midas反应谱法的抗震验算实例及概率Pusnover法—牛亚运
- 格式:ppt
- 大小:830.50 KB
- 文档页数:43
交通与土木工程河南科技Henan Science and Technology总第805期第11期2023年6月收稿日期:2022-08-31基金项目:弯梁外倾式异形拱桥关键技术研究及应用(ZJZYJZSJY-2021-1)。
作者简介:王麒(1988—),男,硕士,工程师,研究方向:桥梁设计和现代桥梁设计理论研究;于建立(1995—),男,硕士,工程师,研究方向:桥涵设计;郑亚林(1989—),男,本科,工程师,研究方向:桥涵设计。
基于Midas 的桥梁不同抗震分析计算方法的对比研究王麒于建立郑亚林(中国建筑第七工程局有限公司,河南郑州450000)摘要:【目的】桥梁是地震后救援的生命线,必须保证其抗震性能,桥梁的抗震设计和研究是桥梁设计工作中非常重要的一环。
【方法】目前,桥梁抗震设计常用的方法有反应谱法和时程分析法,本研究结合实际工程,采用Midas Civil 软件,分别通过反应谱法和时程分析法对桥梁结构进行地震作用计算,并对计算结果进行对比分析。
【结果】反应谱法和时程分析法会得到相似的弯矩分布和位移形式。
【结论】采用时程分析法时地震波的选取至关重要,会直接影响计算结果,工程技术人员应尤其注意。
关键词:桥梁抗震;反应谱法;时程分析法;Midas Civil 中图分类号:U442.55文献标志码:A文章编号:1003-5168(2023)11-0078-04DOI :10.19968/ki.hnkj.1003-5168.2023.11.016Comparative Study on Different Seismic Analysis and CalculationMethods of Bridges Based on MidasWANG Qi YU Jianli ZHENG Yalin(China Construction Seventh Engineering Division Co.,Ltd.,Zhengzhou 450000,China )Abstract :[Purposes ]Bridge is the lifeline of post-earthquake rescue,and its seismic performance must be guaranteed.Therefore,the seismic design and research of bridge is a very important part of bridge design.[Methods ]The commonly used methods for seismic design of bridges are response spectrum method and timehistory analysis method.In this study,Midas Civil software was used to calculate the seismic action of bridge structure by response spectrum method and time history analysis method,and the calculation results were compared and analyzed.[Findings ]Similar bending moment distribution and displacement form can be ob⁃tained by response spectrum and time history analysis.[Conclusions ]The selection of seismic waves is very important when using time history analysis method,which will directly affect the calculation results,and engi⁃neers and technicians should pay special attention to it.Keywords :bridge seismic;response spectrum method;time history analysis method;Midas Civil0引言地震会给人类带来巨大的灾难,桥梁作为交通生命线,如果在地震中遭到破坏会给救灾工作带来巨大困难,加重次生灾害,造成巨大的经济损失,因此桥梁抗震设计是桥梁建造中的重要一环[1]。
反应谱分析首先就是建立静力模型,要注意边界条件的设置与桩基础的模拟。
在进行反应谱分析之前要计算模型的振型:首先在结构类型中将模型定义为3D的,勾选将自重转化为质量,操作如图同时还要将外荷载转化为质量(自重不必要转化)。
在分析里选择特征值分析,运行后在结果---振型中查瞧周期与振型。
