midas反应谱分析步骤
- 格式:pdf
- 大小:575.18 KB
- 文档页数:10
MIDAS分析分析MIDAS/Civil可以对所有的建筑物进⾏线性和⾮线性分析。
特别是装有的多种多样的有限元,可⾮常有效地对建筑物进⾏分析。
在分析功能⽅⾯,由于内存设计所需的多种优秀的运算原理,故可计算出⼗分适⽤且精确的分析结果。
另外不仅对节点数和单元数没有限制,对荷载⼯况和荷载组合数也没有限制。
有限元对于⼀般建筑物所使⽤的梁单元,MIDAS/Civil内存有不仅对于两节点,对于两节点间的变形及任意截⾯的最⼤应⼒分布都可以进⾏分析的功能。
(结果>梁单元细部分析功能).对于板单元,通过适当地使⽤薄板单元(DKT, DKQ)和厚板单元(DKMT, DKM Q),可以对⼀般储存容器等薄板结构以及各种墙体、板桥的上板、基础板等厚板结构获得精确的分析结果。
具备最新运算原理的变截⾯梁单元可以准确地描述纵⽅向截⾯⼤⼩发⽣变化的承托部分(Hunch beam)或桥梁主梁的效应。
另外所内存的索单元可以有效地⽤来对微⼩应变(Small strain)条件的斜张桥或存在下垂效果(Sagging effect)等⼏何⾮线性特性的悬索结构进⾏设计。
MIDAS/Civil的有限元库如下。
桁架传递单元轴向的张拉、压缩荷载只受拉桁架/钩传递单元轴向的张拉荷载,对于钩,考虑钩距索传递单元轴向的张拉荷载,考虑随内部张⼒变化⽽变化的刚度和下垂效果125G ETTING S TARTED126 只受压桁架/隔断传递单元轴向的压缩荷载对于隔断,考虑隔断距离⼀般梁⼀般梁单元,每个节点考虑6个变形⾃由度变截⾯梁变截⾯梁单元,每个节点考虑6个变形⾃由度板板单元,考虑板内效应和板外弯矩效应平⾯应⼒单元考虑⾯内效应平⾯应变单元考虑全局坐标系X-Z平⾯内的⼆维效应轴对称单元考虑全局坐标系X-Z平⾯内的⼆维效应实体单元每个节点考虑3个变形⾃由度粘弹性消能器由线性弹簧和粘性阻尼并联或串联⽽成,⽤户可根据减震装置的特性对其选择来进⾏建模滞后系统由拥有单轴塑性的6个独⽴的弹簧构成,主要⽤于建⽴如塑性阻尼器⼀样可减低建筑物振动的装置的模型铅芯橡胶⽀座隔震系统利⽤橡胶的低刚度和铅易于屈服的特性来隔离振动对建筑物的影响。
用MIDAS来做稳定分析的处理方法(笔记整理)对一个网壳或空间桁架这样的整体结构而言,稳定会涉及三类问题:A.整个结构的稳定性B.构成结构的单个杆件的稳定性C.单个杆件里的局部稳定(如其中的板件的稳定)A整个结构的稳定性:1. 在数学处理上是求特征值问题的特征值屈曲,又叫平衡分叉失稳或者分支点失稳特征:结构达到某种荷载时,除结构原来的平衡状态存在外,还可能出现第二个平衡态2:极值点失稳特征:失稳时,变形迅速增大,而不会出现新的变形形式,即平衡状态不发生质变,结构失稳时相应的荷载称为极限荷载。
3:跳跃失稳,性质和极值点失稳类似,可以归入第二类。
B构成结构的单个杆件的稳定性通过设计的时候可以验算秆件的稳定性,尽管这里面存在一个计算长度的选取问题而显得不完善,但总是安全的。
C 单个杆件里的局部稳定(如其中的板件的稳定)在MIDAS里面,我想已不能在整体结构的范围内解决了,但是单个秆件的局部稳定可以利用板单元(对于实体现在还专业文档供参考,如有帮助请下载。
.没有办法做屈曲分析)来模拟单个构件,然后分析出整体稳定屈曲系数。
和A是同样的道理,这里充分体现了结构即构件,构件即结构的道理A整个结构的稳定性:分析方法:1:线性屈曲分析(对象:桁架,粱,板)在一定变形状态下的结构的静力平衡方程式可以写成下列形式:(1):结构的弹性刚度矩阵:结构的几何刚度矩阵:结构的整体位移向量:结构的外力向量结构的几何刚度矩阵可通过将各个单元的几何刚度矩阵相加而得,各个单元的几何刚度矩阵由以下方法求得。
几何刚度矩阵表示结构在变形状态下的刚度变化,与施加的荷载有直接的关系。
任意构件受到压力时,刚度有减小的倾向;反之,受到拉力时,刚度有增大的倾向。
大家所熟知的欧拉公式,对于一个杆单元,当所受压力超过N=3.1415^2*E*I/L^2时,杆的弯曲刚度就消失了,同样的道理不仅适用单根压杆,也适用与整个框架体系通过特征值分析求得的解有特征值和特征向量,特征值就是临界荷载,特征向量是对应于临界荷载的屈曲模态。
