的——符号后面 ⑵请你试着把上述三种关系用图形表示出来,并想想用符号语言该怎么描述.探究2:平面与平面的位置关系 问题:平面与平面的位置关系有几种?你试着拿两个作业本比画比画.观察:还是在长方体中,如图3-2,你看看它的六个面两两之间的位置关系有几种? 图3-2新知2:两个平面的位置关系只有两种: ⑴两个平面平行——没有公共点 ⑵两个平面相交——有一条公共直线试试:请你试着把平面的两种关系用图形以及符号语言表示出来.6※ 典型例题例1 下列命题中正确的个数是( )①若直线l 上有无数个点不在平面α内,则l ∥α. ②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.A.0B.1C.2D.3例2 已知平面,αβ,直线,a b ,且α∥β,a α⊂, b β⊂,则直线a 与直线b 具有怎样的位置关系?※ 动手试试练1. 若直线a 不平行于平面α,且a α⊄,则下列结论成立的是( )A.α内的所有直线与a 异面B.α内不存在与a 平行的直线C.α内存在唯一的直线与a 平行D.α内的直线与a 都相交.练2. 已知,,a b c 为三条不重合的直线,,,αβγ为三个不重合的平面:①a ∥c ,b ∥c ⇒a ∥b ; ②a ∥γ,b ∥γ⇒a ∥b ; ③a ∥c ,c ∥α⇒a ∥α; ④a ∥γ,a ∥αα⇒∥γ;⑤a α⊄,b α⊂,a ∥b ⇒a ∥α. 其中正确的命题是( )A.①⑤B.①②C.②④D.③⑤三、总结提升※ 学习小结1. 直线与平面、平面与平面的位置关系;2. 位置关系用图形语言、符号语言如何表示;3. 长方体作为模型研究空间问题的重要性.※ 知识拓展求类似确定空间的部分、平面的个数、交线的条数、交点的个数问题,都应对相应的点、线、面的位置关系进行分类讨论,做到不重不漏.分类讨论是数学中常用的重要数学思想方法,可以使问题化难※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 直线l 在平面α外,则( ).A.l ∥αB.l 与α至少有一个公共点C.l A α=D.l 与α至多有一个公共点 2. 已知a ∥α,b α⊂,则( ). A.a ∥b B.a 和b 相交C.a 和b 异面D.a 与b 平行或异面3. 四棱柱的的六个面中,平行平面有( ). A.1对 B.1对或2对 C.1对或2对或3对D.0对或1对或2对或3对4. 过直线外一点与这条直线平行的直线有____条;过直线外一点与这条直线平行的平面有____个.5. 若在两个平面内各有一条直线,且这两条直线互相平行,那么这两个平面的位置关系一定是______. 1. 已知直线,a b 及平面α满足: a ∥α,b ∥α,则 直线,a b 的位置关系如何?画图表示.2. 两个不重合的平面,可以将空间划为几个部分?三个呢?试画图加以说明.§2.1 空间点、直线、平面之间的1. 理解和掌握平面的性质定理,能合理运用;2. 掌握直线与直线、直线与平面、平面与平面的位置关系;3. 会判断异面直线,掌握异面直线的求法;4. 会用图形语言、符号语言表示点、线、面的位置关系.一、课前准备(预习教材P40~ P50,找出疑惑之处)复习1:概念与性质⑴平面的特征和平面的性质(三个公理);⑵平行公理、等角定理;⑶直线与直线的位置关系⎧⎪⎨⎪⎩平行相交异面⑷直线与平面的位置关系⎧⎪⎨⎪⎩在平面内相交平行⑸平面与平面的位置关系⎧⎨⎩平行相交复习2:异面直线夹角的求法:平移线段作角,解三角形求角.复习3:图形语言、符号语言表示点、线、面的位置关系⑴点与线、点与面的关系;⑵线与线、线与面的关系;⑶面与面的关系.二、新课导学※典型例题例1 如图4-1,ABC∆在平面α外,AB Pα=,BC Qα=,AC Rα=,求证:P,Q,R三点共线.图4-1小结:证明点共线的基本方法有两种⑴找出两个面的交线,证明若干点都是这两个平面的公共点,由公理3可推知这些点都在交线上,即证若干点共线.⑵选择其中两点确定一条直线,证明另外一些点也都在这条直线上.例2 如图4-2,空间四边形ABCD中,E,F分别是AB和CB上的点,G,H分别是CD和AD上的点,且EH FG与相交于点K.求证:EH,BD,FG三条直线相交于同一点.图4-2小结:证明三线共点的基本方法为:先确定待证的三线中的两条相交于一点,再证明此点是二直线所在平面的公共点,第三条直线是两个平面的交线,由公理3得证这三线共点.例3 如图4-3,如果两条异面直线称作“一对”,那么在正方体的12条棱中,共有异面直线多少对?图4-378反思:分析清楚几何特点是避免重复计数的关键,计数问题必须避免盲目乱数,分类时要不重不漏.※ 动手试试练1. 如图4-4,是正方体的平面展开图,图4-4则在这个正方体中:①BM 与ED 平行 ②CN 与BE 是异面直线 ③CN 与BM 成60°角 ④DM 与BN 是异面直线 其中正确命题的序号是( )A.①②③B.②④C.③④D.②③④练2. 如图4-5,在正方体中,E ,F 分别为AB 、AA '的中点,求证:CE ,D F ',DA 三线交于一点.图4-5练3. 由一条直线和这条直线外不共线的三点,能确定平面的个数为多少?小结:分类讨论的数学思想三、总结提升※ 学习小结1. 平面及平面基本性质的应用;2. 点、线、面的位置关系;3. 异面直线的判定及夹角问题.※ 知识拓展异面直线的判定方法:①定义法:利用异面直线的定义,说明两直线不平行,也不相交,即不可能在同一个平面内. ②定理法:利用异面直线的判定定理说明.③反证法(常用):假设两条直线不异面,则它们一定共面,即这两条直线可能相交,也可能平行,然.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 直线1l ∥2l ,在1l 上取3个点,在2l 上取2个点,由这5个点确定的平面个数为( ). A.1个 B.3个 C.6个 D.9个 2. 下列推理错误的是( ).A.A l ∈,A α∈,B l ∈,B α∈l α⇒⊂B.A α∈,A β∈,B α∈,B β∈AB αβ⇒=C.l α⊄,A l A α∈⇒∉D.A ,B ,C α∈, A ,B ,C β∈,且A ,B ,C 不共线αβ⇒与重合3. a ,b 是异面直线,b ,c 是异面直线,则a ,c 的位置关系是( ).A.相交、平行或异面B.相交或平行C.异面D.平行或异面4. 若一条直线与两个平行平面中的一个平面平行,则它与另一平面____________.5. 垂直于同一条直线的两条直线位置关系是_____ _____________;两条平行直线中的一条与某一条直线垂直,则另一条和这条直线______.课后作业1. 如图4-6,在正方体中M ,N 分别是AB 和DD '的中点,求异面直线B M '与CN 所成的角.图4-62. 如图4-7,已知不共面的直线a,b,c相交于O点,M,P点是直线α上两点,N,Q分别是直线b,c上一点.求证:MN和PQ§2.2.1 直线与平面平行的判定1. 通过生活中的实际情况,建立几何模型,了解直线与平面平行的背景;2. 理解和掌握直线与平面平行的判定定理,并会用其证明线面平行.一、课前准备(预习教材P54~ P55,找出疑惑之处)复习:直线与平面的位置关系有______________,_______________,_________________.讨论:直线和平面的位置关系中,平行是最重要的关系之一,那么如何判定直线和平面是平行的呢?根据定义好判断吗?二、新课导学※探索新知探究1:直线与平面平行的背景分析实例1:如图5-1,一面墙上有一扇门,门扇的两边是平行的.当门扇绕着墙上的一边转动时,观察门扇转动的一边l与墙所在的平面位置关系如何?图5-1实例2:如图5-2,将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l与桌面所在的平面具有怎样的位置关系?图5-2结论:上述两个问题中的直线l与对应平面都是平行的.探究2:直线与平面平行的判定定理问题:探究1两个实例中的直线l为什么会和对应的平面平行呢?你能猜想出什么结论吗?能作图把这一结论表示出来吗?新知:直线与平面平行的判定定理定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.如图5-3所示,a∥α.图5-3反思:思考下列问题⑴用符号语言如何表示上述定理;⑵上述定理的实质是什么?它体现了什么数学思想?⑶如果要证明这个定理,该如何证明呢?