AMESim工程机械机电液系统仿真技术
- 格式:ppt
- 大小:19.72 MB
- 文档页数:71
液压气动与密封/2006年第1期1引言液压系统的动态特性是衡量一套液压系统设计及调试水平的重要指标。
液压系统由若干液压元件组成,元件的动态性能相互影响、相互制约以及系统本身所包含的非线性,致使其动态性能非常复杂。
因此,液压系统的仿真受到越来越多的重视,液压仿真软件的精度和可操作性等都有极大的提升。
特别是近几年,国外液压仿真技术飞速发展,各款老牌的液压仿真软件纷纷推出新版本,如法国的AMESim、波音公司的Easy5、英国的Bathfp、瑞典的Hopsan、德国的DSHplus等。
文章选择IMAGINE公司的AMESim作为仿真软件环境,在介绍AMESim仿真软件的功能与特点的基础上,以典型的电液伺服控制系统为例,详细探讨了利用AMESim软件包进行液压系统建模与仿真方法,对基于DesignExploration模块和AMESim/matlab接口两种系统优化的方法、对电液伺服控制系统的PID参数进行了优化研究,并给出了仿真与优化的结果。
2AMESim仿真软件AMESim全称为AdvancedModelingEnvironmentforPerformingSimulationsofEngineeringSystems,是法国IMAGINE公司开发的高级工程系统仿真建模环境,为流体、液体、气体、机械、控制、电磁等工程系统提供一个较完善的综合仿真环境。
AMESim是一个多学科领域的建模仿真平台,在统一的平台上实现了多学科领域的系统工程的建模与仿真。
不同领域的模块之间直接的物理连接方式使AMESim成为多学科领域系统工程建模和仿真的标准环境。
AMESim具有丰富的模型库(18个模型库,1000多个模块),用户可以采用基本元素法,按照实际物理系统来构建自定义模块或仿真模型,而不需要去推导基于AMESim的电液伺服系统仿真与优化研究马长林,黄先祥,郝琳(第二炮兵工程学院202分队陕西西安710025)摘要:AMESim是法国IMAGINE公司开发的高级工程系统仿真建模环境,为机械、液压、控制等工程系统提供一个较完善的综合仿真环境。
《基于AMESim的液压系统建模与仿真技术研究》篇一一、引言随着现代工业技术的不断发展,液压系统在各种机械设备中扮演着至关重要的角色。
为了更好地理解液压系统的性能,优化其设计,以及进行故障诊断和预测,建模与仿真技术显得尤为重要。
本文将介绍基于AMESim的液压系统建模与仿真技术研究,以期为相关领域的研发和应用提供有益的参考。
二、AMESim软件概述AMESim是一款功能强大的工程仿真软件,广泛应用于机械、液压、控制等多个领域。
它提供了一种直观的图形化建模环境,用户可以通过简单的拖拽和连接元件来构建复杂的系统模型。
此外,AMESim还支持多种物理领域的仿真分析,包括液压、气动、热力等。
三、液压系统建模在AMESim中,液压系统的建模主要包括以下几个方面:1. 液压元件建模:包括液压泵、液压马达、油缸、阀等元件的建模。
这些元件的模型可以根据实际需求进行参数设置和调整。
2. 流体属性设置:根据液压系统的实际工作情况,设置流体的属性,如密度、粘度等。
3. 系统拓扑结构构建:根据实际系统的结构,搭建系统拓扑结构,并设置各元件之间的连接关系。
4. 仿真参数设置:根据仿真需求,设置仿真时间、步长等参数。
四、液压系统仿真在完成液压系统的建模后,可以通过AMESim进行仿真分析。
仿真过程主要包括以下几个方面:1. 初始条件设置:设置系统的初始状态,如初始压力、流量等。
2. 仿真运行:根据设置的仿真时间和步长,运行仿真程序。
3. 结果分析:通过AMESim提供的可视化工具,分析仿真结果,如压力、流量、温度等参数的变化情况。
五、技术应用与优势基于AMESim的液压系统建模与仿真技术具有以下优势:1. 高效性:通过图形化建模环境,可以快速构建复杂的液压系统模型,提高建模效率。
2. 准确性:AMESim提供了丰富的物理模型和算法,可以准确模拟液压系统的实际工作情况。
3. 灵活性:用户可以根据实际需求,灵活地调整模型参数和仿真条件,以获得更符合实际的结果。