点击自振模态后面的省略号可以查瞧周期与振型的表格算完振型后就可以加反应谱荷载了,在荷载----地震作用添加反应谱函数点击设计反应谱规范选择下图所选的桥梁规范根据勘探资料与设计要求输入数据(在验算E2作用时别忘了修改此处的选项)采用无量纲加速度的单位就是g。
设置完成后点击确定,然后进行反应谱荷载工况的设置,分为顺桥向与横桥向,具体参数见下图前面两个途中在模态组合控制中要选择CQC,到此反应谱前处理的设置已经完成,运行分析后可以在下图中查瞧反应谱的分析结果。
前处理最后要在结果中进行荷载组合,选择自动生成。
规范要选择下图规范(此处所选择的规范要与后面设计所选择的规范相同。
若在设计运行中出现没有生成设计数据,说明这个地方没有进行荷载组合)接下来就就是对模型进行后处理验算,点击设计,在进行RC设计之前要选择城市桥梁规范,这个规范与前面荷载组合所选择的规范就是一致的。
接下来就就是进行RC设计,首先进行材料参数的设置,这里验算的地震作用要与前面的生成设计反应谱中所选择的一致,材料的设置见下图,需要注意的就是设置完成后别忘了点击编辑,否则就没有设置成功。
接下来就就是设计截面的配筋,根据设计图纸将墩柱截面的钢筋输入即可。
这个地方要注意下,civil程序默认只有竖直的单元才进行RC 验算,如果在截面列表中未出现截面说明有水平的单元与竖直的单元共用一种截面。
截面钢筋设置好以后,接下来要做的就是钢筋混凝土抗震设计构件类型的设置。
在进行设置之前需要定义弯矩--曲率曲线,首先定义弹塑性材料特性,有钢材,约束混凝土,无约束混凝土。
钢材的参数详见下图,无约束混凝土与约束混凝土的强度要进行换算,乘上0、85的系数,换算后的参数详见下图。
桥梁抗震分析与设计北京迈达斯技术有限公司2007年8月前言为贯彻《中华人民共和国防震减灾法》,统一铁路工程抗震设计标准,满足铁路工程抗震设防的性能要求,中华人民共和国建设部发布了新的《铁路工程抗震设计规范》,自2006年12月1日起实施。
新规范规定了按“地震动峰值加速度”和“地震动反应谱特征周期”进行抗震设计的要求,明确了铁路构筑物应达到的抗震性能标准、设防目标及分析方法,增加了钢筋混凝土桥墩进行延性设计的要求及计算方法。
从1999年开始,中华人民共和国交通部也在积极制定新的《公路工程抗震设计规范》、《城市桥梁抗震设计规范》。
从以上规范的征求意见稿中可以看出,新规范中桥梁抗震安全设置标准采用多级设防的思想,增加了延性设计和减隔震设计的相应规定,对于结构的计算模型、计算方法、以及计算结果的使用有更加具体的规定。
随着新规范的推出,工程师急迫需要具备桥梁抗震分析与设计的能力。
Midas/Civil具备强大的桥梁抗震分析功能,包括振型分析、反应谱分析、时程分析、静力弹塑性分析以及动力弹塑性分析,可以很好地辅助工程师进行桥梁抗震设计。
目录一桥梁抗震分析与设计注意事项 (1)1. 动力分析模型刚度的模拟 (1)2. 动力分析模型质量的模拟 (1)3. 动力分析模型阻尼的模拟 (1)4. 动力分析模型边界的模拟 (2)5.特征值分析方法 (2)6.反应谱的概念 (3)7.反应谱荷载工况的定义 (4)8.反应谱分析振型组合的方法 (4)9.选取地震加速度时程曲线 (5)10.时程分析的计算方法 (5)二桥梁抗震分析与设计例题 (7)1. 概要 (7)2. 输入质量 (8)3. 输入反应谱数据 (10)4. 特征值分析 (12)5. 查看振型分析与反应谱分析结果 (13)6. 输入时程分析数据 (18)7. 查看时程分析结果 (20)8. 抗震设计 (22)一 桥梁抗震分析与设计注意事项1.动力分析模型刚度的模拟建立桥梁动力分析模型时,结构类型需要采用3D ,主梁、桥墩、支座(边界连接)都需要模拟出来。
迈达斯技术目录简要 (1)设定操作环境及定义材料和截面 (2)定义材料 (2)定义截面 (3)建立结构模型 (4)主梁及横向联系梁模型 (4)输入横向联系梁 (5)输入桥墩 (5)刚性连接 (7)建立桥墩和系梁 (9)输入边界条件 (10)输入支座的边界条件 (10)刚性连接 (11)输入横向联系梁的梁端刚域 (12)输入桥台的边界条件 (13)输入二期恒载 (15)输入质量 (16)输入反应谱数据 (18)输入反应谱函数 (18)输入反应谱荷载工况 (19)运行结构分析 (20)查看结果 (21)荷载组合 (21)查看振型形状和频率 (22)查看桥墩的支座反力 (25)简要本例题介绍使用MIDAS/CIVIL的反应谱分析功能来进行抗震设计的方法。
例题模型使用的是简化了的钢箱型桥梁模型,由主梁、横向联系梁和桥墩构成。
桥台部分由于刚度很大,不另外建立模型只输入边界条件;基础部分假设完全固定,也只按边界条件来定义。
下面是桥梁的一些基本数据。
跨径:45 m + 50 m + 45 m = 140 m桥宽:11.4 m主梁形式:钢箱梁钢材:GB(S) Grade3(主梁)混凝土:GB_Civil(RC) 30(桥墩)[单位:mm]图1. 桥梁剖面图设定操作环境及定义材料和截面开新文件(新项目),以‘Response.mcb’为名保存( 保存)。