※典型例题例1 有一块木料如图5-4所示,P为平面BCEF内一点,要求过点P在平面BCEF内作一条直线与平面ABCD平行,应该如何画线?图5-4例2 如图5-5,空间四边形ABCD中,,E F分别是910,AB AD 的中点,求证:EF ∥平面BCD .图5-5※ 动手试试练1. 正方形ABCD 与正方形ABEF 交于AB ,M 和N 分别为AC 和BF 上的点,且AM FN =,如图5-6 所示.求证:MN ∥平面BEC .图5-6练 2. 已知ABC ∆,,D E 分别为,AC AB 的中点,沿DE 将ADE ∆折起,使A 到A '的位置,设M 是A B '的中点,求证:ME ∥平面A CD '.三、总结提升※ 学习小结1. 直线与平面平行判定定理及其应用,其核心是线线平行⇒线面平行;2. 转化思想的运用:空间问题转化为平面问题.※ 知识拓展判定直线与平面平行通常有三种方法: ⑴利用定义:证明直线与平面没有公共点.但直接证明是困难的,往往借助于反正法来证明. ⑵利用判定定理,其关键是证明线线平行.证明线线平行可利用平行公理、中位线、比例线段等等. ⑶利用平面与平面平行的性质.(后面将会学习到)※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 若直线与平面平行,则这条直线与这个平面内的( ).A.一条直线不相交B.两条直线不相交C.任意一条直线都不相交D.无数条直线不相交 2. 下列结论正确的是( ). A.平行于同一平面的两直线平行B.直线l 与平面α不相交,则l ∥平面αC.,A B 是平面α外两点,,C D 是平面α内两点,若AC BD =,则AB ∥平面αD.同时与两条异面直线平行的平面有无数个3. 如果AB 、BC 、CD 是不在同一平面内的三条线段,则经过它们中点的平面和直线AC 的位置关系是( ).A.平行B.相交C.AC 在此平面内D.平行或相交 4. 在正方体1111ABCD A B C D -的六个面和六个对角面中,与棱AB 平行的面有________个.5. 若直线,a b 相交,且a ∥α,则b 与平面α的位置关系是_____________.1. 如图5-7,在正方体中,E 为1DD 的中点,判断1BD 与平面AEC 的位置关系,并说明理由.图5-72. 如图5-8,在空间四边形ABCD 中,P 、Q 分别是ABC ∆和BCD ∆的重心.求证:PQ ∥平面ACD.图5-8§2.2. 2 平面与平面平行的判定1. 能借助于长方体模型讨论直线与平面、平面与平面的平行问题;2. 理解和掌握两个平面平行的判定定理及其运用;3. 进一步体会转化的数学思想.一、课前准备 (预习教材P 56~ P 57,找出疑惑之处) 复习1:直线与平面平行的判定定理是___________ ___________________________________________. 复习2:两个平面的位置关系有___种,分别为____ ___和_______.讨论:两个平面平行的定义是两个平面没有公共点,怎样证明两个平面没有公共点呢?你觉得好证吗?二、新课导学※ 探索新知探究:两个平面平行的判定定理问题1:平面可以看作是由直线构成的.若一平面内的所有直线都与另一个平面平行,则这两个平面平行吗?由此你可以得到什么结论?结论:两个平面平行的问题可以转化为一个平面内的直线与另一个平面平行的问题.问题2:一个平面内所有直线都平行于另外一个平面好证明吗?能否只证明一个平面内若干条直线和另外一个平面平行,那么这两个平面就平行呢?试试:在长方体中,回答下列问题⑴如图6-1,AA AA B B '''⊂面,AA '∥面BB C C '',则面AA B B ''∥面BBC C ''吗?图6-1⑵如图6-2,AA '∥EF ,AA '∥DCC D ''面,EF ∥DCC D ''面,则A ADD ''面∥DCCD ''面吗?图6-2⑶如图6-3,直线A C ''和B D ''相交,且A C ''、B D ''都和平面ABCD 平行(为什么),则平面A B C D ''''∥平面ABCD 吗?图6-3反思:由以上3个问题,你得到了什么结论?新知:两个平面平行的判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 如图6-4所示,α∥β.图6-4反思:⑴定理的实质是什么?⑵用符号语言把定理表示出来.⑶如果要证明定理,该怎么证明呢?※ 典型例题例1 已知正方体1111ABCD A B C D -,如图6-5,求证: 平面11AB D ∥1CB D.图6-5例2 如图6-6,已知,a b 是两条异面直线,平面α过 a ,与b 平行,平面β过b ,与a 平行, 求证:平面α∥平面β图6-6小结:证明面面平行,只需证明线线平行,而且这两条直线必须是相交直线.※ 动手试试练. 如图6-7,正方体中,,,,M N E F 分别是棱A B '',A D '',BC '',CD ''的中点,求证:平面∥ 平面EFDB .三、总结提升※ 学习小结1. 平面与平面平行的判定定理及应用;2. 转化思想的运用.※ 知识拓展判定平面与平面平行通常有5种方法 ⑴根据两平面平行的定义(常用反证法); ⑵根据两平面平行的判定定理;⑶垂直于同一条直线的两个平面平行(以后学习);⑷两个平面同时平行于第三个平面,则这两个平面平行(平行的传递性);⑸一个平面内的两条相交直线分别平行于另外一个平面内的两条直线,则这两个平面平行(判定定理※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 平面α与平面β平行的条件可以是( ). A.α内有无穷多条直线都与β平行B.直线a 与,αβ都平行,且不在α和β内C.直线a α⊂,直线b β⊂,且a ∥β,b ∥αD.α内的任何直线都与β平行2. 经过平面α外的一条直线a 且与平面α平行的平面( ).A.有且只有一个B.不存在C.至多有一个D.至少有一个3. 设有不同的直线,a b ,及不同的平面α、β,给出的三个命题中正确命题的个数是( ).①若a ∥α,b ∥α,则a ∥b ②若a ∥α,α∥β,则a ∥β③若,a αα⊂∥β,则a ∥β.A.0个B.1个C.2个D.3个4. 如果两个平面分别经过两条平行线中的一条,则这两个平面的位置关系是________________.5. 若两个平面都平行于两条异面直线中的每一条,则这两平面的位置关系是_______________. 1. 如图6-8,在几何体ABC A B C '''-中,1∠+ 2180∠=°,34180∠+∠=°,求证:平面ABC ∥ 平面A B C '''.图6-82. 如图6-9,A '、B '、C '分别是PBC ∆、PCA ∆、 PAB ∆的重心.求证:面A B C '''∥ABC 面.图6-9§2.2.3 直线与平面平行的性质1. 掌握直线和平面平行的性质定理;2. 能灵活运用线面平行的判定定理和性质定理,掌握“线线”“线面”平行的转化.5860复习1:两个平面平行的判定定理是____________ _____________________________________;它的实质是由__________平行推出__________平行.复习2:直线与平面平行的判定定理是___________ _____________________________________.讨论:如果直线a 与平面α平行,那么a 和平面α内的直线具有什么样的关系呢?二、新课导学※ 探索新知探究:直线与平面平行的性质定理问题1:如图7-1,直线a 与平面α平行.请在图中的平面α内画出一条和直线a 平行的直线b .图7-1问题2:我们知道两条平行线可以确定一个平面(为什么?),请在图7-1中把直线,a b 确定的平面画出来,并且表示为β.问题3:在你画出的图中,平面β是经过直线,a b 的平面,显然它和平面α是相交的,并且直线b 是这两个平面的交线,而直线a 和b 又是平行的.因此,你能得到什么结论?请把它用符号语言写在下面.问题4:在图7-2中过直线a 再画另外一个平面γ与平面α相交,交线为c .直线a ,c 平行吗?和你上面得出的结论相符吗?你能不能从理论上加以证明呢?图7-2新知:直线与平面平行的性质定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线都与该直线平行.反思:定理的实质是什么?※ 典型例题例 1 如图7-3所示的一块木料中,棱BC 平行于A C ''面.⑴要经过A C ''面内的一点P 和棱BC 将木料锯开,应怎样画线?⑵所画的线与平面AC 是什么位置关系?。