农机设备研制中机电液系统联合仿真技术探析-机械工程论文-工程论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——本篇为机电工程师论文(精品范文8篇)之第七篇,文末可查看其他7篇文章摘要:为提高农机设备研究工作中机械、电子、液压联合仿真的效率,分析了AMESim及Simulink外部接口的特点,提出了一种对复杂系统的机械系统、液压系统以及控制策略进行联合仿真的技术方案,并通过了仿真验证,为农机设备研发过程中机电液系统的联合仿真提供了一种解决方案。
关键词:AMESim; Simulink; 联合仿真;主动悬架;引言十三五规划明确提出,我国将全面推进农业现代化,提高农业技术装备和信息化水平,因此,农业装备的现代化是实现我国农业现代化的重要保障。
随着电子技术的发展,特别是微控制技术、物联网技术和信息技术的飞速发展,智能控制技术与传统的机械技术的结合越来越紧密,农业机械也由传统的液压传动技术为主转向机电液一体化方向发展,进而实现农业机械的自动化、网络化和智能化。
现代农机设备越来越趋向于机电液集成化,与之对应的仿真技术也朝着机电液联合仿真的方向发展。
本文在对AMESim和Simulink的特性及其外部接口进行深入研究分析后,提出了一种对复杂系统的机械系统、液压系统以及控制策略进行联合仿真的技术方案[1,2].1、AMESim与MATLAB/Simulink的联合仿真接口AMESim在机械系统以及液压系统仿真方面有着突出的优势,随着机器设备自动化程度的提高,各种控制算法、控制策略被越来越多的应用于其控制系统中。
因此,在系统仿真时,往往希望能对整个系统的机械、液压、控制算法进行联合的仿真,对系统的整体性能进行研究、分析。
然而,目前来看AMESim只提供了非常简单的几种控制算法模型,无法满足越来越复杂的算法仿真要求。
而Simulink在逻辑运算、算法建模方面有着显着的成就,因此,将AMESim与Simulink联合起来,取长补短,在机械、液压及其控制系统的仿真中将取得单个软件难以比拟的效果[3].AMESim与Simulink的联合仿真有2种实现方式:在AMESim 中搭建机械、液压系统模型,经过AMES-im的仿真参数设置及编译,生成能在Simulink中调用的S-Function, 在Simulink环境中完成控制算法模型搭建,然后像调用普通S-Function一样将在AMESim生成的机械、液压系统模型S-Function调入到Simulink中,从而完成整个仿真系统的搭建,仿真运行于Simulink环境之中,使用Simulink 的求解器进行计算仿真;在Simulink环境中完成控制算法的设计,通过编译后调用由MTALAB提供的SL2AME函数,将在Simulink环境中完成的控制算法转换为能在AMESim中调用的用户自定义元件模型,在AMESim中,将机械、液压系统模型搭建后,像使用普通元件模型一样调用由SL2AME函数生成的控制算法元件模型,完整的仿真系统搭建完毕后,在AMESim中运行仿真运算[3].笔者通过2种联合方式实验的对比发现:在机械及液压系统规模较小、元件不多的情况下,2种联合仿真方式没有明显的差异;若机械及液压系统组成较复杂、元件比较多,则采用第1种方式仿真时,会出现仿真速度特别慢,甚至于出现计算机死机的现象,此时采用第2种方式,即,将在Simulink中生成的控制算法模型导入到AMESim中运行时,仿真能达到比较满意的效果。
AMESim仿真技术及其在液压系统中的应用随着科技的不断发展,仿真技术在工程领域中的应用越来越广泛。
AMESim仿真技术作为一种系统级仿真软件,能够模拟和分析多个物理领域的耦合系统,尤其在液压系统中得到广泛应用。
本文将从AMESim仿真技术的介绍、液压系统基础和模型构建,以及仿真在液压系统中的应用等方面进行探讨。
AMESim仿真技术是由法国LMS公司研发的一种多领域系统仿真软件。
它通过建立系统级的数学模型,能够模拟和分析多个物理领域的复杂耦合系统,包括液压、气动、电控、机械、热力等。
AMESim具有图形化建模界面,用户只需通过拖拉连接各个模块进行系统建模,无需编写复杂的代码。
同时,AMESim还具备快速仿真和优化的能力,能够极大地提高系统设计的效率和准确性。
液压系统是一种基于液体传动能量的技术,广泛应用于工业、航空、机械等领域。
了解液压系统的基础知识对于进行仿真建模至关重要。
液压系统主要由液压源、执行元件、控制元件和负载组成。
液压源产生压力油液,通过控制元件对压力油液进行调节,最终驱动执行元件完成工作。
液压系统具有反馈控制、大功率传动、快速响应和负载自适应等优势。
