〖医学〗无脊椎动物的消化系统 与进化
- 格式:ppt
- 大小:1.17 MB
- 文档页数:33
无脊椎动物消化及循环比较1.原生动物Protozoa这类动物既有营自由生活的(17000多种),也有寄生生活的(约6800种)原生动物典型的营养方式有:以眼虫为例,在它的细胞质内有叶绿体,在有光条件下,通过利用光能进行光合作用合成糖类等有机物,即叫做光合营养,过多的食物以半透明的副淀粉粒储存在细胞质中;在无光的条件下,也可通过体表吸收溶解于水中的有机物质,称之为渗透营养。
利用体内的伸缩泡调节水分平衡,以及由此而收集溶解于水中的代谢废物,通过胞口排出体外。
原生动物中还有的能吞食固体的食物颗粒或微小生物,称为吞噬营养,以变形虫为例。
变形虫对细菌、藻类、某些原生动物和各种有机碎屑等食物的摄取,是以吞噬作用来实现的。
对环境中的一些液体性质的食物则以胞饮作用进行获取。
胞饮作用与吞噬作用相互协调,是受细胞本身调节的。
在消化过程中,不同阶段食物泡的变化特征,与许多纤毛虫是一致的,但整个消化吸收过程较长,大约要2—3天的时间。
2.多孔动物Porifera此类动物在演化上是一个侧枝,因此又名“侧生动物”它们的成体全部营固着生活,附着于水中的岩石、贝壳、水生植物或其他物体上。
海绵体表有无数小孔,是水流进入体内的孔道,与体内管道相通,然后从出水孔排出,通过水流带进食物、氧气并排出废物,因而属于被动取食不同的海绵动物,它们的水沟系又是有所不同的,有单沟型,双沟型和复沟型,由三种水沟系的类型来看,海绵动物的进化过程是由简单到复杂,领细胞的数目逐渐增多,增加可水流通过海面体的速度和流量,扩大了摄食的面积,获得更多的食物和氧气,同时不断排出代谢废物,提升了海绵适应生活的能力,代谢的效率得到了提高。
3.腔肠动物Coelenterata腔肠动物最重要的一个特征就是有一个消化循环腔。
消化循环腔,是胚胎时期的原肠腔,相当于高等动物的消化道,有消化的功能,可以进行细胞外消化和细胞内消化,还能将消化后的营养物质输送到身体的各个部分去。
消化腔有一个开口,就是原肠动物的口,通向体外,这个开口时原肠胚时期所形成的原口。
无脊椎动物的进化与演变张明月20141641067(内江师范学院;生命科学学院;内江;641112)摘要:无脊椎动物总的演化趋势是由低级到高级,从简单到复杂,从水生到陆生,从分散到集中。
对这个总的趋势,起柱石作用的是无脊椎动物各大系统的演化趋势。
无脊椎动物二十多个门,从进化树上来看,越高等一点的类群,其神经系统越发达;越低级一点的类群,其神经系统就越简单。
消化系统也从不完整进化为完整,然后出现专门的消化腺,今天我们谈论无脊椎动物的进化与演变,主要从神经系统与消化系统两个方面来探究。
关键字:无脊椎动物神经系统消化系统引言:无脊椎只动物在地球上的总数和数量远远多于脊椎动物。
种类多样化,结构也多样化。
换而言之,无脊椎动物的多样性导致了生物的多样性。
由原生动物开始,无脊椎动物经过了细胞数量,形态,受精卵裂,囊胚及原肠胚的形成,中胚层及体腔的形成,胚层的分化。
由单细胞的原生动物开始逐渐发展,出现了腔肠动物,扁形动物、线形动物、环节动物、软体动物和节肢动物。
实现了生物由简单到复杂、由低等到高等的生物进化。