用MIDAS来做稳定分析的处理方法(笔记整理)对一个网壳或空间桁架这样的整体结构而言,稳定会涉及三类问题:A.整个结构的稳定性B.构成结构的单个杆件的稳定性C.单个杆件里的局部稳定(如其中的板件的稳定)A整个结构的稳定性:1. 在数学处理上是求特征值问题的特征值屈曲,又叫平衡分叉失稳或者分支点失稳特征:结构达到某种荷载时,除结构原来的平衡状态存在外,还可能出现第二个平衡态2:极值点失稳特征:失稳时,变形迅速增大,而不会出现新的变形形式,即平衡状态不发生质变,结构失稳时相应的荷载称为极限荷载。
3:跳跃失稳,性质和极值点失稳类似,可以归入第二类。
B构成结构的单个杆件的稳定性通过设计的时候可以验算秆件的稳定性,尽管这里面存在一个计算长度的选取问题而显得不完善,但总是安全的。
C 单个杆件里的局部稳定(如其中的板件的稳定)在MIDAS里面,我想已不能在整体结构的范围内解决了,但是单个秆件的局部稳定可以利用板单元(对于实体现在还没有办法做屈曲分析)来模拟单个构件,然后分析出整体稳定屈曲系数。
和A是同样的道理,这里充分体现了结构即构件,构件即结构的道理A整个结构的稳定性:分析方法:1:线性屈曲分析(对象:桁架,粱,板)在一定变形状态下的结构的静力平衡方程式可以写成下列形式:(1):结构的弹性刚度矩阵:结构的几何刚度矩阵:结构的整体位移向量:结构的外力向量结构的几何刚度矩阵可通过将各个单元的几何刚度矩阵相加而得,各个单元的几何刚度矩阵由以下方法求得。
几何刚度矩阵表示结构在变形状态下的刚度变化,与施加的荷载有直接的关系。
任意构件受到压力时,刚度有减小的倾向;反之,受到拉力时,刚度有增大的倾向。
大家所熟知的欧拉公式,对于一个杆单元,当所受压力超过N=3.1415^2*E*I/L^2时,杆的弯曲刚度就消失了,同样的道理不仅适用单根压杆,也适用与整个框架体系通过特征值分析求得的解有特征值和特征向量,特征值就是临界荷载,特征向量是对应于临界荷载的屈曲模态。
运用midas Building进行超限分析基本流程指 * 导 * 书初稿:王明校对:李法冰审核:卫江华审定:陈德良(2012.12版)目录1 运用midas进行超限分析基本流程简介 (3)2 反应谱分析、设计基本流程及要点 (4)2.1 概述 (4)2.2 基本流程 (4)2.3 反应谱分析要点及注意事项 (5)3 弹性时程分析基本流程及要点 (10)3.1 概述 (10)3.2 基本操作及要点 (10)4 静力/动力弹塑性时程分析基本流程及要点 (15)4.1 概述 (15)4.2弹塑性分析基本流程 (16)4.3静力弹塑性分析要点 (16)4.4动力弹塑性分析要点 (20)5 相关补充分析与计算 (21)5.1 温差工况分析 (21)5.2 楼板详细分析 (23)5.3 转换结构分析 (24)5.4 舒适度分析 (25)5.5 工程量统计 (26)6 主要附件一览表 (29)7 主要参考文献 (30)1 运用midas 进行超限分析基本流程简介midas building/Gen 在超限分析流程中应用的主要环节可见如下示意图1.1。
图1.1 超限分析基本流程示意图注:1.图中黄色框选内容为可运用midas Building/Gen 进行分析主要内容。
或大震2 反应谱分析、设计基本流程及要点2.1 概述反应谱分析是抗震设计中最常用的分析方法,反应谱分析中需要定义设计反应谱、振型组合方法、地震作用方向等数据。
设计规范一般考虑地震强度和远近的影响、建筑的重要性等综合因素提供了设计反应谱函数。
2.2 基本流程图2.2.1 运用midas Building 进行反应谱分析基本流程图注:1. 实际工程中基本以PKPM 导入为主,已进行过的数十个分析显示:模型中构件与荷载能够完全准确导入,但所有参数需要重新定义,具体导入过程详见[附件一]。
若导入ETABS 模型,出错较多,可尝试通过广厦或盈建科二次转换;2. 若仅进行反应谱阶段分析,则无需进行设计(浪费时间);3. 本过程参数调整阶段基本流程见下图2.2.2。