文件 / 新项目t文件 / 保存 ( Response )将单位体系设定为kN(力), m(长度)。
工具 / 单位体系长度>m ; 力>kN定义材料分别输入主梁和桥墩的材料数据。
模型 / 材料和截面特性 / 材料材料号 (1) ; 类型>S钢材规>GB(S) ; 数据库>Grade3材料号 (2) ; 类型> 混凝土规>GB-Civil(RC) ; 数据库>30图2. 定义材料定义截面使用用户定义来输入主梁、横向联系梁以及桥墩的截面数据。
北京迈达斯技术有限公司目录简要 (1)设定操作环境及定义材料和截面 (2)定义材料 (2)定义截面 (3)建立结构模型 (4)主梁及横向联系梁模型 (4)输入横向联系梁 (5)输入桥墩 (5)刚性连接 (7)建立桥墩和系梁 (9)输入边界条件 (10)输入支座的边界条件 (10)刚性连接 (11)输入横向联系梁的梁端刚域 (12)输入桥台的边界条件 (13)输入二期恒载 (14)输入质量 (15)输入反应谱数据 (17)输入反应谱函数 (17)输入反应谱荷载工况 (18)运行结构分析 (19)查看结果 (20)荷载组合 (20)查看振型形状和频率 (21)查看桥墩的支座反力 (24)简要本例题介绍使用MIDAS/CIVIL的反应谱分析功能来进行抗震设计的方法。
例题模型使用的是简化了的钢箱型桥梁模型,由主梁、横向联系梁和桥墩构成。
桥台部分由于刚度很大,不另外建立模型只输入边界条件;基础部分假设完全固定,也只按边界条件来定义。
下面是桥梁的一些基本数据。
跨径:45 m + 50 m + 45 m = 140 m桥宽:11.4 m主梁形式:钢箱梁钢材:GB(S) Grade3(主梁)混凝土:GB_Civil(RC) 30(桥墩)[单位:mm]图1. 桥梁剖面图设定操作环境及定义材料和截面开新文件(新项目),以‘Response.mcb’为名保存(保存)。
文件/ 新项目t文件/ 保存( Response )将单位体系设定为kN(力), m(长度)。
工具/ 单位体系长度>m; 力>kN ↵定义材料分别输入主梁和桥墩的材料数据。
模型/ 材料和截面特性/ 材料材料号(1); 类型>S钢材规范>GB(S); 数据库>Grade3 ↵材料号(2); 类型>混凝土规范>GB-Civil(RC); 数据库>30 ↵图2. 定义材料定义截面使用用户定义来输入主梁、横向联系梁以及桥墩的截面数据。
midas抗震设计-反应谱分析反应谱分析北京迈达斯技术有限公司简要本例题介绍使用MIDAS/CIVIL的反应谱分析功能来进行抗震设计的方法。
例题模型使用的是简化了的钢箱型桥梁模型,由主梁、横向联系梁和桥墩构成。
桥台部分由于刚度很大,不另外建立模型只输入边界条件;基础部分假设完全固定,也只按边界条件来定义。
下面是桥梁的一些基本数据。
跨径:45 m + 50 m + 45 m = 1 40 m桥宽:11.4 m主梁形式:钢箱梁钢材:GB(S) Grade3(主梁)混凝土:GB_Civil(RC) 30(桥墩)图1. 桥梁剖面图[单位:mm]设定操作环境及定义材料和截面开新文件(新项目),以‘Response.mcb’为名保存(保存)。
文件/ 新项目t文件/ 保存( Response )将单位体系设定为kN(力), m(长度)。
工具/ 单位体系长度>m; 力>kN ↵定义材料分别输入主梁和桥墩的材料数据。
模型/ 材料和截面特性/ 材料材料号(1); 类型>S钢材规范>GB(S); 数据库>Grade3 ↵材料号(2); 类型>混凝土规范>GB-Civil(RC); 数据库>30 ↵图2. 定义材料定义截面使用用户定义来输入主梁、横向联系梁以及桥墩的截面数据。
主 梁: 箱型截面 2000×2500×12×16/18横向联系梁: 工字型截面 1500×300×12×12/12柱 帽: 实腹长方形截面 1.5×1.5桥 墩: 实腹圆形截面 1.5主梁与桥墩连接的支座部分使用弹性连接(Elastic Link)来模拟。
模型 / 材料和截面特性 / 截面数据库/用户名称 (Girder) ; 截面形状>箱型截面 ; 用户 偏心>中-中心H ( 2 ) ; B ( 2.5 ) ; tw ( 0.012 )tf1 ( 0.016 ) ; C ( 2.3 ) ; tf2 ( 0.018 )名称 (Cross) ; 截面形状>工型截面 ; 用户偏心>中-中心H ( 1.5 ) ; B ( 0.3 ) ; tw ( 0.012 ) ; tf1 ( 0.012 )名称( Coping ) ; 截面形状>实腹长方形截面偏心>中-中心 用户 ; H ( 1.5 ) ; B ( 1.5 ) ↵名称 ( Column ) ; 截面形状>实腹圆形截面用户 ; D ( 1.5 ) ↵输入截面尺寸时,若只输入tf1,不输入tf2,则tf2与tf1相同。