无脊椎动物神经系统的进化与演变原生动物是真核单细胞动物,是动物界里最原始,最低等的动物,它们的主要特征是身体由单个细胞构成因此也称单细胞动物。
它没有像高等动物那样的器官,系统而是由细胞分化出不同的部分来完成各种生理活动。
如有些种类分化出鞭毛和纤毛完成运动的机能,有些种类分化出胞口,胞咽摄取食物后在体内形成食物泡进行消化,完成营养的机能等。
从腔肠动物起出现了原始的神经系统——神经网。
神经网是动物界里最简单最原始的神经系统,一般认为它基本上是由二极和多极神经的细胞组成。
这些细胞具有形态上的相似突起,相互连接形成一个输送的网,因此称神经网。
有些种类只有一个神经网存在于外胚层的基部,有些种类则有两个神经网分别存在于内,外胚层的基部。
还有些除了内外胚层的神经网外,在中胶层也有神经网,神经细胞之间的连接,经电子显微镜证明,一般是以突触相连接。
一、体制:无对称→球形对称→辐射对称→两侧对称(1)无脊椎动物原生动物:变形虫——无对称放射虫、太阳虫、团藻——球形对称(通过一个中心点,有无数对称轴,可将球体切成相等的对称面)→适应于悬浮在水中草履虫——两侧对称多孔动物、腔肠动物:基本上为辐射对称(通过身体中央轴有许多切面可以把身体分成相等的部分)→适应于固着在水中海葵——两辐对称(海葵由于有口、口道沟的存在,身体只能通过体轴作平行与垂直口道沟的两个对称面)扁形动物、线形动物、环节动物、软体动物、节肢动物、棘皮动物:生活方式从固着、漂浮演化成爬行方式或游泳,身体呈两侧对称→适应于爬行生活,是动物由水生进化到陆生的重要条件之一。
二、胎层:单细胞→单细胞层→二胚层→三胚层(分化盲支:多孔动物门胚胎发育存在逆转)原生动物:单细胞动物没有胚层的概念;即使是团藻也只有一层细胞,;(真正地多细胞动物有胚层的分化)肠腔动物:二胚层扁形动物、线形动物、环节动物、软体动物、节肢动物、棘皮动物:出现三胚层(在动物进化上有着极为重要的意义)三、体腔:无体腔→假体腔→真体腔(是高等无脊椎动物的重要标志之一)原生动物、多孔动物、腔肠动物、扁形动物:无体腔线形动物(假体腔动物):假体腔(初生体腔,即直接跟体壁的肌肉层和消化管道的壁相接触没有中胚层形成的体腔膜包围,也不和外界相通)←胚胎时期的囊胚腔所形成的环节动物、节肢动物、棘皮动物(软体动物真体腔退化):真体腔(体腔的位置处于中胚层之间,外围由中胚层形成的体腔膜所包围)→造成了各种器官的进一步特化四、体节和身体分布:同律分节→异律分节(身体分节是高等无脊椎动物的重要标志之一)原生动物、多孔动物、腔肠动物:不分节扁形动物、线形动物:原始分节(机体各部分结构和机能分化,但身体不分节)环节动物:同律分节节肢动物、软体动物、棘皮动物:异律分节(导致了动物的身体分部)五、体表和骨骼:细胞膜→细胞外有壳→外有纤毛→有角质层→体外有壳→体外含几丁质原生动物:仅细胞膜(部分植物性鞭毛虫有细胞壁,部分有壳肉足虫具外壳、含角质、石灰质等); 扁形动物:有体表纤毛;线形动物、环节动物:体表有角质层;软体动物:有石灰质壳节肢动物、棘皮动物:有几丁质外壳(骨骼是维持体形的支架,无脊椎动物的骨骼一般由外胚层分化而成,故称外骨骼;但棘皮动物的骨骼是起源于中胚层;软体动物头足类的软骨也是起源于中胚层)六、运动器官和附肢原生动物:鞭毛、伪足和纤毛;多孔动物:鞭毛;腔肠动物:有了原始的肌肉细胞;幼虫以纤毛运动;扁形动物:中胚层形成的肌肉使动物体得以蠕动;体表有纤毛用于运动;寄生种类的幼体有纤毛;线形动物:用体壁纵肌作蛇行运动;环节动物:用肌肉、刚毛和疣足运动;软体动物:用肉质的足作爬行运动;节肢动物:用附肢运动棘皮动物;用腕和管足运动。