.直线的倾斜角与斜率周峻民学习目标.掌握直线的倾斜角的定义..掌握斜率公式,理解倾斜角和斜率的关系..能根据斜率判定两条直线平行与垂直.一、夯实基础基础梳理.直线的倾斜角()定义:当直线与轴相交时,我们取轴作为基准,轴与直线方向之后所成的角叫做直线的倾斜角.当直线与轴平行或重合时,规定它的倾斜角为.()倾斜角的范围为..直线的斜率()定义:一条直线的倾斜角的叫做这条直线的斜率,斜率常用小写字母表示,即,倾斜角是的直线斜率不存在.()过两点的直线的斜率公式:经过两点的直线的斜率公式为..两条直线平行的判定:对于两条不重合的直线,,其斜率分别是,,有.特别地,当时,、都垂直于轴,.当两直线斜率都不存在且不重合时,它们都垂直于轴,与的倾斜角都是,故..两条直线垂直的判定:两条直线,都有斜率,其斜率分别是,,有.注意:().()两条直线中,一条斜率不存在,同时另一条斜率等于零,则两条直线垂直.这样,两条直线垂直的判定的条件就可叙述为:或一条斜率不存在,同时另一条斜率等于零.基础达标.若过点和的直线的斜率为,则的值为()...或.或.若,,三点共线,则的值为().....在下列叙述中:①一条直线的倾斜角为,则它的斜率为;②若直线斜率,则它的倾斜角为;③若(,)、(,),则直线的倾斜角为;④若直线过点,且它的倾斜角为,则这直线必过(,)点;⑤若直线斜率为,则这条直线必过(,)与(,)两点.所有正确命题的序号是..已知直线斜率的绝对值等于,则直线的倾斜角为..()已知△中,两顶点、的坐标为、,、分别是、的中点,求直线的斜率.()已知,求证:四边形为矩形.二、学习指引自主探究.什么是直线的倾斜角与斜率,倾斜角的取值范围是什么?.关于直线的倾斜角和斜率,下列说法哪些是正确的?()任一条直线都有倾斜角,也都有斜率()直线的倾斜角越大,它的斜率就越大()平行于轴的直线的倾斜角是()两直线的倾斜角相等,它们的斜率也相等()两直线的斜率相等,它们的倾斜角也相等()直线斜率的范围是.倾斜角与斜率的变化规律打开《几何画板》,过定点作一条平行于轴的直线,度量其斜率,并将该直线绕定点按逆时针旋转,倾斜角从增大到.当时,随着增大,斜率(填“增大”“减小”),其范围是.当时,随着增大,斜率(填“增大”“减小”),其范围是..对于“”,要从左边推出右边即“”,前提是两直线要从右边推出左边即“”,前提是两直线.案例分析.下列三点能构成三角形的三个顶点的为().....【解析】、、选项中三点均共线,不能组成三角形.选项中三点不共线,故可以组成三角形的三个顶点.选.。
平面向量的运算【第一课时】向量的加法运算【学习重难点】【学习目标】【核心素养】平面向量加法的几何意义理解向量加法的概念以及向量加法的几何意义数学抽象、直观想象平行四边形法则和三角形法则掌握向量加法的平行四边形法则和三角形法则,会用它们解决实际问题数学抽象、直观想象平面向量加法的运算律掌握向量加法的交换律和结合律,会用它们进行计算数学抽象、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则?2.向量加法的运算律有哪两个?二、新知探究探究点1:平面向量的加法及其几何意义例1:如图,已知向量a,b,c,求作和向量a+b+c.解:法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA → =a ,接着作向量AB →=c ,则得向量OB → =a +c ,然后作向量BC →=b ,则向量OC →=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA → =a ,OB →=b ;(2)作平行四边形AOBC ,则OC →=a +b ;(3)再作向量OD →=c ;(4)作平行四边形CODE ,则OE → =OC → +c =a +b +c .OE →即为所求.探究点2:平面向量的加法运算例2:化简:(1)BC → +AB →;(2)DB → +CD → +BC →;(3)AB → +DF → +CD → +BC → +FA →.解:(1)BC → +AB → =AB → +BC → =AC →.(2)DB → +CD → +BC→ =BC → +CD → +DB→ =(BC → +CD → )+DB→ =BD → +DB →=0.(3)AB → +DF → +CD → +BC → +FA→ =AB → +BC → +CD → +DF → +FA → =AC → +CD → +DF → +FA→=AD → +DF → +FA → =AF → +FA →=0.探究点3:向量加法的实际应用例3:某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?解:如图,设此人游泳的速度为OB → ,水流的速度为OA → ,以OA → ,OB →为邻边作▱OACB ,则此人的实际速度为OA → +OB → =OC →.由勾股定理知|OC →|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.三、学习小结1.向量加法的定义及运算法则定义求两个向量和的运算,叫做向量的加法前提已知非零向量a ,b作法在平面内任取一点A ,作AB → =a ,BC → =b ,再作向量AC→结论向量AC →叫做a 与b 的和,记作a +b ,即a +b =AB →+BC → =AC→法则三角形法则图形前提已知不共线的两个向量a ,b作法在平面内任取一点O ,以同一点O 为起点的两个已知向量a ,b 为邻边作▱OACB 结论对角线OC →就是a 与b 的和法则平行四边形法则图形规定对于零向量与任一向量a ,我们规定a +0=0+a =a2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立.3.向量加法的运算律交换律a +b =b +a结合律(a +b )+c =a +(b +c )四、精炼反馈1.化简OP → +PQ → +PS → +SP →的结果等于( )A .QP →B .OQ→ C .SP → D .SQ→解析:选B .OP → +PQ → +PS → +SP → =OQ → +0=OQ →.2.在四边形ABCD 中,AC → =AB → +AD →,则一定有( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形解析:选D .由AC → =AB → +AD → 得AD → =BC →,即AD =BC ,且AD ∥BC ,所以四边形ABCD的一组对边平行且相等,故为平行四边形.3.已知非零向量a ,b ,|a |=8,|b |=5,则|a +b |的最大值为______.解析:|a +b |≤|a |+|b |,所以|a +b |的最大值为13.答案:134.已知▱ABCD ,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO → +AC →;(2)DE → +BA →.解:(1)延长AC ,在延长线上截取CF =AO ,则向量AF →为所求.(2)在AB 上取点G ,使AG =13AB ,则向量BG →为所求.【第二课时】向量的减法运算【学习重难点】【学习目标】【核心素养】相反向量理解相反向量的概念数学抽象向量的减法掌握向量减法的运算法则及其几何意义数学抽象、直观想象【学习过程】一、问题导入预习教材内容,思考以下问题:1.a 的相反向量是什么?2.向量减法的几何意义是什么?二、新知探究探究点1:向量的减法运算例1:化简下列各式:(1)(AB → +MB → )+(-OB → -MO →);(2)AB → -AD → -DC →.解:(1)法一:原式=AB → +MB → +BO → +OM → =(AB → +BO → )+(OM → +MB → )=AO → +OB →=AB →.法二:原式=AB → +MB → +BO → +OM→=AB → +(MB → +BO → )+OM → =AB → +MO → +OM → =AB → +0=AB →.(2)法一:原式=DB → -DC → =CB →.法二:原式=AB → -(AD → +DC → )=AB → -AC → =CB →.探究点2:向量的减法及其几何意义例2:如图,已知向量a ,b ,c 不共线,求作向量a +b -c .