-12b+c>0,故 414a-12b+c>0,即 a-2b+4c>0 √ 由抛物线的对称轴为直线 x=-2ba=-13,知 a=32b,而当 x=-1
时,y=a-b+c=32b-b+c>0,∴12b+c>0,∴b+2c>0
章末复习
专题三 求二次函数的表达式
【要点指导】 解决这类问题常用待定系数法. 设二次函数表达式时 常见的有三种形式:一般式y=ax2+bx+c(a≠0);顶点式y= a(x-h)2+k(a≠0), 其中(h, k)是二次函数图像的顶点坐标;交点式 y=a(x-x1)(x-x2)(a≠0), 其中x1, x2是抛物 线与x轴交点的横坐标.
章末复习
(2)求出每天的销售利润W(元)与销售单价x(元/件)之间的函数关 系式, 并求出当销售单价为多少时, 每天的销售利润最大, 并求出 最大销售利润; (3)若该公司要求每天的销售利润不低于4000元, 但每天的总成 本不超过6250元, 则销售单价最低可定为多少?
章末复习
解: (1)y=250-5(x-60), 即y=-5x+550(60≤x≤100). (2)W=(x-50)(-5x+550), 即W=-5x2+800x-27 500(60≤x≤100). 配方, 得W=-5(x-80)2+4500. ∵a=-5, ∴抛物线开口向下, ∴当x=80时, W有最大值, 为4500, 即当销售单价为80元/件时, 每天的销售利润最大, 最大销售利润为 4500元. (3)令W=4000, 则-5(x-80)2+4500=4000, 解得x1=70, x2=90. ∴当W≥4000时, x的取值范围为70≤x≤90. ∵50(-5x+550)≤6250, 解得x≥85, ∴x的取值范围为85≤x≤90, 即销售单价最低可定为85元/件.