无脊椎动物的进化与演变张明月20141641067(内江师范学院;生命科学学院;内江;641112)摘要:无脊椎动物总的演化趋势是由低级到高级,从简单到复杂,从水生到陆生,从分散到集中。
对这个总的趋势,起柱石作用的是无脊椎动物各大系统的演化趋势。
无脊椎动物二十多个门,从进化树上来看,越高等一点的类群,其神经系统越发达;越低级一点的类群,其神经系统就越简单。
消化系统也从不完整进化为完整,然后出现专门的消化腺,今天我们谈论无脊椎动物的进化与演变,主要从神经系统与消化系统两个方面来探究。
关键字:无脊椎动物神经系统消化系统引言:无脊椎只动物在地球上的总数和数量远远多于脊椎动物。
种类多样化,结构也多样化。
换而言之,无脊椎动物的多样性导致了生物的多样性。
由原生动物开始,无脊椎动物经过了细胞数量,形态,受精卵裂,囊胚及原肠胚的形成,中胚层及体腔的形成,胚层的分化。
由单细胞的原生动物开始逐渐发展,出现了腔肠动物,扁形动物、线形动物、环节动物、软体动物和节肢动物。
实现了生物由简单到复杂、由低等到高等的生物进化。
无脊椎动物神经系统的进化与演变原生动物是真核单细胞动物,是动物界里最原始,最低等的动物,它们的主要特征是身体由单个细胞构成因此也称单细胞动物。
它没有像高等动物那样的器官,系统而是由细胞分化出不同的部分来完成各种生理活动。
如有些种类分化出鞭毛和纤毛完成运动的机能,有些种类分化出胞口,胞咽摄取食物后在体内形成食物泡进行消化,完成营养的机能等。
从腔肠动物起出现了原始的神经系统——神经网。
神经网是动物界里最简单最原始的神经系统,一般认为它基本上是由二极和多极神经的细胞组成。
这些细胞具有形态上的相似突起,相互连接形成一个输送的网,因此称神经网。
有些种类只有一个神经网存在于外胚层的基部,有些种类则有两个神经网分别存在于内,外胚层的基部。
还有些除了内外胚层的神经网外,在中胶层也有神经网,神经细胞之间的连接,经电子显微镜证明,一般是以突触相连接。
1. 消化系统的进化主线:原生动物只有胞内消化,可用伪足或胞口摄食,另外还可植食和腐食性;海绵动物仍然是胞内消化;腔肠动物开始有了消化管;胞内和胞外消化;扁形动物为胞外消化,但消化管是不完全的;线形动物出现了完全的消化管,并且有了分化;环节动物以后由于真体腔的出现,消化管更加复杂和分化,同时有了消化腺。
2.呼吸系统的进化主线:原生动物、海绵动物、腔肠动物都没有呼吸和排泄系统,呼吸作用通过体表完成的;扁形动物和线形动物也无呼吸系统,呼吸也是体表进行的,寄生种类为厌氧呼吸,环节动物的呼吸可通过体表和疣足进行;软体动物的呼吸通过体壁突起的鳃和外套膜进行;节肢动物的呼吸器官包括鳃(虾)、书鳃(鲎)、书肺(蜘蛛)、气管(昆虫)、气管鳃(幼虫) 以及体表;棘皮动物的呼吸是通过管足和皮鳃完成。