解:法一:如图①,在平面内任取一点O ,作OA → =a ,OB → =b ,OC →=c ,连接BC ,则CB →=b -c .过点A 作AD 綊BC ,连接OD ,则AD →=b -c ,所以OD → =OA → +AD →=a +b -c .法二:如图②,在平面内任取一点O ,作OA → =a ,AB →=b ,连接OB ,则OB → =a +b ,再作OC →=c ,连接CB ,则CB →=a +b -c .法三:如图③,在平面内任取一点O ,作OA → =a ,AB →=b ,连接OB ,则OB → =a +b ,再作CB →=c ,连接OC ,则OC →=a +b -c .探究点3:用已知向量表示其他向量例3:如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB →=a ,AC → =b ,AE → =c ,试用向量a ,b ,c 表示向量CD → ,BC → ,BD →.解:因为四边形ACDE 是平行四边形,所以CD → =AE → =c ,BC → =AC → -AB →=b -a ,故BD → =BC → +CD →=b -a +c .三、学习小结1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0.2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA → =a ,OB → =b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量.四、精炼反馈1.在△ABC 中,D 是BC 边上的一点,则AD → -AC →等于( )A .CB → B .BC→ C .CD → D .DC→解析:选C .在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD→-AC → =CD →.2.化简:AB → -AC → +BD → -CD → +AD →=________.解析:原式=CB → +BD → +DC → +AD → =CD → +DC → +AD → =0+AD → =AD →.答案:AD→3.已知Error!=10,|AC → |=7,则|CB →|的取值范围为______.解析:因为CB → =AB → -AC →,所以|CB → |=|AB → -AC →|.又Error!≤|AB → -AC → |≤|AB → |+|AC →|,3≤|AB → -AC →|≤17,所以3≤|CB →|≤17.答案:[3,17]4.若O 是△ABC 所在平面内一点,且满足|OB → -OC → |=|OB → -OA → +OC → -OA →|,试判断△ABC 的形状.解:因为OB → -OA → +OC → -OA → =AB → +AC → ,OB → -OC → =CB → =AB → -AC →.又|OB → -OC → |=|OB → -OA → +OC → -OA → |,所以|AB → +AC → |=|AB → -AC →|,所以以AB ,AC 为邻边的平行四边形的两条对角线的长度相等,所以该平行四边形为矩形,所以AB ⊥AC ,所以△ABC 是直角三角形.【第三课时】向量的数乘运算【学习重难点】【学习目标】【核心素养】向量数乘运算的定义及运算律理解向量数乘的定义及几何意义,掌握向量数乘的运算律数学抽象、直观想象向量共线定理掌握向量共线定理,会判断或证明两个向量共线逻辑推理【学习过程】一、问题导学预习教材内容,思考以下问题:1.向量数乘的定义及其几何意义是什么?2.向量数乘运算满足哪三条运算律?3.向量共线定理是怎样表述的?4.向量的线性运算是指的哪三种运算?二、新知探究探究1:向量的线性运算例1:(1)计算:①4(a+b)-3(a-b)-8a;②(5a-4b+c)-2(3a-2b+c);③23[(4a-3b)+13b-14(6a-7b)].(2)设向量a=3i+2j,b=2i-j,求(13a-b)-(a-23b)+(2b-a).解:(1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23(4a -3b +13b -32a +74b)=23(52a -1112b)=53a -1118b .(2)原式=13a -b -a +23b +2b -a=(13-1-1)a +(-1+23+2)b =-53a +53b =-53(3i +2j )+53(2i -j )=(-5+103)i +(-103-53)j=-53i -5j .探究点2:向量共线定理及其应用例2:已知非零向量e 1,e 2不共线.(1)如果AB → =e 1+e 2,BC → =2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.解:(1)证明:因为AB → =e 1+e 2,BD → =BC → +CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →.所以AB → ,BD →共线,且有公共点B ,所以A 、B 、D 三点共线.(2)因为k e 1+e 2与e 1+k e 2共线,所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2),则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有{k -λ=0,λk -1=0,所以k =±1.探究点3:用已知向量表示其他向量例3:如图,ABCD 是一个梯形,AB → ∥CD → 且|AB → |=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB → =e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC →=________;(2)MN →=________.解析:因为AB → ∥CD → ,|AB → |=2|CD →|,所以AB → =2DC → ,DC → =12AB →.(1)AC → =AD → +DC →=e 2+12e 1.(2)MN → =MD → +DA → +AN→ =-12DC → -AD → +12AB→=-14e 1-e 2+12e 1=14e 1-e 2.答案:(1)e 2+12e 1(2)14e 1-e 2互动探究变条件:在本例中,若条件改为BC → =e 1,AD → =e 2,试用e 1,e 2表示向量MN →.解:因为MN → =MD → +DA → +AN →,MN → =MC → +CB → +BN →,所以2MN → =(MD → +MC → )+DA → +CB → +(AN → +BN → ).又因为M ,N 分别是DC ,AB 的中点,所以MD → +MC → =0,AN → +BN →=0.所以2MN → =DA → +CB →,所以MN → =12(-AD → -BC →)=-12e 2-12e 1.三、学习小结1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.2.向量数乘的运算律设λ,μ为实数,那么:(1)λ(μa )=(λμ)a .(2)(λ+μ)a =λa +μa .(3)λ(a +b )=λa +λb .3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .四、精炼反馈1.13[12(2a +8b )-(4a -2b )]等于( )A .2a -b B .2b -a C .b -aD .a -b解析:选B .原式=16(2a +8b )-13(4a -2b )=13a +43b -43a +23b =-a +2b .2.若点O 为平行四边形ABCD 的中心,AB → =2e 1,BC →=3e 2,则32e 2-e 1=( )A .BO →B .AO→ C .CO → D .DO→解析:选A .BD → =AD → -AB → =BC → -AB → =3e 2-2e 1,BO → =12BD → =32e 2-e 1.3.已知e 1,e 2是两个不共线的向量,若AB → =2e 1-8e 2,CB → =e 1+3e 2,CD →=2e 1-e 2,求证A ,B ,D 三点共线.