在液压系统中,液压元件的参数调节、控制策略的选择以及系统的优化等问题对系统的性能和效率有着重要影响。
在AMESim中进行液压系统建模时,首先需要确定系统的工作流程和参数。
通过拖拉连接不同的模块,可以对液压系统的压力、流量、温度等参数进行仿真分析。
同时,AMESim还可以加入控制算法,使系统具备自动调节功能。
在液压系统中,常见的仿真模型包括液压缸模型、泵模型、阀门模型等。
这些模型可以根据实际情况进行自定义和修改,以满足系统设计和性能优化的需求。
仿真在液压系统中的应用主要有以下几个方面:首先,仿真技术可以对液压系统的性能进行全面评估。
通过改变不同参数的数值和控制信号的输入,可以观察系统的响应和工作状态,并进行性能指标的计算和对比分析。
这对于优化系统设计、提高系统的效率和可靠性具有重要意义。
基于AMESim的工程机械液压系统故障仿真研究基于AMESim的工程机械液压系统故障仿真研究引言:随着技术的发展和进步,工程机械在现代工程建设中起到了至关重要的作用。
作为工程机械的核心部件之一,液压系统在保证机械运行稳定性和工作效率方面发挥着重要作用。
然而,工程机械液压系统在长时间运行与复杂工况下可能会出现故障,影响机械的正常工作。
因此,对液压系统的故障进行仿真研究,对于提高工程机械的可靠性和可用性起到了重要的作用。
一、液压系统故障的影响液压系统故障会导致工程机械的性能下降,严重的甚至会使机械无法正常工作。
例如,液压泵的过载、泄漏和损坏会导致液压系统的压力降低,从而影响机械的工作效率和输出功率。
液压缸的密封失效、漏油和卡滞等问题会导致机械不能正常运动,影响机械的定位和准确性。
因此,研究液压系统故障的仿真方法,能够帮助工程师提前预知故障并采取相应措施,降低故障对机械运行的影响。
二、仿真软件AMESim的介绍AMESim是一种基于物理原理的多域建模仿真软件,其在工程机械领域的应用被广泛认可。
它可以模拟和仿真各种机械、液压、气压、电气和控制等系统的工作过程。
它采用图形化建模方法,用户可以通过拖拽组件和连接线的方式快速构建系统模型。
通过对模型参数的设置,可以模拟不同工况下系统的工作性能和性能指标。
三、基于AMESim的液压系统故障仿真研究方法1. 故障模型建立:根据液压系统的组成和工作原理,建立液压系统故障模型。
将液压泵、控制阀、液压缸等组件以及其相互连接的管道在AMESim中进行图形化建模。
根据故障类型,对相应的组件进行参数调整或添加故障模块。
2. 故障仿真设置:根据实际工况设置液压系统的输入信号和工作条件。
例如,设置液压泵的转速、液压缸的负载和工作速度等参数。
3. 故障仿真运行:通过对故障模型进行仿真运行,观察系统的工作状态和性能指标。
根据仿真结果,可以评估液压系统的性能、故障对系统的影响以及可能的解决方案。
基于AMEsim的液压系统建模与仿真液压系统是工程中常见的一种动力传动系统,它通过液体传递能量来驱动机械设备。
液压系统具有传递功率大、传动效率高、操作简便、响应速度快等优点,被广泛应用于工程机械、航空航天、冶金采矿等领域。
在液压系统的设计和优化过程中,建模与仿真是非常重要的工具,可以帮助工程师们更好地理解系统工作原理、分析系统性能并进行优化设计。
本文将介绍基于AMESim的液压系统建模与仿真技术。
一、AMESim的基本介绍AMESim(Advanced Modeling Environment for Simulation of Engineering Systems)是由法国FDS公司研发的一种多物理仿真软件,旨在为工程师提供一个全面的仿真平台,用于分析和优化系统的动态性能。
AMESim具有图形化建模界面、丰富的预定义组件库、强大的仿真求解器等特点,可以用来建模与仿真多种工程领域的系统,包括机械、电气、液压、热力等。
二、液压系统建模与仿真1. 液压系统建模液压系统通常由液压泵、执行元件、控制阀、油箱和管路等组成,液体在其中传递能量并驱动执行机构。
在AMESim中,可以使用预定义的液压元件来建模系统的各个部分,如液压泵、液压缸、液压阀等。
通过简单的拖拽操作和连接线,可以快速构建出一个完整的液压系统模型。
2. 液压系统参数设置在建模过程中,需要为液压系统的各个组件设置参数,包括泵的流量、缸的活塞面积、阀的流量特性等。
AMESim提供了丰富的组件参数设置界面,用户可以直观地输入参数数值,并且支持参数的参数化设置,方便用户进行灵敏度分析和参数优化。