3.神经系统的进化主线:1) 原生动物没有神经系统,只有纤毛虫有纤维系统联系,起着感觉传递的作用;2) 海绵动物也无神经系统,借原生质来传递刺激;3) 腔肠动物是网状神经系统,原始,无神经中枢,神经传导无定向性,速度慢。
4) 扁形动物门为梯形神经系统(原始中枢神经系统)。
5) 原腔动物门为圆桶状神经系统,感官不发达。
6) 环节动物门为链状神经系统。
此神经系统集中,有脑与一对围咽神经、一对愈合的咽下神经节相连,此后腹神经链纵贯全身。
7) 软体动物门的神经系统一般有脑、足、侧、脏4对神经节,各纲有不同的愈合现象和其间相连的神经索。
头足类的神经系统是无脊椎动物中最高级的。
8) 节肢动物门也为链状神经系统,有灵敏的感觉器官,具神经内分泌系统。
9) 棘皮动物的神经系统有3 套。
分为下、外和内系统。
4.体制和分节(1)体制原生动物(阿米巴,变形虫):无对称。
(太阳虫):球形辐射对称腔肠动物:辐射对称扁形动物起:两侧对称棘皮动物:五辐射对称(2)分节线虫动物:同律分节环节动物:同律分节软体动物:异律分节(头、足、内脏团)节肢动物:异律分节(头、胸、腹)5.肌肉和运动原生动物:鞭毛、伪足、纤毛海绵动物:肌丝、肌细胞腔肠动物:皮肌细胞扁形动物:皮肤肌肉囊线虫动物:皮肌囊环节动物:疣足和刚毛软体动物:足节肢动物:附肢棘皮动物:管足6. 胚层和体腔(1)胚层原生动物:单细胞、单层细胞海绵动物:逆转腔肠动物:双胚层扁形动物:三胚层(2)体腔扁形动物:无体腔线虫动物:假体腔环节动物:真体腔。
无脊椎动物的消化系统与进化-V1无脊椎动物的消化系统是其生存和繁衍的关键部位,也是其进化过程中的重要组成部分。
在消化过程中,无脊椎动物所取食物的不同种类、大小以及消化策略,对其消化系统的进化、形态特征和功能演化产生了深远影响。
1. 消化系统起源和进化早期的无脊椎动物消化系统大多数是基于口腔围绕口内腔的单一或多个排列的胃。
然而随着进化的逐渐发展,消化系统从单一的口腔到了口和肛门的分化,形成了真正的消化系统。
复杂的消化系统不仅可以消化更多不同种类的食物,还可以更有效地吸收营养物质,为无脊椎动物的生存提供了有效的保障。
2. 消化系统形态和特征无脊椎动物的消化系统具有多样的形态和特征,这与其生态环境和生存策略密切相关。
例如,食草动物的消化系统通常较长,可以充分分解食物中的纤维素和其他淀粉质,而肉食性无脊椎动物的消化系统则较短,可以更快地将消化物排出体外。
此外,部分无脊椎动物的消化系统还具有特殊的器官,如食管腺和肠垫等,这些器官可以帮助其吸收更多的养分。
3. 不同食物类型对消化系统的影响不同种类的食物对无脊椎动物的消化系统和进化产生了深刻影响。
例如,肉食性无脊椎动物进化出了较短的消化系统,以适应消化动物组织。
相反,食草性无脊椎动物的消化系统则更长,以帮助其分解植物纤维素。
此外,腐食性无脊椎动物的消化系统进化出了高效的消化酶,以分解腐烂的有机物。
4. 消化系统的进化意义无脊椎动物的消化系统是其进化过程中的核心组成部分。
随着消化系统的进化,无脊椎动物可以吸收更多种类的食物,并更有效地将其转化为能量和养分。
这不仅有助于无脊椎动物生存和繁殖,还使其更好地适应了各种不同的生态环境和生存策略。
综上所述,无脊椎动物的消化系统与其进化密不可分。
