超声声速测量 讲义
- 格式:pdf
- 大小:428.48 KB
- 文档页数:8
声速测量1、学会用共振干涉法和相差法测声速;2、了解压电陶瓷换能器的结构和工作原理;3、学会用驻波管测声速;4、进一步熟悉示波器的使用。
二、实验仪器:声速测定仪、信号发生器、示波器、驻波管和支架、扬声器。
三、实验原理声速是描述波在媒质中传播特性的物理量,它与媒质的性质及状态有关,频率在20—20000赫兹范围内为可闻声,大于20000赫兹为超声波,由于超声波具有波长短,定向性好,抗干扰强等特点,在传播的过程中入射波与反射波容易产生干涉并形成驻波,而可闻声只能在驻波管内产生干涉形成驻波。
本实验是通过测量驻波波长和频率,由公式λf 算出声速。
V f λ=压电陶瓷:压电陶瓷(如:钛酸钡、锆钡酸铅)具有正压电效应和逆压电效应,当它受到压力时,表面产生电荷,形成电场,为正压电效应。
在外加电场的作用下可产生形变,为逆压电效应,当交流电压作用于压电陶瓷时,它将作周期性的形变即振动从而发出声波。
利用压电陶瓷在外来振动的作用下产生变化电场的正压电效应可用来接收声波信号。
1、超声波的驻波法测声速(共振干涉法)如图(一)所示,超声波发射器与超声波接收器平行正对,超声波发射器发出超声波向右传播,遇到接收换能器后发生反射,此时发射器与接收器之间的入射波与反射波叠加形成驻波,相邻波腹和波节间距离都为,当接收器移至波腹处接收信号最强,实验中通2λ过移动接收器依次记下波腹位置,它满足:,2l kλ=,1,2,k i i i =++测出相邻波腹间距和频率,112i i l l l λ+∆=-=f 用公式算出声速。
V f λ=2、超声波的相差法测声速(相位比较法)将发射信号与接收信号分别接示波器的与输入端,两个同频率振动方向相互垂x y 直的正弦信号合成利萨如图,当水平移动接收器时,两个信号的相位差随距离改变而改变,每改变一个波长的距离相位差改变,2π利萨如图形重复一次,变化一个周期,测出一个周期的距离变化量和频率,l λ∆=f发射换能器图(一)发射换能器图(二)图(三) 利萨如图四、实验内容和要求1、超声波驻波法测空气中声速(1)按图(一)连接线路,发射换能器接信号源,接收换能器接示波器。
3声速测定声速测量的常用方法有两类:第一类是测量声波传播距离l 和时间间隔t ,然后根据公式t l v /=计算声速v (时差法);第二类是测出频率f 和波长λ,再计算声速v 。
本实验采用第二类测量方法。
【实验原理】由于超声波具有波长短、易于定向发射和不可闻等优点,所以在超声波段测量声速是比较方便的。
超声波的发射和接收一般是通过电磁振动和机械振动的相互转换来实现的,主要是利用压电效应和磁致伸缩效应。
本实验采用压电陶瓷换能器来实现声压和电压之间的转换。
当换能器的压电晶体的固有频率与外界信号频率一致时就会产生谐振,此时压电陶瓷换能器能够较好地进行声能与电能的相互转换,可以获得最大的声波压强。
所以实验时应调节信号发生器的输出频率(34.0~36.0kHz ),使其与换能器谐振(示波器上信号幅度最大),此时的频率即为压电陶瓷的谐振频率。
1. 驻波法(共振干涉法)实验原理如图所示。
S 1、S 2为压电陶瓷换能器。
S 1装在固定端,接受器S 2可以移动。
带有功率输出的信号发生器产生的超声频率段的正弦交变电压信号接在S 1上,使S 1产生受迫振动,向周围空间定向发出一近似的平面波。
S 2为接收换能器,它接收到声波后产生与声源同频率的电振动。
当S 1和S 2的表面互相平行时,声波就在两个平面间往返,形成驻波。
当两个换能器之间的距离l 为半波长的整数倍时,出现稳定的驻波共振现象,声压波幅最大。
在接收器的反射面处是振幅的“波节”位置,同时是声压的“波腹”位置,即该处位移为零,声压最大。
连续改变l 值,声压波幅将在最大与最小之间周期性的变化。
接收器S 2上的电压与该处声压成正比,测量接收器电压随两个换能器距离的变化情况,相邻两次电压最大对应的距离变化就是半波长,由此可以得到波长λ。
再根据公式λf v =可直接算出v ,其中声波的频率f 即驱动电压的频率,可从信号发生器面板上直接读出。
2. 行波法(相位比较法)S 1与S 2处的声波有一定的相位差,当两者距离为l 时,相位差为2l ϕπλ=,因此可以通过测量ϕ来求得声速2v lf πϕ=。