建模完成后,可以使用AMESim内置的仿真求解器对液压系统进行仿真。
用户可以设定系统的工况和输入信号,例如泵的转速、阀的开度、负载的变化等,然后进行仿真运行。
AMESim会自动求解系统的动态行为,并输出相关的性能指标,如压力、流量、速度、功率等,可以用于系统性能分析和优化设计。
内燃机与配件0引言机电液系统具有大力大矩的显著特点,是许多机床产品、航天器械、工程机械等的必须动力装备,而随着时代的发展,机械工况变得越来越复杂,负载也变得越来越大,对机械的要求则是越来越轻巧,同时能够拥有优良的动力学品质[1,2]。
传统的机电液系统设计方法往往根据经验公式进行推导或计算,其计算结果可能误差较大,有时甚至偏离实际。
随着计算机技术的飞跃发展,采用计算机仿真技术进行机电液系统的设计与分析是目前较流行的设计方式[3,4]。
在机电液系统领域,AMESim 软件使用较为广泛,吕安生[5]等分析了一种抓臂式清污机工作特点,设计了其工作装置液压系统,采用一种阀前补偿液压系统,AMESim 中建立了液压仿真系统,配置了与ADAMS 进行联合的接口,分析了系统的动态特性。
魏建华[6]等基于连通式油气悬架振动模型,在模型中考虑了蓄能器、液阻、单向阀及管路非线性特性,建立了ADAMS 动力学模型、AMESim 液压系统模型、MATLAB 路面谱模型,得出管路长度对道路破坏系数影响较小的结论等。
基于AMESim 的机液仿真研究方法对降低物理实验成本,较快地观测系统的静动态特性具有重要作用。
1AMESim 的软件组成与功能AMESim (Advanced Modeling Environment forPerforming Simulation of Engineering Systems )是一款多学科交叉的系统建模与仿真软件。
可进行制动系统、液压系统、机电系统、热系统等的建模与仿真。
在AMESim 软件中,主要包含了六大系统模块:流体系统、电气系统、电机系统、热系统、机械系统和信号系统。
流体系统中包括了多种流体单元,包括流体设置单元、管道、过滤器、蓄能器、液压缸、液压泵、恒压泵、液压阀等。
其中在流体设置单元中可设置流体的类型、粘度、温度、压力、体积模量等;在管道设置中可设置管道的界面半径、管道长度、管道两端的初始压力等;液压缸包括单作用液压缸、双作用液压缸、带负载的单作用液压缸、有弹簧辅助的单作用液压缸等,在液压缸设置中,可设置活塞杆直径、钢筒直径、活塞杆行程等参数。
基于AMESim 的电液伺服速度控制系统仿真分析王强吴张永李红星武鹏飞刘建强(昆明理工大学流体控制工程研究所,云南昆明650093)摘要:在电液伺服控制系统设计分析中,由于传统的数学建模方法比较复杂,本文利用面向工程设计的高级建模软件AMESim 对阀控液压马达电液伺服速度控制系统进行建模,并对其动态特性进行了仿真分析,得到了较好的分析结果。
关键词:电液伺服控制系统;AMESim;仿真分析中图分类号:TH137 文献标识码:A 文章编号:1008- 0813(2008)04- 0031- 03 Simulation Analysis of Electro- Hydraulic Servo Velocity Control System Based on AMESim WANG Qiang WU Zhang-yong LI Hong-xing WU Peng-fei LIU Jian-qiang (Institute of Fluid Power Control Engineering, Kunming University of Science and Technology,Kunming 650093, China)Abstract: Conventional mathematical modeling, which is used in analysis of designing eletro-hydraulic servo control system, is comparative complex. This paper use AMESim software, which orients engineering design ,modeling hydraulic valve- controlled velocity system, analyzing dynamic characteristics of this system, getting a better analytical result.Key Words: eletro-hydraulic servo control system;AMESim;simulation analysis0 引言在实际工程中,经常需要进行速度控制,如机床进给装置的速度控制,雷达天线、炮塔、转台的姿态跟踪以及发电机、气轮机和水轮机的调速系统等。