证明:因为CB → =e 1+3e 2,CD →=2e 1-e 2,所以BD → =CD → -CB →=e 1-4e 2.又AB → =2e 1-8e 2=2(e 1-4e 2),所以AB → =2BD → ,所以AB → 与BD →共线.因为AB 与BD 有交点B ,所以A ,B ,D 三点共线.【第四课时】向量的数量积【学习重难点】【学习目标】【核心素养】向量的夹角理解平面向量夹角的定义,并会求已知两个非零向量的夹角直观想象、数学运算向量数量积的含义理解平面向量数量积的含义并会计算数学抽象、数学运算投影向量理解a 在b 上的投影向量的概念数学抽象向量数量积的性质和运算律掌握平面向量数量积的性质及其运算律,并会应用数学运算、逻辑推理【学习过程】一、问题导学预习教材内容,思考以下问题:1.什么是向量的夹角?2.数量积的定义是什么?3.投影向量的定义是什么?4.向量数量积有哪些性质?5.向量数量积的运算有哪些运算律?二、新知探究探究点1:平面向量的数量积运算例1:(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB → |=4,|AD →|=3,∠DAB =60°,求:①AD → ·BC → ;②AB → ·DA →.解:(1)(a +2b )·(a +3b )=a·a +5a·b +6b·b =|a |2+5a·b +6|b |2=|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192.(2)①因为AD → ∥BC →,且方向相同,所以AD → 与BC →的夹角是0°,所以AD → ·BC → =|AD → ||BC →|·cos 0°=3×3×1=9.②因为AB → 与AD →的夹角为60°,所以AB → 与DA →的夹角为120°,所以AB → ·DA → =|AB → ||DA →|·cos 120°=4×3×(-12)=-6.互动探究:变问法:若本例(2)的条件不变,求AC → ·BD →.解:因为AC → =AB → +AD → ,BD → =AD → -AB →,所以AC → ·BD → =(AB → +AD → )·(AD → -AB → )=AD → 2-AB →2=9-16=-7.探究点2:向量模的有关计算例2:(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=( )A .3B .23C .4D .12(2)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=( )A .13B .12C .15D .14解析:(1)|a +2b |=(a +2b )2=a 2+4a·b +4b 2|a |2+4|a ||b |cos 60°+4|b |2= 4+4×2×1×12+4=23.(2)由题意得|a -b |2=|a |2+|b |2-2|a ||b |·cos 60°=34,即1+|b |2-|b |=34,解得|b |=12.答案:(1)B (2)B 探究点3:向量的夹角与垂直命题角度一:求两向量的夹角例3:(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.解析:(1)设a 与b 的夹角为θ,(a +2b )·(a -3b )=a ·a -3a ·b +2b ·a -6b ·b =|a |2-a ·b -6|b |2=|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos θ-6×42=-72,所以24cos θ=36+72-96=12,所以cos θ=12.又因为θ∈[0,π],所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3.答案:(1)π3(2)π3命题角度二:证明两向量垂直例4:已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a +t b ).证明:因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值.此时b ·(a +t b )=b·a +t b 2=a·b +(-a·b |b |2)·|b |2=a·b -a·b =0.所以b ⊥(a +t b ).命题角度三:利用夹角和垂直求参数例5:(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k 的值为( )A .-32B .32C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.解析:(1)因为3a +2b 与k a -b 互相垂直,所以(3a +2b )·(k a -b )=0,所以3k a 2+(2k -3)a·b -2b 2=0.因为a ⊥b ,所以a ·b =0,又|a |=2,|b |=3,所以12k -18=0,k =32.(2)由3a +λb +7c =0,可得7c =-(3a +λb ),即49c 2=9a 2+λ2b 2+6λa ·b ,而a ,b ,c 为单位向量,则a 2=b 2=c 2=1,则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5.答案:(1)B (2)-8或5三、学习小结1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA → =a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ;③当θ=π时,向量a 与b 反向.2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0.3.投影向量如图(1),设a ,b 是两个非零向量,AB → =a ,CD → =b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD → 所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b 投影(project ),A 1B 1→叫做向量a 在向量b 上的投影向量.如图(2),在平面内任取一点O ,作OM → =a ,ON →=b ,过点M 作直线ON 的垂线,垂足为M 1,则OM 1→就是向量a 在向量b 上的投影向量.(2)若与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→=|a |cos θ e .4.向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则(1)a ·e =e ·a =|a |cos θ.(2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a ||b |;当a 与b 反向时,a·b =-|a ||b |.特别地,a·a =|a |2或|a |=a·a .(4)|a·b |≤|a ||b |.5.向量数量积的运算律(1)a·b =b·a (交换律).(2)(λa )·b =λ(a·b )=a ·(λb )(结合律).(3)(a +b )·c =a·c +b·c (分配律).四、精炼反馈1.已知向量a ,b 满足|a |=1,|b |=4,且a·b =2,则a 与b 的夹角θ为( )A .π6B .π4C .π3D .π2解析:选C .由题意,知a·b =|a ||b |cos θ=4cos θ=2,所以cos θ=12.又0≤θ≤π,所以θ=π3.2.已知|a |=|b |=1,a 与b 的夹角是90°,c =2a +3b ,d =k a -4b ,c 与d 垂直,则k 的值为( )A .-6B .6C .3D .-3解析:选B .因为c·d =0,所以(2a +3b )·(k a -4b )=0,所以2k a 2-8a ·b +3k a ·b -12b 2=0,所以2k =12,所以k =6.3.已知|a |=3,|b |=5,a ·b =-12,且e 是与b 方向相同的单位向量,则a 在b 上的投影向量为______.解析:设a 与b 的夹角θ,则cos θ=a ·b |a ||b |=-123×5=-45,所以a 在b 上的投影向量为|a |cos θ·e =3×(-45)e=-125e .答案:-125e4.已知|a |=1,|b |=2.(1)若a ∥b ,求a ·b ;(2)若a ,b 的夹角为60°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角.解:设向量a 与b 的夹角为θ.(1)当a ,b 同向,即θ=0°时,a ·b =2;当a ,b 反向,即θ=180°时,a ·b =-2.(2)|a +b |2=|a |2+2a ·b +|b |2=3+2,|a +b |=3+2.(3)由(a -b )·a =0,得a 2=a ·b ,cos θ=a ·b |a ||b |=22,又θ∈[0,180°],故θ=45°.。