通过对于不同种类食物消化策略的选择和进化,无脊椎动物的消化系统不断进化完善,促进了其生存和繁殖,也让其在动物界中发挥了重要作用。
中央民族大学生命与环境科学学院动物生物学期中论文无脊椎动物中系统的结构姓名:赤西烨夜学号:年级:专业:生态摘要:无脊椎动物在地球上总数多于脊椎动物,身体的结构也明显的较脊椎动物更多样化。
无脊椎动物种类多样,一方面是它们机构上的多样化;同时结构上的转变也反映了动物在进化上的必然规律。
一、无脊椎动物的体制和分节(一)无脊椎动物的体制分类:体制:即动物体的大体形式原生动物体制:变形虫:体不能分成两个或若干个对称部份,称之为无对称形,属无轴形态;放射虫、太阳虫、团藻:通过一个中心点,有无数对称轴,可将球体切成相等的对称面,这些球形的原生漂浮动物,称为球形对称;草履虫称之为双侧对称。
多孔动物、腔肠动物(及侧生、中生)大体上为辐射对称:通过身体中央轴有许多切面能够把身体分成相等的部份;海葵的身体已由辐射对称过渡到两辐对称:海葵由于有口、口道沟的存在,身体只能通过体轴作平行与垂直口道沟的两个对称面,称为两辐对称。
从扁形动物开始,生活方式从固着、漂浮演化成爬行方式或游泳,身体呈双侧对称。
由上可知,体制是从无对称-球形对称-两辐对称-双侧对称的进展线路。
无脊椎动物的体制分为:球形辐射对称,辐射对称,双侧对称。
这些多样化的形状表示出动物的进化进程和多不同环境的适应性。
球形辐射对称适应于悬浮在水中;辐射对称适应于固着在水中;双侧对称是动物从水中到陆生的重要条件之一,双侧对称适应于爬行生活。
(二)分节:体制对称的另一种特殊形式是躯体分节;身体分节或分部是高等无脊椎动物的重要特征之一。
无脊椎动物的躯体由不分节(腔肠动物、多孔动物)—分节,分节又分为原始分节(扁形动物、假体腔动物)、同律分节(环节动物)异律分节(节肢动物)。
二、胚层分类无胚层:原生动物;两胚层:海绵动物、腔肠动物;三胚层:扁形动物以上三、体壁和骨骼(一)体壁动物的体壁都直接与外界环境相接触,有着不同的结构和担负必然的功能。
单细胞动物的体壁即是细胞膜:保护、吸收、分泌、物质互换等功能。
无脊椎动物的发展变化-进化(演化)趋势一.体制的进化趋势1.体制多样完全不对称:原生动物变形虫、有孔虫、草履虫等与扁盘动物完全对称:原生动物放射虫、太阳虫等辐射对称:原生动物钟形虫等两侧对称:原生动物四膜虫等2.辐射对称与完全不对称~多孔动物3.辐射对称~腔肠动物的水螅类、水母类4.两辐对称~腔肠动物的海葵类与栉水母动物5.两侧对称~扁形动物至棘皮动物的海参类和半索动物二.胚层与体腔的进化趋势1.无胚层~原生动物(单细胞动物)、中生动物(真正原始多细胞动物)2.两胚层~多孔动物(只不过具胚层逆转它应属多细胞动物中后生动物中侧生动物)、扁盘动物(有学者认为它是真正两胚层动物,属多细胞动物中后生动物最原始的真后生动物)、腔肠动物(属多细胞动物中后生动物真后生动物)、栉水母动物3.三胚层(1)无体腔~扁形动物、纽形动物(2)假体腔~腹毛动物、线虫动物、线形动物、轮虫动物、棘头虫动物(3)真体腔,端细胞法形成~环节动物、螠虫动物、星虫动物(4)真体腔与假体腔并存~软体动物(5)真体腔与假体腔融合成混合体腔~节肢动物(6)真体腔,(肠)体(肠)腔囊法形成~腕足动物(原口形成口)、苔藓动物(原口形成什么?)