数值分析之曲线拟合
- 格式:ppt
- 大小:866.50 KB
- 文档页数:46
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 数值分析论文--曲线拟合的最小二乘法曲线拟合的最小二乘法姓名:徐志超学号:2019730059 专业:材料工程学院:材料科学与工程学院科目:数值分析曲线拟合的最小二乘法一、目的和意义在物理实验中经常要观测两个有函数关系的物理量。
根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。
这类问题通常有两种情况:一种是两个观测量 x 与 y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是 x 与 y 之间的函数形式还不知道,需要找出它们之间的经验公式。
后一种情况常假设 x 与 y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。
在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x,而把所有的误差只认为是y 的误差。
设 x 和 y 的函数关系由理论公式 y=f(x; c1, c2, cm)1 / 13(0-0-1)给出,其中 c1, c2, cm 是 m 个要通过实验确定的参数。
对于每组观测数据(xi, yi) i=1, 2,, N。
都对应于 xy 平面上一个点。
若不存在测量误差,则这些数据点都准确落在理论曲线上。
只要选取m 组测量值代入式(0-0-1),便得到方程组yi=f (x;c1,c2,cm)(0-0-2)式中 i=1,2,, m.求 m 个方程的联立解即得 m 个参数的数值。
显然Nm 时,参数不能确定。
在 Nm 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得 m 个参数值,只能用曲线拟合的方法来处理。
第六章 曲线拟合的最小二乘 /函数平方逼近初步实例:考察某种纤维的强度与其拉伸倍数的关系,下表是实际测定的24个纤维样品的强度与相应的拉伸倍数是记录:编 号拉伸倍数 强 度编 号拉伸倍数 强 度1 1.9 1.4135 5.522 1.314 5.253 2.1 1.8156 5.54 2.5 2.516 6.3 6.45 2.7 2.817 6.566 2.7 2.5187.1 5.37 3.53198 6.58 3.5 2.72087944218.98.5104 3.5229811 4.5 4.2239.58.112 4.63.524108.1i i y x ii y x 一.实例讲解6.2 数据拟合(最小二乘法)§2(())m nj j i i i j a x f ϕ===-∑∑2(())mi i i S x f ==-∑三、法方程组22δ∑==nj j j x a x S 0)()(ϕ由的函数为拟合系数),,1,0(n j a j =可知因此可假设01(,,,)n F a a a 2(())mnj j i i i j a x f ϕ===-∑∑因此求最小二乘解转化为二次函数四、加权最小二乘法(,)(0,1,,)i i x f i m = 对于一组给定的数据点(,)(0,1,,)i i x f i m = 在拟合的数据点中各点的重要性可能是不一样的()(,)0,1,,i i i i x x f i mρρ= 假设=表示数据点的权(或权重),权:即权重或者密度,统称为权系数.定义加权平方误差为222m i i i δρδ==∑2(())mi i i i S x f ρ==-∑-----(9)6.3 连续函数的最佳平方逼近§0102**222*[,],{,,,}[,].(),()();()[()()]()[()()]()().min n ni i i b a b a S f C a b span C a b S x S x a x f S x f x S x dx x f x S x dx S x f x ϕϕϕϕρρ=∈Φ∈Φ=⊂∀∈Φ=-=-=-∑⎰⎰ 设为的最佳平方逼近1. 最佳平方逼近问题-----(14)0(,)(,)(,)()()()(,)()()()0,1,,x n k i i k k i b k i k i a b k k k a a f d x x x dx d f x f x x dxk nG dϕϕϕϕϕρϕϕϕρϕ=⎧==⎪⎪⎪=⇒⎨⎪==⎪⎪=⎩⇒=∑⎰⎰ ⎪⎪⎪⎪⎭⎫ ⎝⎛),(),(),(01000n ϕϕϕϕϕϕ ),(),(),(11101n ϕϕϕϕϕϕ ),(),(),(10n n n n ϕϕϕϕϕϕ G =最小二乘法方法评注曲线拟和的最小二乘法是实验数据处理的常用方法。
数值分析中的最小二乘法与曲线拟合数值分析是现代理论与实践密切结合的一门交叉学科,其中最小二乘法和曲线拟合是其中两个非常重要的概念。
最小二乘法是一种数学运算方法,用于求解一组方程组的未知参数,使得每个方程的误差平方和最小。
在实际应用中,最小二乘法广泛应用于数据拟合、信号处理、回归分析等领域。
在数据拟合中,最小二乘法是一种常见的方法,它可以用于拟合曲线和函数。
它通过延伸曲线以获得局部数据之间的交点,并通过在它们上进行平均化的方法来尝试匹配数据。
最小二乘法的概念为我们提供了一个理论基础,以便在一定程度上预测新的数据中对象的行为或趋势。
但是,即使在相对简单的问题中,最小二乘法可能并不是最佳选择。
