北师大版二次函数的图像和性质
- 格式:ppt
- 大小:1.92 MB
- 文档页数:17
2.2二次函数的图像和性质(第二课时)教学目标知识与技能1、能作出2ax y =和c ax y +=2的图像||,并研究它们的性质.2、比较2ax y =和c ax y +=2的图像与2x y =的异同.理解a 与c 对二次函数图像的影响. 过程与方法1、经历探索二次函数2ax y =和c ax y +=2的图像的作法和性质的过程||,进一步获得将表格、表达式、图像三者联系起来的经验.2、通过比较2ax y =||, c ax y +=2与2x y =的图像和性质的比较||,培养学生的比较、鉴别能力.情感、态度与价值观让学生积极投身于数学学习活动中||,有助于培养他们的好奇心与求知欲.经过自己的努力得出的结论||,不仅使他们记忆犹新||,还能建立自信心.由学生自己思考在经过合作交流完成的数学活动||,不仅能使学生学到知识||,还能使他们互相增进友谊.教学重点、难点教学重点:描点法画出二次函数c ax y +=2的图象||,理解二次函数c ax y +=2的性质||,理解函数c ax y +=2与函数2ax y =的相互关系是教学重点会用描||。
教学难点:正确理解二次函数c ax y +=2的性质||,理解抛物线c ax y +=2与抛物线2ax y =的关系是教学的难点||。
关键:掌握2ax y =和c ax y +=2的图像与2x y =的异同.理解a 与c 对二次函数图像的影响. 突破方法: 根据设问层层深入逐个破解||,然后进行类比、归纳、总结的探索模式学习||,最后得出2ax y =和c ax y +=2的图像与2x y =的异同及a 与c 对二次函数图像的影响教学准备:教师准备:多媒体课件(用于展示操作过程||,引导讨论||,出示答案).学生准备:课前预习||,两张坐标纸画图工具.教学过程(一)创设问题情景||,引入新课知识回顾:1.二次函数2x y =的图象是____||,它的开口向_____||,顶点坐标是_____;对称轴是______||,在对称轴的左侧||,y 随x 的增大而______||,在对称轴的右侧||,y 随x 的增大而______||,函数2ax y =与x =______时||,取最______值||,其最______值是______||。
北师大版九年级下册数学知识点北师大版九年级下册数学知识点1 二次函数及其图像二次函数(quadratic function)是指未知数的次数为二次的多项式函数。
二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。
其图像是一条主轴平行于y轴的抛物线。
一般的,自变量x和因变量y之间存在如下关系:一般式y=ax∧2;+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a) ;顶点式y=a(x+m)∧2+k(a≠0,a、m、k为常数)或y=a(x-h)∧2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线] ;重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下。
a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x 3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。
由此可引导出交点式的系数a=y1/(x1x2) (y1为截距)求根公式二次函数表达式的右边通常为二次三项式。
求根公式x是自变量,y是x的二次函数x1,x2=[-b±(√(b^2-4ac))]/2a(即一元二次方程求根公式)(如右图)求根的方法还有因式分解法和配方法在平面直角坐标系中作出二次函数y=2x的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。
不同的二次函数图像如果所画图形准确无误,那么二次函数将是由一般式平移得到的。
九年级数学中的二次函数是一个非常重要的内容,主要包括函数定义、图像和性质、解析式、根与系数之间的关系、应用等方面的知识。
下面对这些知识点进行归纳总结。
1. 二次函数的定义:二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。
2.二次函数的图像和性质:-当a>0时,二次函数的图像是一个开口向上的抛物线,顶点在最低点;当a<0时,二次函数的图像是一个开口向下的抛物线,顶点在最高点。
-顶点坐标为(-b/2a,f(-b/2a)),其中-b/2a为对称轴的横坐标,f(-b/2a)为对称轴上的纵坐标。
-当函数的a值较大时,抛物线开口越大,图像越扁平;当a值较小时,抛物线开口越小,图像越瘦高。
-当函数的c值为正时,图像在y轴上方;当c值为负时,图像在y轴下方。
-二次函数的对称轴与x轴交点为顶点坐标的x坐标。
-二次函数的图像关于对称轴对称。
3. 二次函数的解析式:二次函数的一般形式是f(x) = ax^2 + bx + c,其中a、b、c为常数,可以用来表示二次函数的解析式。
4.根与系数之间的关系:- 二次函数的根是函数f(x) = ax^2 + bx + c的解,即使得f(x) = 0的x值。
二次函数的根可能有两个、一个或没有。
-当二次函数有两个根时,即存在两个解x1和x2,那么二次函数可以表示为f(x)=a(x-x1)(x-x2)。
-二次函数的根与系数之间的关系可由韦达定理得到。
设二次函数的两个根为x1和x2,则有以下关系:-x1+x2=-b/a-x1*x2=c/a5.二次函数的应用:-二次函数可以应用于描述各类抛物线问题,如求抛物线的顶点、根、对称轴等。
-二次函数可以用来表示抛物线轨迹的运动问题,如抛物线运动的高度、时间等。
总结:二次函数是九年级数学中的重要内容,掌握二次函数的定义、图像和性质、解析式、根与系数之间的关系以及应用可以帮助我们更好地理解和解决与抛物线相关的问题。