直线的两点式方程【学习目标】1.把握直线方程的两点式.2.把握直线方程的截距式.3.进一步稳固截距的概念.【重点】利用两点式、截距式求直线方程.【难点】两点式、截距式的使用条件.【预习案】【导学提示】1.直线的两点式方程2.直线的截距式方程3.线段的中点坐标【探究案】一、利用两点式求直线方程例1.三角形的三个顶点A(-2,2),B(3,2),C(3,0),求这个三角形的三边所在直线的方程以及AC边上的高线所在直线的方程.迁移与应用△ABC三个顶点的坐标A(2,-1),B(2,2),C(4,1),求三角形三条边所在直线的方程.二、利用截距式求直线方程例2. 直线l过点P(4,3),且在x轴、y轴上的截距之比为4∶3,求直线l的方程.迁移与应用过点P(4,3),且在两坐标轴上的截距互为相反数的直线方程怎样?三、直线方程的综合应用例3.如图,某地长途汽车客运公司规定旅客可随身携带肯定重量的行李,假如超过规定,那么需要购置行李票,行李票费用y(元)与行李重量x(kg)之间的关系可用直线AB的方程表示.试求:(1)直线AB的方程;(2)旅客最多可免费携带多少行李?迁移与应用一根弹簧,挂5 kg的物体时,长10 cm;挂8 kg的物体时,长16 cm.弹簧长度l (cm)和所挂物体的质量W(kg)之间的关系可以用直线方程来表示.用两点式表示这个方程,并且依据这个方程,求弹簧长为12 cm时所挂物体的质量.【训练案】1.一条直线不与坐标轴平行或重合,那么它的方程()A.可以写成两点式或截距式B.可以写成两点式或斜截式或点斜式C.可以写成点斜式或截距式D.可以写成两点式或截距式或斜截式或点斜式2.过两点(6,2),(3,2)的直线方程是()A.x=5B.y=2 C.x+y=2 D.x=23.在x、y轴上的截距分别是-3、4的直线方程是()A.x-3+y4=1 B.x3+y-4=1 C.x-3-y4=1 D.x4+y-3=14.经过点A(2,5),B(-3,6)的直线在x轴上的截距为________.【自主区】【使用说明】老师书写二次备课,同学书写收获与总结.。
高中数学(必修二)导学案第一章:平面直角坐标系1.1 坐标系的引入- 了解平面直角坐标系的基本概念- 掌握点在平面直角坐标系中的坐标表示方法1.2 平面直角坐标系上的距离公式- 了解平面直角坐标系上两点之间距离的公式- 掌握如何使用距离公式计算两个点之间的距离1.3 直线的斜率- 了解直线斜率的概念及其计算方法- 掌握如何根据两点坐标计算直线的斜率第二章:二次函数2.1 二次函数的图像和性质- 了解二次函数的基本概念和特点- 掌握根据二次函数的参数确定二次函数图像的方法2.2 二次函数的最值和零点- 了解二次函数最值和零点的基本概念及其计算方法- 掌握如何根据二次函数求解实际问题2.3 二次函数与一次函数的比较- 了解二次函数和一次函数的基本概念及其图像特点- 掌握如何比较二次函数和一次函数的大小关系第三章:三角函数3.1 任意角及其测量- 了解任意角的基本概念及其测量方法- 掌握如何将任意角的三角函数转化为其它角度的三角函数3.2 常用角的三角函数值- 掌握常用角的三角函数值及其推导方法- 掌握如何根据三角函数值求解实际问题3.3 三角函数的图像和性质- 了解三角函数的图像及其性质- 掌握如何根据三角函数图像解决实际问题第四章:概率统计4.1 随机事件与概率- 掌握随机事件和概率的基本概念和运算法则- 掌握如何计算简单事件的概率4.2 条件概率和独立性- 了解条件概率和独立性的基本概念及其计算方法- 掌握如何根据条件概率和独立性计算事件的概率4.3 离散型随机变量及其分布律- 了解离散型随机变量及其分布律的概念- 掌握如何根据分布律计算离散型随机变量的期望值和方差以上是本章节的导学内容,希望同学们认真学习,做好课后习题。
祝学习愉快!。
2023年人教版高中数学必修二导学案全套一、导学目的本导学案的目的是为了帮助高中数学研究者系统地研究和掌握2023年人教版高中数学必修二的相关知识,提高研究效果和成绩。
二、导学内容1. 第一章:函数及其表示方法- 研究函数的定义和基本性质- 掌握函数的表示方法及其应用- 理解函数的映射性和单调性2. 第二章:一次函数与二次函数- 研究一次函数和二次函数的定义和性质- 掌握一次函数和二次函数的图象与性质- 认识一次函数和二次函数在实际问题中的应用3. 第三章:指数和对数函数- 研究指数和对数函数的定义和性质- 掌握指数函数和对数函数的图象和性质- 理解指数函数和对数函数在实际问题中的应用4. 第四章:三角函数- 研究三角函数的定义和基本关系- 掌握三角函数的图象和性质- 理解三角函数在几何问题和实际问题中的应用5. 第五章:概率与统计- 研究概率与统计的基本概念- 掌握概率与统计的计算方法- 理解概率与统计在实际问题中的应用三、导学方法本教材使用了多种导学方法,包括课前预、课堂引导、课后练等,以帮助研究者全面提升数学知识和解题能力。
学生可以按照以下步骤进行研究:1. 阅读本章导学案,了解本章研究目标和内容。
2. 预本章内容,查阅相关资料和教辅材料,理解基本概念和原理。
3. 在课堂上认真听讲,参与互动,解答问题。
4. 课后进行题目练,巩固所学知识,掌握解题技巧。
5. 复本章知识,进行检测,查漏补缺。
四、导学评价为了确保研究效果,我们建议研究者在导学过程中进行自我评价和教师评价。
自我评价可以通过课后练和解题过程来进行,教师评价可以通过课堂表现和考试成绩来进行。
五、研究资源研究者可以使用以下资源进行研究:- 人教版高中数学必修二教材- 相关参考书和教辅材料- 互联网上的数学研究网站和视频资源六、结束语通过系统地研究和掌握本教材,相信研究者能够在数学研究中取得更好的成绩。
希望本导学案能够帮助你在2023年人教版高中数学必修二研究中有所收获!。
4. 1.2 圆的一般方程【教学目标】1.使学生掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.2.使学生掌握通过配方求圆心和半径的方法,熟练地用待定系数法由已知条件导出圆的方法,熟练地用待定系数法由已知条件导出圆的方程,培养学生用配方法和待定系数法解决实际问题的能力.3.通过对待定系数法的学习为进一步学习数学和其他相关学科的基础知识和基本方法打下牢固的基础.【教学重难点】教学重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法,由已知条件导出圆的方程.教学难点:圆的一般方程的特点.【教学过程】(一)情景导入、展示目标前面,我们已讨论了圆的标准方程(x-a)2+(y-b)2=r2,现将展开可得x2+y2-2ax-2by+a2+b2-r2=0.可见,任何一个圆的方程都可以写成x2+y2+Dx+Ey+F=0.请大家思考一下:形如x2+y2+Dx+Ey+F=0的方程的曲线是不是圆?下面我们来深入研究这一方面的问题.复习引出课题为“圆的一般方程”.(二)检查预习、交流展示1.写出圆的标准方程.2.写出圆的标准方程中的圆心与半径.(三)合作探究、精讲精练探究一:圆的一般方程的定义1.分析方程x2+y2+Dx+Ey+F=0表示的轨迹将方程x2+y2+Dx+Ey+F=0左边配方得:(1)(1)当D2+E2-4F>0时,方程(1)与标准方程比较,可以看出方程半径的圆;(3)当D2+E2-4F<0时,方程x2+y2+Dx+Ey+F=0没有实数解,因而它不表示任何图形.这时,教师引导学生小结方程x2+y2+Dx+Ey+F=0的轨迹分别是圆、法.2.引出圆的一般方程的定义当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0称为圆的一般方程.