装载机变速箱与变矩器匹配的计算
- 格式:doc
- 大小:130.00 KB
- 文档页数:4
ZL20装载机行星式动力换挡变速箱设计说明书1.1装载机的总体构造装载机是一种广泛用于公路、铁路、建筑、水电、港口、矿山等建设工程的土石方施工机械,它主要用于铲装土壤、砂石、石灰、煤炭等散状物料,也可对矿石、硬土等作轻度铲挖作业。
换装不同的辅助工作装置还可进行推土、起重和其他物料如木材的装卸作业。
在道路、特别是在高等级公路施工中,装载机用于路基工程的填挖、沥青混合料和水泥混凝土料场的集料与装料等作业。
此外还可进行推运土壤、刮平地面和牵引其他机械等作业。
由于装载机具有作业速度快、效率高、机动性好、操作轻便等优点,因此它成为工程建设中土石方施工的主要机种之一。
装载机以柴油发动机或电动机为动力装置,行走装置为轮胎或履带,由工作装置来完成土石方工程的铲挖、装载、卸载及运输作业。
如图1-1所示,轮胎式装载机是由动力装置、车架、行走装置、传动系统、转向系统、制动系统、液压系统和工作装置等组成。
图1.1轮式装载机结构简图1—柴油机 2—传动系统 3—防滚翻与落物保护装置4—驾驶室 5—空调系统 6—转向系统 7—液压系统 8—前车架 9—工作装置 10—后车架11—制动系 12—电器仪表系统1.2整机传动系统设计轮式装载机传动系统如图1.2所示,其动力传递路线为:发动机——液力变矩器——变速箱——传动轴——前、后驱动桥——轮边减速器——车轮。
图1.2轮式装载机传动系统1.液力变矩器装载机采用双涡轮液力变矩器,能随外载荷的变化自动改变其工况,相当于一个自动变速箱,提高了装载机对外载荷的自适应性。
变矩器的第一和第二涡轮输出轴及其上的齿轮将动力输入变速箱。
在两个输入齿轮之间安装有超越离合器。
当二级齿轮从动齿轮的转速高于一级从动齿轮的转速时,超越离合器将自动脱开,此时,动力只经耳机涡轮及二级齿轮传入变速箱。
随着外载荷的增加,涡轮的转速降低,当二级齿轮从动齿轮的转速低于一级齿轮传动齿轮的转速时,超越离合器楔紧,则一级涡轮轴及一级齿轮于二级涡轮轴及二级齿轮一起回转传递动力,增大了变矩系数。
摘要由于现代社会的不断发展,作为现代化基础建设主要工具和手段的工程机械扮演着重要的角色。
工程机械设备是集机、电、液一体化和信息、激光等高新技术以及审美艺术于一身的现代机电产品,并且正在向着自动化、远距离控制和智能化等方向发展。
铲土机械作为现代工程机械很重要的一种设备也是如此。
铲土机械主要用于铲装土壤、沙石、煤炭、石灰等散状物料,也可对矿石、硬土等作轻度铲挖作业,换装不同的辅助工作装置还可以进行推土、起重、破碎等作业。
由于铲土机械具有作业速度快、效率高、机动性好、操作轻便等优点,因此广泛用于公路、铁路、建筑、水电、港口、矿山等建筑工程。
在我国,铲土机械经历了50~60年的发展后,到20世纪90年代中末期国外铲土机械技术已达到相当高的水平。
基于液压技术、微电子技术和信息技术的各种智能系统已广泛应用于铲土机械的设计、计算操作控制、检测监控、生产经营和维修服务等各个方面,使铲土机械在原来的基础上更加“精致”,其自动化程度也得以提高,从而进一步提高了生产效率,改善了司机的作业环境,提高了作业舒适性,降低了噪声、振动和排污量,保护了自然环境,最大限度地简化维修、降低作业成本,使其性能、安全性、可靠性、使用寿命和操作性能都达到了很高的水平。
随着国家机械工业的不断发展,由于液力传动的一系列优点,液力传动在工程机械领域得到了广泛的应用。
液力传动设计中发动机与液力变矩器的匹配是设计的关键技术之一。
本文主要研究工作如下:(1)对于现今的铲土机械的发动机和液力变矩器进行简单的介绍和分析。
(2)对铲土机械的发动机和液力变矩器其的匹配计算进行分析计算。
关键字:发动机;液力变矩器;AbstractDue to the continuous development of modern society, modern infrastructure as main tool and means of mechanical engineering plays an important role. Engineering machinery and equipment is set machine, electricity, liquid and information integration, laser technology and aesthetic art in one of the modern mechanical and electrical products, and is more automatic, remote control and intelligent development. Earth-moving machinery as a modern engineering machinery is very important in