实验3.12 超声声速的测量声波是一种机械波,它可以在气态、液态、固态物质中传播,它会引起物质的光学、电磁、力学、化学性质以及人类生理、心理等性质的变化。
人耳能听到的声波称为可闻声波,频率在20Hz ~20kHz 之间,频率低于20Hz 的声波称为次声波,频率高于20kHz 则称为超声波。
超声波在媒质中传播时,声速、声衰减和声阻抗都和媒质的特性及状态有关,通过测量这些声学量可以探知媒质的特性和状态变化。
这些声学量的测量方法就是超声无损检测的实验基础。
由于媒质中的声速与媒质的许多非声学特性都有直接或间接的关系,所以通过声速的测量可以求出固体媒质的弹性模量,进行气体成分分析,测定液体的比重,液体的成分及溶液浓度等。
利用媒质的温度、压强、流速与声速的关系则可以探测这些状态参量的变化。
媒质中的声速是应用最广而且测量精度也较高的声学量。
测量声速依据的原理可以是t l v /=(l 表示声音传播的距离,t 表示通过这段距离的时间),也可以是λf v =(f 为声波的频率,λ为声波的波长)。
本实验采用的共振干涉法和相位比较法均属于后者。
一、预备问题1. 压电换能器是如何工作的?2. 声波在媒质中传播的速度与哪些因素有关? 3. 何为共振干涉法和相位比较法?二、引言1.超声波的发射和接收超声波的发射和接收都需要用换能器,换能器的作用是将其它形式的能量转换成超声波的能量(发射换能器),或将超声波的能量转换为其它可以检测的能量(接收换能器)。
最常使用的是压电换能器。
压电晶体(如石英)或压电陶瓷(如钛酸钡、锆钛酸铅)这类压电材料受到应力T 的作用会在材料内产生电场E ,且满足T E ⋅=σ(σ为压电常数),这就是压电效应。
压电效应是法国人居里兄弟1880年在研究热电现象和晶体对称性的时候发现的。
压电换能器接收超声波信号使之转换为电信号,从而将机械能转换为电能,利用的就是压电效应原理。
当超声波频率与系统固有(共振)频率一致时所产生的电信号最强。
声速的测量(超声波法)声波是一种在弹性媒质中传播的机械波。
声波在媒质中传播时,声速,声强等诸多参量都和媒质的特性与状态有关,通过测量这些声学量可以测知媒质的特性及状态变化。
例如,通过测量声速可求出固体的弹性模量:气体、液体的比重、成分等参量。
在同一媒质中,声速基本与频率无关,例如在空气中,频率从20赫兹变化到8万赫兹,声速变化不到万分之二。
由于超声波具有波长短,易于定向发射,不会造成听觉污染等优点,我们通过测量超声波的速度来确定声速。
超声波在医学诊断,无损检测,测距等方面都有广泛应用。
声速的测量方法可分为两类;第一类方法是直接根据关系式v=S/t,测出传播距离S和所需时间t后即可算出声速,称为“时差法”。
第二类方法是利用波长频率关系式v=fλ,测量出频率f和波长λ来计算出声速。
【实验目的】1.了解超声换能器的工作原理和功能2.学习不同方法测定声速的原理的技术3.熟悉测量仪和示波器的调节使用4.测定声波在空气及水中的传播速度【实验仪器】QSSV-2型声速测定实验仪、示波器【实验原理】一、声速在空气中的传播速度在理想气体中声波的传播速度为v=(1)式中γ =Cp/Cv称为比热比,即气体定压比热容与定容比热容的比值,μ是气体的摩尔质量,T是绝对温度,R=8.31441J/moL•K为普适气体常数。
由(1)式可见,声速与温度有关,又与摩尔质量μ及比热比γ有关,后两个因素与气体成分有关因此,测定声速可以推算出气体的一些参量。
利用(1)式的函数关系还可制成声速温度计。
在正常情况下,干燥空气成分按重量比为氮:氧:氩:二氧化碳=78.084:20.946:0.934:0.033。
它的平均摩尔质量为0μ=28.94×10-3kg/moL 在标准状态下,干燥空气中的声速为0v =331.5m/S 。
在温室t ℃下,干燥空气中的声速为0v v = (2)式中T0=273.15K 。
由于空气实际上并不是干燥的,总含有一些水蒸气,经过对空气平均摩尔质量a μ和比热比γ的修正,在温度为t 、相对温度为t 0的空气中,声速为(3) 式中s p 为t ℃时空气的饱的和蒸气压,可从饱和蒸气压、蒸气压和温度的关系表中查出;P为大气压,取P =1.013×105Pa 即可;相对温度r 可从干湿温度计上读出。