探究二:圆的一般方程的特点请同学们分析下列问题:问题:比较二元二次方程的一般形式Ax2+Bxy+Cy2+Dx+Ey+F=0.(2)与圆的一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F>0).(3)的系数可得出什么结论?启发学生归纳结论.当二元二次方程 Ax2+Bxy+Cy2+Dx+Ey+F=0具有条件:(1)x2和y2的系数相同,不等于零,即A=C≠0;(2)没有xy项,即B=0;(3)D2+E2-4AF>0.它才表示圆.条件(3)通过将方程同除以A或C配方不难得出.强调指出:(1)条件(1)、(2)是二元二次方程(2)表示圆的必要条件,但不是充分条件;(2)条件(1)、(2)和(3)合起来是二元二次方程(2)表示圆的充要条件.例1 求下列圆的半径和圆心坐标:(1)x 2+y 2-8x+6y=0, (2)x 2+y 2+2by=0.解析:先配方,将方程化为标准形式,再求圆心和半径.解:(1)圆心为(4,-3),半径为5;(2)圆心为(0,-b),半径为|b|,注意半径不为b . 点拨:由圆的一般方程求圆心坐标和半径,一般用配方法,这要熟练掌握. 变式训练1:1.方程x 2+y 2+2kx +4y +3k +8=0表示圆的充要条件是( ) A.k >4或者k <-1 B.-1<k <4 C.k =4或者k =-1 D.以上答案都不对2.圆x 2+y 2+Dx +Ey +F =0与x 轴切于原点,则有( ) A.F =0,DE ≠0 B.E 2+F 2=0,D ≠0 C.D 2+F 2=0,E ≠0 D.D 2+E 2=0,F ≠0 答案:1.A 2.C例2 求过三点O(0,0)、A(1,1)、B(4,2)的圆的方程.解析:已知圆上的三点坐标,可设圆的一般方程,用待定系数法求圆的方程. 解:设所求圆的方程为x 2+y 2+Dx+Ey+F=0,由O 、A 、B 在圆上,则有解得:D=-8,E=6,F=0, 故所求圆的方程为x 2+y 2-8x+6=0. 点拨:1.用待定系数法求圆的方程的步骤: (1)根据题意设所求圆的方程为标准式或一般式; (2)根据条件列出关于a 、b 、r 或D 、E 、F 的方程;(3)解方程组,求出a 、b 、r 或D 、E 、F 的值,代入所设方程,就得要求的方程. 2.关于何时设圆的标准方程,何时设圆的一般方程:一般说来,如果由已知条件容易求圆心的坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的标准方程;如果已知条件和圆心坐标或半径都无直接关系,往往设圆的一般方程.变式训练2: 求圆心在直线 l :x+y=0上,且过两圆C 1∶x 2+y 2-2x+10y-24=0和C 2∶x 2+y 2+2x+2y-8=0的交点的圆的方程.解:解方程组⎩⎨⎧=+++=++08-2y 2x y x 024-10y 2x -y x 2222,得两圆交点为(-4,0),(0,2).设所求圆的方程为(x-a)2+(y-b)2=r 2,因为两点在所求圆上,且圆心在直线l 上所以得方程组为⎪⎩⎪⎨⎧--a+b=0=r+(2-b)a=r+ba222222)4( 解得a=-3,b=3,r=10. 故所求圆的方程为:(x+3)2+(y-3)2=10. (四)反馈测试 导学案当堂检测(五)总结反思、共同提高1.圆的一般方程的定义及特点; 2.用配方法求出圆的圆心坐标和半径; 3.用待定系数法,导出圆的方程. 【板书设计】一:圆的一般方程的定义1.分析方程x 2+y 2+Dx+Ey+F=0表示的轨迹 2.圆的一般方程的定义 二:圆的一般方程的特点 (1) (2) (3) 例1 变式训练1: 例2 变式训练2: 【作业布置】 导学案课后练习与提高4. 1. 2 圆的一般方程课前预习学案一.预习目标回顾圆的标准方程,了解用圆的一般方程及其特点.二.预习内容1.圆的标准方程形式是什么?圆心和半径呢?2.圆的一般方程形式是什么?圆心和半径呢?3.圆的方程的求法有哪些?三.提出疑惑同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中课内探究学案一.学习目标1.掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.2.掌握通过配方求圆心和半径的方法,熟练地用待定系数法由已知条件导出圆的方法,熟练地用待定系数法由已知条件导出圆的方程,培养用配方法和待定系数法解决实际问题的能力.3.通过对待定系数法的学习为进一步学习数学和其他相关学科的基础知识和基本方法打下牢固的基础.学习重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法,由已知条件导出圆的方程.学习难点:圆的一般方程的特点.二.学习过程前面,我们已讨论了圆的标准方程(x-a)2+(y-b)2=r2,现将展开可得x2+y2-2ax-2by+a2+b2-r2=0.可见,任何一个圆的方程都可以写成x2+y2+Dx+E y+F=0.请大家思考一下:形如x2+y2+Dx+Ey+F=0的方程的曲线是不是圆?下面我们来深入研究这一方面的问题.复习引出课题为“圆的一般方程”.探究一:圆的一般方程的定义1.分析方程x2+y2+Dx+Ey+F=0表示的轨迹2.引出圆的一般方程的定义探究二:圆的一般方程的特点请同学们分析下列问题:问题:比较二元二次方程的一般形式Ax2+Bxy+Cy2+Dx+Ey+F=0.(2)与圆的一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F>0).(3)的系数可得出什么结论?例1 求下列圆的半径和圆心坐标:(1)x2+y2-8x+6y=0,(2)x2+y2+2by=0.变式训练1:1.方程x2+y2+2kx+4y+3k+8=0表示圆的充要条件是()A.k>4或者k<-1 B.-1<k<4C.k=4或者k=-1 D.以上答案都不对2.圆x2+y2+Dx+Ey+F=0与x轴切于原点,则有()A.F=0,DE≠0 B.E2+F2=0,D≠0C.D2+F2=0,E≠0 D.D2+E2=0,F≠0例2 求过三点O(0,0)、A(1,1)、B(4,2)的圆的方程.变式训练2:求圆心在直线l:x+y=0上,且过两圆C1∶x2+y2-2x+10y-24=0和C2∶x2+y2+2x+2y-8=0的交点的圆的方程.三.反思总结四.当堂检测 1.方程342-+-=x x y 表示的曲线是( )A.在x 轴上方的圆 B.在y 轴右方的圆 C.x 轴下方的半圆 D.x 轴上方的半圆2.以(0,0)、(6,-8)为直径端点的圆的方程是 . 3.求经过两圆x 2+y 2+6x-4=0和x 2+y 2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程.参考答案:1.D 2.x 2+y 2-6x+8y=0 3.x 2+y 2-x+7y-32=0 课后练习与提高1.方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示圆,则实数m 的取值范围是( )A.-71<m <1 B.-1<m <71C.m <-71或m >1 D.m <-1或m >712.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲线关于直线x +y =0对称,则有( )A.D +E =0 B.D +F =0 C.E +F =0 D.D +E +F =0 3.经过三点A (0,0)、B (1,0)、C (2,1)的圆的方程为( )A.x 2+y 2+x -3y -2=0 B. x 2+y 2+3x +y -2=0 C. x 2+y 2+x +3y =0 D. x 2+y 2-x -3y =04.方程220x y x y k +-++=表示一个圆,则实数k 的取值范围是 . 5.过点A (-2,0),圆心在(3,-2)的圆的一般方程为 . 6.等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点的轨迹方程,并说明它的轨迹是什么.。
第一课时 平面学习目标1.利用生活中的实物对平面进行描述2.掌握平面的表示法及水平放置的直观图3.掌握平面的基本性质及作用 3、掌握平面的基本性质及作用重点: 难点: 难点: 平面的概念及表示;平面的基本性质 平面基本性质的掌握与运用 新知概览公理1 如果一条直线上的两点在一个平面内, 那么这条直线在这个平面内。