a device is so. Shoveling machine mainly used for loading soil, sand, coal, limestone and other bulk materials, is also available on the ore, hard soil for mild shovel digging, dress up different auxiliary device can also carry out bulldozing, lifting, crushing and other operations. As a result of shoveling machine is operating speed, high efficiency, good mobility, convenient operation and other advantages, it is widely used in highway, railway, construction, utilities, ports, mines and other construction projects.In our country, earth-moving machinery after 50~60years of development, to the end of nineteen ninties of foreign Earth-moving machinery technology has reached a very high level. Based on the hydraulic technology, microelectronic technology and information technology has been widely used in all kinds of intelligent systems Earth-moving machinery design, calculation of operation control, monitoring, production and repair services of all aspects, so that the earth machinery in the original basis of more" refined", the automation degree is improved, thereby further improving production efficiency, thus improving the operating environment for drivers, improving operation comfort, reduced noise, vibration and pollution, protect the natural environment, maximally simplified repair, reduces the operation cost, make its performance, safety, reliability, service life and operation performance have reached a very high level.Along with the development of the machinery industry, because of the advantages of a series of hydraulic transmission, hydraulic transmission in the field of mechanical engineering has been widely applied. Hydraulic transmission design of engine and hydraulic torque converter is one of the key technologies of matching design. The main research works are as follows: (1) the earthmachinery of the engine and hydraulic torque converter are introduced and analyzed. (2) for earth-moving machinery of the engine and hydraulic torque converter and its matching calculation analysis.Keywords: engine; torque converter;第一章铲土机械的发动机1.1 铲土机械的分类铲土机械主要分为装载机,铲运机和推土机:1.1.1推土机推土机是土方工程机械的一种主要机械,按行走方式分为履带式和轮胎式两种.因为轮胎式推土机较少。
