人工鱼群算法ppt
- 格式:pptx
- 大小:972.21 KB
- 文档页数:28
广西民族大学硕士学位论文人工鱼群算法及其应用姓名:聂黎明申请学位级别:硕士专业:计算机应用技术指导教师:周永权200904012人工鱼群算法及改进方法2.1引言人工鱼群算法(ArtificialFishSwarmAlgorithm,AFSA)‘22。
251是李晓磊等人于2002年在对动物群体智能行为研究的基础上提出的一种新型仿生优化算法,该算法根据“水域中鱼生存数目最多的地方一般就是本水域中富含营养物质最多的地方"这一特点来模仿鱼群的觅食行为而实现寻优。
人工鱼群算法主要利用鱼的三大基本行为:觅食、聚群和追尾行为,采用自上而下的寻优模式从构造个体的底层行为开始,通过鱼群中各个体的局部寻优,达到全局最优值在群体中突现出来的目的。
2.2人工鱼群算法2.2.1算法起源经过漫长的自然界的优胜劣汰,动物在进化过程中,形成了形形色色的觅食和生存方式,这些方式为人类解决问题带来了不少鼓舞和启发。
动物个体的智能一般不具备人类所具有的综合判断能力和复杂逻辑推理能力,是通过个体或群体的简单行为而突现出来的。
动物行为具有以下几个特点嘶1:(1)盲目性:不像传统的基于知识的智能系统,有着明确的目标,人工鱼群算法中单个个体的行为是独立的,与总目标之间往往没有直接的关系;(2)自治性:动物有其特有的某些行为,在不同的时刻和不同的环境中能够自主的选取某种行为,而无需外界的控制或指导;(3)突现性:总目标的完成是在个体行为的运动过程中突现出来的;(4)并行性:各个体的行为是实时的、并行进行的;(5)适应性:动物通过感觉器官来感知外界环境,并应激性的做出各种反应,从而影响环境,表现出与环境交互的能力。
2.2.2算法原理人工鱼群算法就是一种基于动物行为的自治体寻优模式,它是基于鱼类的活动特点构建起来的新型智能仿生算法。
通常人们可以观察到如下的鱼类行为:a)觅食行为:这是鱼趋向食物的一种活动,一般认为它是通过视觉或味觉来感知水中的食物量或食物浓度来选择行动方向的。
淘宝网人工鱼群算法及应用淘宝网人工鱼群算法是一种模拟自然鱼群行为的智能优化算法,它主要应用于淘宝网的推荐系统中。
人工鱼群算法模拟了鱼群觅食行为,通过个体间的交流与合作来寻找最佳解决方案。
淘宝网作为中国最大的电商平台,每天都面临着海量的商品与用户,如何将最合适的商品推荐给用户成为了一个重要的问题。
人工鱼群算法的应用能够有效地解决这个问题。
首先,淘宝网人工鱼群算法通过模拟鱼群觅食行为来寻找最佳解决方案。
在淘宝网的推荐系统中,每个商品可以看作一个虚拟的食物源,每个用户可以看作一个鱼。
人工鱼群算法通过模拟个体的觅食行为来寻找最佳匹配的商品。
鱼群中的每个个体通过觅食行为相互影响,通过正反馈和负反馈的机制,每个个体都能够获取到一定的信息。
其次,淘宝网人工鱼群算法通过个体间的交流与合作来优化推荐结果。
在鱼群中,个体之间会通过信息素的交流来共同优化搜索过程。
这样,每个个体就能够借助其他个体的经验和信息来加速搜索最佳匹配的商品。
而在淘宝网的推荐系统中,用户的行为数据就是一种信息素。
通过分析用户的行为数据,可以将用户划分为不同的群体,并将同一群体中的用户的喜好进行统计分析。
这些统计结果就是交流与合作中的信息素,在人工鱼群算法中被用来引导每个个体的搜索行为。
最后,淘宝网人工鱼群算法通过优化推荐结果来提升用户体验。
在鱼群中,每个个体都会根据自己的目标函数来进行搜索,而目标函数的选择会对搜索效果产生影响。
在淘宝网的推荐系统中,用户的满意度可以作为目标函数,通过优化目标函数来提升用户对推荐结果的满意度。
通过不断地调整目标函数,可以使得推荐系统更加符合用户的需求,提升用户体验。
总之,淘宝网人工鱼群算法是一种模拟自然鱼群行为的智能优化算法,它通过模拟鱼群觅食行为、个体间的交流与合作、优化推荐结果等方式来提升淘宝网的推荐系统。
通过应用人工鱼群算法,淘宝网能够更精准地向用户推荐最合适的商品,提升用户的购物体验。