ααα⊂⇒∈∈∈∈l B A l B l A ,,,且公理2 过不在一条直线上的三点, 有且只有一个平面。
公理3 如果两个不重合的平面有一个公共点, 那么它们有且只有一条过该点的公共直线。
l P l P P ∈=⋂⇒∈∈,且且βαβα,例题分析例1如图, 用符号表示下列图形中的点、直线、平面之间的位置关系。
变式 用符号表示下列语句(1)点A 在平面 内, 点B 在平面 外; (2)直线l 经过平面α外的一点M 。
例2已知直线 和直线 相交于点A 。
求证: 过直线 和直线 有且只有一个平面。
变式 不共面的四点可以确定几个平面? 共点的三条直线可以确定几个平面?例3正方体ABCD —A1B1C1D1中, 对角线A1C 与平面BDC1交于点O, AC.BD 交于点M, 求证: 点C1.O 、M 共线.变式 1 如图,空间四边形中, , 分别是和上的点, , 分别是和上的点, 且相交于点.求证: , , 三条直线相交于同一点.变式2 已知: a, b, c, d是不共点且两两相交的四条直线, 求证: a, b, c, d共面.课堂训练1.下面说法正确的是().①平面ABCD的面积为210cm;②100个平面重合比50个平面重合厚;③空间图形中虚线都是辅助线;④平面不一定用平行四边形表示.A.①B.②C.③D.④2.下列结论正确的是().①经过一条直线和这条直线外一点可以确定一个平面;②经过两条相交直线, 可以确定一个平面;③经过两条平行直线, 可以确定一个平面;④经过空间任意三点可以确定一个平面。
.平面与平面平行的判定及其性质王红玲 学习目标.探究平面与平面平行的判定定理和性质定理..体会平面与平面平行的判定定理和性质定理的应用..通过线线平行、线面平行、面面平行的转化,培养学生的推理与证明能力. 一、夯实基础 基础梳理.两个平面的位置关系有、..两个平而平行的判定:()定义:两个平面没有,称这两个平面平行; ()判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
符号表示:γab βα.两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那它们的交线平行. 符号表示:. 基础达标.已知平面外不共线的三点到的距离都相等,则正确的结论是(填序号)。
①平面必平行于;②平面必与相交; ③平面必不垂直于;④存在的一条中位线平行于或在内。
.一条直线若同时平行于两个相交平面,则这条线与这两个平面的交线的位置关系是( ) .异面 .相交 .平行 .不确定 .平面平面, ()则直骊与的位置关系为。
()若,则直线的位置关系是. .如下图,在正方体中,、、分别是、、的中点,求证:平面平面。
D 1B 1C 1A 1NM PD CBA.如图,平面四边形的四个顶点、、、均在平行四边形所确定一个平面外,且、、、互相平行。
求证:四边形是平行四边形。
αD'C'B'A'DCB A二、学习指引自主探究.证明直线与平面平面平行主要有两种方法:()运用直线与平面平行的判定定理:设法在平面内找一条直线与平面外的直线平行,我们有时过平面外的直线作截面,这样可以找到所需要的直线(如下图)。
αβαaba()运用平面与平面平行的性质:如果能过平面外的直线作一个平面与已知平面平行,则该直线与平面是平行的(如上图)。
下面研究上一节的两个练习题,请用两种方法来证明直线与平面平行: 第一题:为长方形所在平面外一点,、分别为,上的点,且。
求证:平面。
FOG MEAB C D NPPCBA第题:如图,三棱锥中,分别为的中点,是的中点,证明:平面。
必修二测试题
一、选择题:(本大题共有10小题,每小题5分,共50分.)
1.对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的.
A. 2倍
B.
4
C. 2倍
D. 12
倍 2.在x 轴上的截距为2且倾斜角为135°的直线方程为.
A. y=-x+2 B. y=-x-2 C. y=x+2 D. y=x-2 3.下列说法中正确的是( )
A 、三点确定一个平面
B 、空间四点中如果有三点共线,则这四点共面
C 、三条直线两两相交,则这三条直线共面
D 、两条直线确定一个平面
4.将直线:210l x y +-=向左平移3个单位,再向上平移2个单位得到直线l ',则直线l l '与之间的距离为.
A
B
C .15
D .75
5.已知长方体的相邻三个侧面面积分别为6,3,2,则它的体积是
A .
5 B .
6 C .5 D .6
6.如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,
俯视图是一个直径为1的圆,那么这个几何体的全面积为
A .3π2
B .2π
C .3π
D .4π 7.已知圆4)1(22=+-y x 内一点P (2,1),则过P 点最短弦所在的直线方程是 ( )
A .01=+-y x
B .03=-+y x
C .03=++y x
D .2=x
8.两圆(x ―2)2+(y+1)2 = 4与(x+2)2+(y ―2)2 =16的公切线有( )
A .1条
B .2条
C .4条
D .3条
9.已知直线n m l 、、
及平面α,下列命题中的假命题是( ) A.若//l m ,//m n ,则//l n . B.若l α⊥,//n α,则l n ⊥.
C.若//l α,//n α,则//l n .
D.若l m ⊥,//m n ,则l n ⊥.
10.设P 是△ABC 所在平面α外一点,若P A ,PB ,PC 两两垂直,则P 在平面α内的射影是△ABC 的( )
A .内心
B .外心
C .重心
D .垂心 二、填空题:本题共4小题,每小题5分,共20分.
11.在圆 224x y +=上,与直线4x +3y -12=0的距离最小的点的坐标 .
12.已知球的一个截面的面积为9π,且此截面到球心的距离为4,则该球的表面积为____
13.已知圆C 的圆心是直线x-y+1=0与x 轴的交点,且圆C 与直线x+y+3=0相切,求圆C 的方程
.
14
.已知实数x,y
满足方程x 2+y 2-4x+1=0, 求x
y 的最大值 .
三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤.
15.(本小题12分)
(1) 求过直线17810l x y --=:和220l x y ++=:的交点,且垂直于直线270x y -+=的直线l 的方程;
(2)求圆心在直线1+50l x y -=:3上,并且经过原点和点(3,-1)的圆的方程。
(本小题12分)
16.如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点。
求证:(1)PA ∥平面BDE (2)平面PAC ⊥平面BDE
如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC=2,E 是P C 的中
点,作EF ⊥PB 交PB 于点F .
(1)证明 P A //平面EDB ; (2)证明PB ⊥平面EFD ;
(3)求三棱锥F-DBE 的体积
(本小题14分)
18.已知线段AB 的端点B 的坐标为 (1,3),端点A 在圆O:4)1(22=++y x 上运动。
O 为圆的圆心.
(1)求线段AB 的中点M 的轨迹;
(2)过B 点的直线L 与圆O 有两个交点C ,D 。
当CO ⊥DO 时,求L 的斜率。
已知ABC ∆的三个内角A,B,C 所对的边分别为a,b,c,A 是锐角,且B a b sin 23=
(1)求A ;(2)若ABC a ∆=,7的面积为310,求b+c
20.(本小题14分)
数列}{a n 的前n 项和为n S ,1a =1. n 1n 2S a =+
(1)求证数列n S 为等比数列(2)求数列}{a n 的通项(3)求数列}{na n 的前n 项和n T 。
答案:1~10:BABBB ABBCD 。
11~14:
)5
6
58,(,π100,2)1(22=++y x ,3 解答题:15032:=++y x l ,925)35-(22=+y x 17.9418.点M 的轨迹是以30,2⎛⎫ ⎪⎝⎭
为圆心,1为半径的圆
3k =±.19. 60,13. 20. 113)1(11,1,3--⋅-+=⎨⎧===n n n n n n T n a S ,,。