、箒虫动物(原口形成什形成?)、棘皮动物、毛顎动物、半索动物三、身体的分化的进化趋势1.无分化(无头、无躯干、无尾、无足)~原生动物、中生动物、扁盘动物、腔肠动物、栉水母动物2.有分化(1)头(端)、躯干~纽形动物(2)头(端)、躯干与尾~扁形动物、线虫动物、线形动物、轮虫动物、腹毛动物、毛顎动物(3)头、足(腕)、内脏团~软体动物(4)身体分节,同律分节~环节动物的蚯蚓类、沙蚕类(5)身体分节,异律分节~环节动物的磷沙蚕类等(6).身体分为体区:甲、头部、胸部、腹部或头胸部与腹部或头部与躯干部等~节肢动物乙、头叶、腺体部、躯干部、固着器~须腕动物丙、吻、领、躯干部~半索动物四.运动与肌肉系统的进化趋势1.纤毛、鞭毛、伪足、触毛、小膜、波动膜、肌原纤维~原生动物、中生动物、多孔动物、扁盘动物2.皮肌细胞~腔肠动物3.纤毛、肌肉细胞与上皮相互紧贴组成体壁,行爬行、游泳、(扭曲)运动~扁形动物、纽虫动物4.肌肉细胞与上皮相互紧贴组成体壁,行蛇行运动~线虫动物、线形动物.5.栉板运动器官的出现~栉水母动物6.刚毛、疣足运动器官的出现、肌肉细胞与上皮相互紧贴组成体壁,肌细胞埋在结締组织中,肌肉细胞开始有成朿的趋势~环节动物7.纤毛与独立出来的肌肉朿~腹毛动物8.足与肌肉朿各自独立出来~轮虫动物、软体动物9.漏斗、鳍~软体动物10、节肢与昆虫翅的出现,其肌肉朿两端有韧带连结身体内骨骼或节肢内的内骨骼上,使动物适生范围极度扩大~节肢动物11.管足、能动的长棘出现,肌肉朿两端有韧带连结身体的内骨骼上~棘皮动物五.消化系统的进化趋势1. 食物泡~简单原生动物细胞内消化胞口胞咽食物泡胞肛或领细胞与变形细胞共同作用~复杂原生动物、多孔动物细胞内消化2. 腺细胞出现~扁盘动物细胞内消化>细胞外消化3. 口-(口道)-肠-(反口孔)或口-胃—辐管、环管~腔肠动物、栉水母动物细胞内消化>细胞外消化4. 口-咽-肠~扁形动物细胞内消化<细胞外消化5.口-口腔-咽-肠-直肠-肛门~毛颚动物、星虫动物基本上是细胞外消化 (消化腺)6.口-口腔-咽=食道-胃-肠-直肠-肛门~纽形动物、线虫动物、腹毛动物咽腺7.口-口腔-食道-胃-(肠)-直肠-肛门~苔藓动物、腕足动物、箒虫动物半索动物(总担) (消化腺) 酸浆贝无肛门8.口-口腔-咽-胃(咀嚼器)-肠-直肠-肛门~轮虫动物唾液腺胃腺9.口-口腔-咽-食道-嗉囊-砂囊-胃-盲肠前部-盲道部-直肠-肛门~环节动物咽腺食道腺胃腺盲肠=“肝”10口-口腔-咽-食道-胃-小肠-直肠-肛门~软体动物齿舌唾液腺肝.胰11.口-口腔-咽-食道-嗉囊-砂囊-胃-肠-回肠-结肠-直肠-肛门~节肢动物各种口器肠(胃)盲囊六.呼吸系统的进化趋势1.水域:体表与体表向体外增加突出面(1).体表渗透~原生动物、多孔动物、腔肠动物、栉水母动物、扁形动物、腹毛动物、纽形动物、线虫动物、线形动物、轮虫动物、部分环节动物、少数节肢动物(溞.极少数螨类)(2).疣足、鳃~部分环节动物(3).鳃~大多数软体动物、节肢动物甲壳类、棘皮动物海胆类(4).书鳃~节肢动物肢口类(5).皮鳃~棘皮动物海星类、海百合类(6).