反应谱分析首先就是建立静力模型,要注意边界条件的设置与桩基础的模拟。
在进行反应谱分析之前要计算模型的振型:首先在结构类型中将模型定义为3D的,勾选将自重转化为质量,操作如图同时还要将外荷载转化为质量(自重不必要转化)。
在分析里选择特征值分析,运行后在结果---振型中查瞧周期与振型。
点击自振模态后面的省略号可以查瞧周期与振型的表格算完振型后就可以加反应谱荷载了,在荷载----地震作用添加反应谱函数点击设计反应谱规范选择下图所选的桥梁规范根据勘探资料与设计要求输入数据(在验算E2作用时别忘了修改此处的选项)采用无量纲加速度的单位就是g。
设置完成后点击确定,然后进行反应谱荷载工况的设置,分为顺桥向与横桥向,具体参数见下图前面两个途中在模态组合控制中要选择CQC,到此反应谱前处理的设置已经完成,运行分析后可以在下图中查瞧反应谱的分析结果。
前处理最后要在结果中进行荷载组合,选择自动生成。
规范要选择下图规范(此处所选择的规范要与后面设计所选择的规范相同。
若在设计运行中出现没有生成设计数据,说明这个地方没有进行荷载组合)接下来就就是对模型进行后处理验算,点击设计,在进行RC设计之前要选择城市桥梁规范,这个规范与前面荷载组合所选择的规范就是一致的。
接下来就就是进行RC设计,首先进行材料参数的设置,这里验算的地震作用要与前面的生成设计反应谱中所选择的一致,材料的设置见下图,需要注意的就是设置完成后别忘了点击编辑,否则就没有设置成功。
接下来就就是设计截面的配筋,根据设计图纸将墩柱截面的钢筋输入即可。
这个地方要注意下,civil程序默认只有竖直的单元才进行RC 验算,如果在截面列表中未出现截面说明有水平的单元与竖直的单元共用一种截面。
截面钢筋设置好以后,接下来要做的就是钢筋混凝土抗震设计构件类型的设置。
在进行设置之前需要定义弯矩--曲率曲线,首先定义弹塑性材料特性,有钢材,约束混凝土,无约束混凝土。
钢材的参数详见下图,无约束混凝土与约束混凝土的强度要进行换算,乘上0、85的系数,换算后的参数详见下图。
.一般地震时程分析的步骤如下:1. 在“荷载/时程分析数据/时程荷载函数”中选择地震波。
时间荷载数据类型采用无量纲加速度即可。
其他选项按默认值,详细可参考用户手册或联机帮助。
2. 在“荷载/时程分析数据/时程荷载工况”中定义荷载工况。
结束时间:指地震波的分析时间。
如果地震波时间为50秒,在此处输入20秒,表示分析到地震波20秒位置。
分析时间步长:表示在地震波上取值的步长,推荐不要低于地震波的时间间隔(步长)。
输出时间步长:整理结果时输出的时间步长。
例如结束时间为20秒,分析时间步长为0.02秒,则计算的结果有20/0.02=1000个。
如果在输出时间步长中输入2,则表示输出以每2个为单位中的较大值,即输出第一和第二时间段中的较大值,第三和第四时间段的较大值,以此类推。
分析类型:当有非线性单元或非线性边界单元时选择非线性,否则选择线性。
分析方法:自振周期较大的结构(如索结构)采用直接积分法,否则选择振型法。
时程分析类型:当波为谐振函数时选用线性周期,否则为线性瞬态(如地震波)。
无零初始条件:可不选该项。
振型的阻尼比:可选所有振型的阻尼比。
3. 在“荷载/时程分析数据>地面加速度”中定义地震波的作用方向。
在对话框如果只选X方向时程分析函数,表示只有X方向有地震波作用,如果X、Y方向都选择了时程分析函数,则表示两个方向均有地震波作用。
系数:为地震波增减系数。
到达时间:表示地震波开始作用时间。
例如:X、Y两个方向都作用有地震波,两个地震波的到达时间(开始作用于结构上的时间)可不同。
水平地面加速度的角度:X、Y两个方向都作用有地震波时如果输入0度,表示X方向地震波作用于X方向,Y 方向地震波作用于Y方向;X、Y两个方向都作用有地震波时如果输入90度,表示X方向地震波作用于Y方向,Y方向地震波作用于X方向;X、Y两个方向都作用有地震波时如果输入30角度,表示X方向地震波作用于与X 轴方向成30度角度的方向,Y方向地震波作用于与Y方向成30度角度的方向。