基于AMEsim的液压系统建模与仿真一、引言液压系统是利用液体传递能量,控制方向和力的一种传动方式。
液压系统在工业生产和机械设备中得到了广泛应用,包括汽车制造、航空航天、冶金、建筑、工程机械等领域。
而建立精准的液压系统模型并进行仿真分析对于系统设计和性能优化具有重要意义。
AMESim是一款专业的多物理领域仿真软件,具有稳定、可靠的仿真算法,能够对液压系统进行精确的建模和仿真分析。
本文将介绍基于AMESim的液压系统建模与仿真的方法,通过具体案例来展示其应用价值。
二、液压系统建模方法1. 液压元件建模在AMESim中,液压系统的建模是基于液压元件的模型。
液压元件可以分为液压源、执行元件、控制元件和辅助元件四类。
液压泵、液压缸、换向阀、节流阀等都可以在AMESim 中进行建模。
建模液压元件时,需要考虑其物理特性和动态行为,并根据实际工况和使用要求设置其参数。
在液压泵的建模中,需要考虑其排量、转速对流量和压力的影响;在液压缸的建模中,需要考虑其面积、摩擦和密封对其运动过程的影响。
液压管路在液压系统中起着传输液体、传递动力和信号的作用。
在建模时,需要考虑管路的长度、直径、摩擦、弯头、阀门等因素对液压性能的影响。
在AMESim中,可以通过设置管路的几何参数、流体介质和流动特性等来建立液压管路的模型。
通过对管路压力、流量、温度等参数的仿真分析,可以评估管路的性能和系统的稳定性。
3. 控制系统建模三、液压系统仿真分析基于AMESim的液压系统建模完成后,可以进行仿真分析以评估系统性能和优化设计。
液压系统的仿真分析主要包括以下几个方面:1. 动态特性分析通过仿真分析液压系统的动态特性,可以评估系统的响应速度、稳定性和阻尼特性等。
在动态仿真中,可以模拟系统的启动、运行和停止过程,评估系统对外部扰动的响应和抑制能力。
2. 性能优化分析通过仿真分析液压系统的性能参数,可以评估系统的功率输出、效率、热量损失、工作温度等。
《基于AMESim的液压系统建模与仿真技术研究》篇一一、引言液压系统在许多工业应用中起着关键作用,其建模与仿真技术的研究对于提高系统的性能、优化设计和减少研发成本具有重要意义。
AMESim作为一种多功能工程仿真平台,为液压系统的建模与仿真提供了强大的工具。
本文旨在探讨基于AMESim的液压系统建模与仿真技术的研究。
二、AMESim概述AMESim是一款功能强大的工程仿真软件,可以用于建立各种复杂系统的模型并进行仿真分析。
它支持多学科领域建模,具有直观的用户界面和强大的求解器,能够高效地解决复杂的工程问题。
在液压系统建模与仿真方面,AMESim提供了丰富的液压元件模型库和仿真分析工具,使得用户能够快速建立准确的液压系统模型并进行仿真分析。
三、液压系统建模基于AMESim的液压系统建模主要包括以下步骤:1. 确定液压系统的工作原理和性能要求,明确系统的输入和输出。
2. 建立液压系统的物理模型,包括液压泵、执行器、控制阀等元件的模型。
AMESim提供了丰富的液压元件模型库,用户可以根据需要选择合适的元件模型进行建模。
3. 设置模型的参数和初始条件,包括液压油的物理性质、元件的几何尺寸、工作温度等。
4. 建立系统的仿真模型,将各个元件模型连接起来形成完整的液压系统模型。
四、液压系统仿真分析在建立好液压系统模型后,可以利用AMESim进行仿真分析。
仿真分析主要包括以下步骤:1. 设置仿真参数,包括仿真时间、仿真步长等。
2. 运行仿真,观察系统的动态响应和性能指标。
AMESim具有强大的求解器,能够快速准确地求解出系统的动态响应。
3. 分析仿真结果,包括系统的压力、流量、温度等参数的变化情况,以及系统的稳定性和动态性能等。
4. 根据仿真结果对液压系统进行优化设计,提高系统的性能和降低成本。
五、技术应用与展望基于AMESim的液压系统建模与仿真技术已经广泛应用于各种工业领域,如汽车、航空航天、工程机械等。
通过建立准确的液压系统模型并进行仿真分析,可以有效地提高系统的性能、优化设计和减少研发成本。