水肺~棘皮动物海参类(7).总担(触手冠)~腕足动物、苔藓动物、箒虫(8)触手~须腕动物2.陆域: 体表与体表向体内凹陷并增加凹陷面(1).“肺”~软体动物少数腹足类(2).书肺与气管~节肢动物蜘蛛类(3).气管~节肢动物昆虫类、栉蚕类、蜈蚣类七.循环系统的进化趋势1.无,靠细胞质的流动~单体原生动物2.无,靠细胞质的流动与细胞间的渗透~原生动物的群体、中生动物、多孔动物、扁盘动物、腔肠动物、栉水母动物3.无,靠组织液的被动流动~扁形动物4.无,靠体腔液的被动流动~线虫动物、线形动物、腹毛动物、棘头动物、毛颚动物5.有,血液主动流动(闭管式、不具心脏、血流无定向、有血细胞、多不具血红蛋白)~纽形动物、螠虫动物(具心脏?)6. 有,血液主动流动(闭管式、不具心脏、具血红蛋白)~菷虫动物7.有,血液主动流动(闭管式、具心脏、血流定向、有血细胞、具血红蛋白)~环节动物、须腕动物8.有,血液主动流动(开管式、具心脏(心室与心耳)或(心囊=血脉球)、血流定向、有血细胞、多具血清或血兰蛋白)~软体动物、节肢动物、腕足动物、半索动物9. 有,体腔液的被动流动(主)与血液主动流动(辅)~棘皮动物八.排泄系统的进化趋势1.体表渗透~扁盘动物(?)、腔肠动物、栉水母动物、毛颚动物2.伸缩泡~多数原生动物、多孔动物3.收集管、伸缩泡主泡、排泄管、排泄孔~极少数原生动物4.变形细胞吞噬异物~棘皮动物5.原肾:N个焰细胞-N个排泄小管-2条排泄管-(排泄囊)-1~N个排泄孔~扁形动物、纽形动物、腹毛动物(有的种类无原肾管)、轮虫动物、棘头动物(若有时,为具焰细胞的原肾管,与生殖导管相通,经生殖孔排出废物)6.原肾:原肾(腺)细胞-排泄管-排泄孔~线虫动物、7.后肾:肾口(具纤毛漏斗)-肾管(腺体部密布微血管、管状部部分管内具纤毛)-肾孔~环节动物、螠虫动物、星虫动物、菷虫动物、腕足动物、须腕动物(似后肾)8.颚腺、触角腺或马氏管~节肢动物9.肾脏~软体动物九.神经系统的进化趋势1.只有神经介质,少数动物有眼点~原生动物2.在中胶层(或间质层)中有芒状细胞(或星状纤维细胞)互相连结~多孔动物、扁盘动物3.神经细胞构成神经网,一部分动物有平衡囊或触手囊结构~腔肠动物4.八条辐射神经索,有平衡囊或触手囊结构(捕食)~栉水母动物5.脑-纵神经,间有横向连接,部分动物有眼点或单眼、平衡囊、纤毛沟~扁形动物、纽形动物(有側神经索)、轮虫动物(有两条腹神经索)6.围咽神经环-纵神经索,索上分布有不规则的神经节,索间有横向连接~线虫动物、线形动物(一条腹神经索)7.脑-围咽神经环-咽下神经节-腹神经链,部分动物有眼点、平衡囊、项器、纤毛感觉器~环节动物8.脑-围食道神经环-食道下神经节-腹神经链(神经节有愈合),有单眼或复眼、平衡囊~节肢动物十.生殖系统的进化趋势1.未发现有性生殖,只见无性生殖~原生动物变形虫类等2.无性生殖与有性生殖兼之,靠个体来完成~原生动物鞭毛类、纤毛虫类与孢子虫类3.无性生殖与有性生殖兼之,无性生殖为主,有性生殖靠生殖细胞完成,发育中有两囊幼虫~多孔动物4.无性生殖与有性生殖兼之,雌雄同体(栉水母动物)或多雌雄异体(腔肠动物),雌雄有性生殖靠生殖腺排出的生殖细胞完成,或直接发育~栉水母动物,或经浮浪幼虫~腔肠动物。