例题 组合结构分析例题组合结构分析2 例题5. 组合结构分析概要此例题介绍使用MIDAS/Gen 的反应谱分析功能来进行组合结构分析的方法。
此例题的步骤如下:1.简要2.建立混凝土框架模型3.建立网壳模型4.合并数据文件5.设定边界条件6.定义组阻尼比7.定义荷载8.输入反应谱数据9.定义结构类型10.定义质量11.运行分析12.荷载组合13.查看结果14.设计验算例题 组合结构分析31.简要本例题介绍使用MIDAS/Gen 进行组合结构反应谱分析,采用了合并数据文件的建模方法,并使用组阻尼比计算真实的振型阻尼比。
例题模型是一个混凝土框架—网壳组合结构。
(该例题数据仅供参考) 基本数据如下:混凝土框架:¾ 柱: 400x400 ¾ 主梁: 200x400 ¾ 次梁: 150x300 ¾ 混凝土: C30¾ 层高: 4.0m 层数:1 网壳:¾ 上弦: P 165.2x4.5 ¾ 下弦: P 139.8x4.5 ¾ 腹杆: P 76.3x3.2 ¾ 设防烈度:7º(0.10g) ¾ 场地: Ⅱ类图1. 分析模型例题组合结构分析4尺寸示意如下:图2. 混凝土框架平面示意图3. 网壳立面示意图4. 整体平面示意例题 组合结构分析52.建立混凝土框架模型参考Gen 用户培训例题1——钢筋混凝土结构的建模部分,建立混凝土框架模型,文件保存为“混凝土.mgb”。
图5. 混凝土框架模型例题组合结构分析6 3.建立网壳参考Gen语音资料——网壳建模,建立网壳模型,文件保存为“网壳.mgb”。
图6. 网壳模型例题 组合结构分析74.合并数据文件1 主菜单选择 模型>节点>建立坐标中输入“0,0,0”,适用。
图7. 网壳模型原点处建立节点2 主菜单选择 模型>单元>复制和移动点击全部选中,在“移动/复制单元”对话框中,鼠标点击“dx,dy,dz”,在模型中利用鼠标将网架左下角点指向原点(0,0,0),适用。
E2反应谱分析步骤:
一、质量转换
1、将自重转化成质量(模型>结构类型),务必在此处进行自重的转化。
2、将带有质量块的荷载转化成质量(模型>质量>将荷载转化成质量)
二、定义弹塑性材料本构
1、在“设计>RC设计> RC设计参数/材料”中,选择08抗震细则,为后期提供普通钢筋的双向箍筋定义。
说明:新版本中mander本构如果在模型中已经对截面配筋的话,程序就可以根据材料和截面自动生成相应的约束混凝土本构,为了实现程序的强大功能,所以在定义混凝土本构前,先选择相应的规范和对相应的截面进行配筋设计,操作流程见下图:
2、在“设计>RC设计> RC设计截面钢筋”中,定义墩柱的普通钢筋
3、在“模型>材料和截面特性>弹塑性材料特性”中,定义材料本构。
本构定义说明:
进行mander混凝土的本构定义,分别定义素混凝土本构和矩形截面约束本构。
流程见下图。
被红线框住的地方记得要修改下,因为在中国混凝土标号采用的是立方体,而韩国、日本等用的是圆柱体标号,所以之间存在换算关系,我给的是0.85倍的关系。
在抗震中用的是圆柱体标号。
三、定义反应谱荷载工况
1、在“分析>特征值分析”中进行定义(模态分析或者振型分析)
说明:做地震响应分析时,采用Ritz向量法,直接求取被激活的有效振型,保证定义方向的振型参与质量系数之和不小于90%。
2、反应谱函数定义
在“荷载>反应谱分析数据>反应谱函数”中定义。
A、水平向反应谱函数定义
B、竖向反应谱函数定义
4、反应谱荷载工况定义
5、在“荷载>反应谱分析数据>反应谱荷载工况”中,分别进行EX、EY、EZ三个方向地震响
应荷载工况的定义。
四、若要考虑P-delta效应的话,需定义P-delta分析。
在“分析>P-delta分析控制”中定义。
五、点击“运行按钮”或者按键盘F5键,进行分析。
六、在“结果>荷载组合”中,进行混凝土的荷载组合。
七、构件的RC抗震设计
1、在“设计>RC设计>钢筋混凝土构件类型定义”中进行模型单元中构件类型的定义。
2、对于桥墩,要定义该构件的“弯矩-曲率关系”。
3、定义墩柱的自由长度
在“设计>一般设计参数>自由长度”中定义
在“设计>一般设计参数>计算长度系数”中定义
4、在“设计>RC设计>运行RC设计>抗震设计”中进行设计
5、设计结果查看。