变速器标准值计算公式变速器是汽车传动系统中的重要组成部分,它能够根据车速和发动机转速的变化,使车辆在不同工况下保持合适的转速和扭矩输出,从而保证车辆的动力性能和燃油经济性。
在变速器设计和优化过程中,需要对其性能进行评估和计算,以确定合适的参数和工作范围。
在这个过程中,变速器标准值计算公式是一个重要的工具,它可以帮助工程师们快速准确地计算出变速器的各项性能指标,为变速器的设计和优化提供参考。
变速器的性能指标包括传动效率、传动比、换挡时间等多个方面,其中传动效率是变速器性能的关键指标之一。
传动效率是指变速器在传递动力时的能量损失,它直接影响着车辆的燃油经济性和动力性能。
传动效率的计算公式可以表示为:η = (Pout / Pin) 100%。
其中,η表示传动效率,Pout表示输出功率,Pin表示输入功率。
通过这个公式,可以快速计算出变速器的传动效率,从而评估其性能和优化设计。
除了传动效率,传动比也是变速器设计中的一个重要参数。
传动比是指变速器输入轴和输出轴的转速比,它直接影响着车辆的加速性能和燃油经济性。
传动比的计算公式可以表示为:i = Nout / Nin。
其中,i表示传动比,Nout表示输出轴转速,Nin表示输入轴转速。
通过这个公式,可以快速计算出变速器的传动比,从而评估其对车辆动力性能的影响。
此外,换挡时间也是变速器设计中需要考虑的重要参数。
换挡时间是指变速器在进行换挡操作时所需的时间,它直接影响着车辆的驾驶舒适性和动力输出。
换挡时间的计算公式可以表示为:t = (θ 60) / (2 π N)。
其中,t表示换挡时间,θ表示换挡角度,N表示发动机转速。
通过这个公式,可以快速计算出变速器的换挡时间,从而评估其对车辆驾驶舒适性的影响。
在变速器设计和优化过程中,变速器标准值计算公式是一个重要的工具,它可以帮助工程师们快速准确地评估变速器的性能指标,为变速器的设计和优化提供参考。
通过对传动效率、传动比、换挡时间等多个方面的计算,可以全面了解变速器的性能特点,从而为其优化设计提供有力支持。
ZL40、ZL50系列轮式装载机上广泛使用的超越离合器,配合导轮固定的双涡轮液压液力变矩器,显著提高了变矩器在小传动比范围的变矩系数和效率,而且展宽了高效率区域,对于提高传动效率和改善装载机牵引性能起着非常重要的作用。
但是超越离合器的作用寿命长,一般仅有1-2年,甚至只有几个月的时间。
超越离合器寿命短的原因在于其磨擦副间的接触强度不足。
下面根据《机械设计手册》推荐的方法以及利用弹性力学的基本公式进行两种强度计算来说明这一问题。
1 《机械设计手册》推荐的强度计算方法1.1变矩器泵轮输入转矩TBTB=Te-T工-T转-T变(N m)(1)式中,Te为发动机有效输出转矩,它等于发动机发出的转矩T'e减去发动机全部辅件(如风扇、发电机、空压机……)消耗的转矩T辅,即Te=T'e-T辅;T工为工作泵消耗的转矩;T转为转向泵消耗的转矩;T变为变速器消耗的转矩。
1.2 超越离合器所传递的转矩T当装载机起、制动和作业时,常出现“零速工况”,此时超越离合器传递的转矩T可用下式计算:T=K0TBZ2/Z1 (2)式中,K0为I=0时变矩器的变矩系数;Z1为一级输入齿轮的齿数;Z2为Tc=K3(K1+K2)T (N?m) (3)式中K1为与原动机有关的动载系数,发动机为6缸内燃机,K1=0.4;K2为与工作类型有关的动载系数,对于轮式装载机可取K2=2.00;K3为精度系数,对于平面星轮K3=1.10-1.50。
故有Tc=(2.64-3.60)T (3')1.4接触强度计算对于星轮、滚柱和外环齿轮均为同材质制成的内星轮滚柱式超越离合器,当星轮工作面为平面时,在滚柱与两面接触处的强度取决于最大切应力条件,可按下式计算:τ≤[ τ] (4)式中E为材料的弹性模量,可取E=206000N/mmα为滚柱楔角(o)。
2 按弹性力学中的Herz公式的计算方法2.1超越高合器磨擦副间的正压力Fn因为“零速工况”下超越离合器的滚信处于静力平衡状态,所以滚柱与外环齿轮滚道之间的正压力。
课程设计任务书
设计题目:装载机的牵引性能计算与匹配分析
一、原始数据
1.发动机
注:(1)表中发动机额定功率为1小时功率发动机扭矩按一下公式计算:
2.液力变矩器(D310双涡轮)
3.整机参数机重与桥荷
几何尺寸
轮胎规格
液压系统
传动比
车速要求
4. 其他参数
传动系效率ηm =0.90(不计变矩器效率) 物料容重m kn 318=γ
路面附着系数7.0=ψ路面滚动阻力系数3.0=f
二 设计要求
根据给定的原始数据,完成下述计算分析工作 1. 确定变矩器有效直径D 2. 绘制变矩器原始特性曲线
3. 绘制发动机与变矩器共同工作的输入特性曲线
4. 绘制发动机与变矩器共同工作的输出特性曲线
5. 确定变速箱的档位数与各档传动比。