3.4 离散数据的曲线拟合——数值分析课件PPT
- 格式:ppt
- 大小:1.18 MB
- 文档页数:40
郑州大学研究生课程 (2010-2011学年第一学期)数值分析 Numerical Analysis500第三章 数据拟合方法400 300 200 100 5 -100 10 15 20第三章 数据拟合方法§3.1 问题提出 §3.2 线性最小二乘法 §3.3 线性数据拟合方法 §3.4 多变量数据拟合方法 §3.5 非线性曲线的数据拟合2/41郑州大学研究生2010-2011学年课程 数值分析 Numerical Analysis§3.1 问题提出离散数据点插值:插值函数 ϕ ( x) 精确通过每一个数据点。
3/41郑州大学研究生2010-2011学年课程 数值分析 Numerical Analysis§3.1 问题提出 两类实际情况: ★ 离散数据点提出来自试验,具有测量误差,要求插值函数通过所有数据点反而会保留测量误差的影响。
★ 某些情况下需要找出反映变量变化关系的经验函数,而非精确通过关键点的外形控制函数。
4/41郑州大学研究生2010-2011学年课程 数值分析 Numerical Analysis例3.1.15/41郑州大学研究生2010-2011学年课程 数值分析 Numerical Analysis例3.1.2 我国人口数量预测问题(单位:亿) 年 数量15 1012199119921993 11.851994 11.9812.51995 12.111996 12.2411.58 11.725 011.5 1991 1992 1993 1994 1995 19961991 1992 1993 1994 1995 19966/41郑州大学研究生2010-2011学年课程 数值分析 Numerical Analysis§3.1 问题提出已知一组数据(xi, yi), y = f(xi),i = 1,2,…, m。
第三章数据拟合知识点:曲线拟合概念,最小二乘法。
1 .背景已知一些离散点值时,可以通过构造插值函数来近似描述这些离散点的运动规律或表现这些点的隐藏函数观测到的数据信息• •*■*曲线拟合方法也可以实现这个目标,不同的是构造拟合函数。
两种方法的一个重要区别是:由插值方法构造的插值函数必须经过所有给定离散点,而曲线拟合方法则没有这个要求,只要求拟合函数(曲线)能“最好”靠近这些离散点就好。
2.曲线拟合概念实践活动中,若能观测到函数y=f(x)的一组离散的实验数据(样点):(x i,y),i=1,2…,n。
就可以采用插值的方法构造一个插值函数x),用「x)逼近f(x)。
插值方法要求满足插值原则xj=y i,蕴涵插值函数必须通过所有样点。
另外一个解决逼近问题的方法是考虑构造一个函数X)最优靠近样点,而不必通过所有样点。
如图。
即向量T= (「X1),X2),•••「x n))与丫= (y1, y2, )的某种误差达到最小。
按T和丫之间误差最小的原则作为标准构造的逼近函数称拟合函数。
曲线拟合问题:如何为f(x)找到一个既简单又合理的逼近函数X)。
曲线拟合:构造近似函数x),在包含全部基节点x<i=1 , 2…,n)的区间上能“最好”逼近f(x)(不必满足插值原则)。
逼近/近似函数y=「x)称经验公式或拟合函数/曲线。
拟合法则:根据数据点或样点(xy), i=1 , 2…,n,构造出一条反映这些给定数据一般变化趋势的逼近函数y=「x),不要求曲线■- x)经过所有样点,但要求曲线x)尽可能靠近这些样点,即各点误差S i= x i)-y i按某种标准达到最小。
均方误差/误差平方和/误差的2-范数平方:n卜||2八1i 4常用误差的2-范数平方作为总体误差的度量,以误差平方和达到最小作为最优标准构造拟合曲线的方法称为曲线拟合的最小二乘法(最小二乘原理)。
3.多项式拟合2012〜2013学年第2学期计算方法 教案 计1101/02 , 1181 开课时间:2012-02年4月第三版 第三章数据拟合 2h 3(1) 线性拟合给定一组(x i ,y i ), i=1 , 2…,n 。
离散点多条曲线拟合
对于离散的多条曲线拟合,可以使用多项式拟合和最小二乘法拟合等方法。
对于多项式拟合,可以给定数据点,通过构造多项式函数来逼近真实曲线。
通常情况下,多项式函数的次数为给定数据点数减1。
通过求解待定的系数,可以得到拟合曲线。
对于最小二乘法拟合,可以通过最小化误差平方和来得到一个最优解。
误差平方和可以表示为数据点到拟合曲线的距离的平方和。
通过遍历所有离散点,可以找到最优解,即使得误差平方和最小的曲线。
对于离散数据点的反曲点、曲率和局部曲率极大值点的提取,可以采用遍历所有离散点的方法,依次计算相邻两个反曲点之间个数据点的曲率值,并计算相邻两点之间的曲率变化平均值作为曲率变化阈值。
同时可以利用点距准则获取离散数据点中的弓高特征点,使得得到的主特征点更能体现原始轨迹的几何特征。
在具体实现过程中,可以根据实际情况选择不同的拟合方法和算法,并结合数据的特点进行优化和调整。
离散点拟合曲线离散点拟合曲线是一种用于对一组无序数据点进行估计和预测的数学方法。
它可以将这些离散的数据点拟合成一个连续的曲线或函数,从而使我们能够更好地理解和分析数据。
离散点拟合曲线的应用非常广泛,包括经济学、医学、物理学、地球科学等领域。
它可以用于预测未来的趋势或现象,或者用于解释已有的数据集。
离散点拟合曲线的拟合方法主要有两种,分别是最小二乘法和最小二次曲线拟合。
最小二乘法是一种用于在线性回归中寻找最佳拟合直线的方法,而最小二次曲线拟合则是将数据点拟合成一个二次曲线。
下面我们将详细介绍这两种方法以及它们的优缺点。
一、最小二乘法最小二乘法是一种常见的拟合方法,它的基本思想是将拟合曲线与数据点之间的误差最小化。
这种方法利用了一个称为残差平方和(RSS)的指标来衡量模型的质量。
残差平方和是指每个数据点与拟合曲线之间的距离的平方之和。
最小二乘法的目标是使这个距离最小,从而获得最佳的拟合曲线。
利用最小二乘法可以拟合各种类型的曲线,包括线性、指数、对数、多项式等。
最小二乘法的优点是:1、它是一种强大的统计工具,可以处理许多类型的曲线。
2、它能够有效地解决噪声和误差的问题,从而提高数据的准确性。
3、它易于实现和使用。
1、它假设数据点之间的误差符合正态分布,而这种假设在实际应用中可能不成立。
2、最小二乘法对离群值敏感,因为在这种情况下,残差平方和会被放大,从而影响拟合曲线的准确性。
二、最小二次曲线拟合1、它能够更精确地描述非线性趋势的数据。
2、它对离群值的敏感度较低,因为曲线更能够适应数据点的变化。
但是,最小二次曲线拟合也存在一些缺点:1、它仅适用于拟合二次函数,因此在处理其他类型的曲线时可能不太灵活。
2、它需要更多的计算量和时间,因为计算二次函数需要更多的参数。
需要注意的是,无论是最小二乘法还是最小二次曲线拟合,都需要考虑到拟合曲线的精度和辨识度是否够高。
因此在实践中,我们需要经过多次试验和调整来确定最佳的拟合曲线。