曲线拟合是对一系列数据进行插值的过程,以便获得与原始数据点更准确相匹配的曲线或函数。
曲线拟合可以通过在相邻数据点之间进行插值来完成。
在曲线拟合中,只有在数据有很好的统计关系或在相邻数据点
有很好的相关性时,才会产生准确的结果。
否则,结果可能并不
准确,因为这些结果取决于数据点的数量和分布。
需要注意的是,曲线拟合和最小二乘法并不是一个可以代替另
一个的工具。
它们的适用范围不同。
曲线拟合适用于对离散数据
点进行联合分析,而最小二乘法适用于求解连续数据的线性模型。
总之,数值分析中的最小二乘法和曲线拟合是非常实用的概念,可以应用于各种领域。
它们作为现代数据分析的主要工具之一,
不断吸引着越来越多的学者和工程师投入到其中,将继续发挥重
要作用。
数值分析法相关知识在生产和科学实验中,自变量x 与因变量y 间的函数关系()y f x =有时不能写出解析表达式,而只能得到函数在若干点的函数值或导数值,或者表达式过于复杂而需要较大的计算量。
当要求知道其它点的函数值时,需要估计函数值在该点的值。
为了完成这样的任务,需要构造一个比较简单的函数()y x ϕ=,使函数在观测点的值等于已知的值,或使函数在该点的导数值等于已知的值,寻找这样的函数()y x ϕ=有很多方法。
根据测量数据的类型有以下两类处理观测数据的方法。
(1)测量值是准确的,没有误差,一般用插值。
(2)测量值与真实值有误差,一般用曲线拟合。
曲线拟合法已知离散点上的数据集1122{(,),(,),,(,)}n n x y x y x y ,即已知在点集12{,,,}n x x x 上的函数值12{,,,}n y y y ,构造一个解析函数(其图形为一曲线)使()f x 在原离散点i x 上尽可能接近给定的i y 值,这一过程称为曲线拟合。
曲线拟合的一般步骤是先根据实验数据,结合相关定律,将要寻求的最恰当的拟合曲线方程形式预测出来,再用其他的数学方法确定经验公式中的参数。
对于事先给定的一组数据,确定经验公式一般可分为三步进行:(1)、确定经验公式的形式:根据系统和测定的数据的特点,并参照已知图形的特点确定经验公式的形式。
(2)、确定经验公式中的待定系数:计算待定系数的方法有许多常用的法有图示法、均值法、差分法、最小二乘法、插值法等。
(3)、检验:求出经验公式后,还要将测定的数据与用经验公式求出的理论数据作比较,验证经验公式的正确性,必要时还要修正经验公式。
关于确定经验公式的形式,可从以下几个方面入手:(1)、利用已知的结论确定经验公式形式,如由已知的胡克定律可以确定在一定条件下,弹性体的应变与应力呈线性关系等。
(2)、从分析实验数据的特点入手,将之与已知形式的函数图形相对照,确定经验公式的形式。
数值分析实验三:函数逼近与曲线拟合1曲线逼近方法的比较1.1问题描述曲线的拟合和插值,是逼近函数的基本方法,每种方法具有各自的特点和特定的适用范围,实际工作中合理选择方法是重要的。
考虑实验2.1中的著名问题。
下面的MATLAB程序给出了该函数的二次和三次拟合多项式。
x=-1:0.2:1;y=1./(1+25*x.*x);xx=-1:0.02:1;p2=polyfit(x,y,2);yy=polyval(p2,xx);plot(x,y,’o’,xx,yy);xlabel(‘x’);ylabel(‘y’);hold on;p3=polyfit(x,y,3);yy=polyval(p3,xx);plot(x,y,’o’,xx,yy);hold off;实验要求:(1) 将拟合的结果与拉格朗日插值及样条插值的结果比较。
(2) 归纳总结数值实验结果,试定性地说明函数逼近各种方法的适用范围,及实际应用中选择方法应注意的问题。
1.2算法设计对于曲线拟合,这里主要使用了多项式拟合,使用Matlab的polyfit函数,可以根据需要选用不同的拟合次数。
然后将拟合的结果和插值法进行比较即可。
本实验的算法比较简单,此处不再详述,可以参见给出的Matlab脚本文件。
1.3实验结果1.3.1多项式拟合1.3.1.1多项式拟合函数polyfit和拟合次数N的关系1 / 13首先使用polyfit函数对f(x)进行拟合。
为了便于和实验2.1相比较,这里采取相同的参数,即将拟合区间[-1,1]等分为10段,使用每一段区间端点作为拟合的数据点。
分别画出拟合多项式的次数N=2、3、4、6、8、10时,f(x)和多项式函数的图像,如图1所示。
Matlab 脚本文件为Experiment3_1_1.m。
Figure 1 多项式拟合与拟合次数N的关系可以看出,拟合次数N=2和3时,拟合效果很差。
增大拟合次数,N=4、6、8时,拟合效果有明显提高,但是N太大时,在区间两端附近会出现和高次拉格朗日插值函数类似的龙格现象。
数值分析上机作业实验报告专业:建筑与土木工程姓名:学号:联系电话:课题四 曲线拟合的最小二乘法一、问题提出从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。
在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量 y 与时间t 的拟合曲线。
二、要求1 、用最小二乘法进行曲线拟合;2 、近似解析表达式为()t ϕ=a 1t+a 2t 2+a 3t 33 、打印出拟合函数()t ϕ,并打印出()tj ϕ与()y tj 的误差,j=1,2...,12:4 、另外选取一个近似表达式,尝试拟合效果的比较;5 、* 绘制出曲线拟合图﹡。
三、目的和意义1 、掌握曲线拟合的最小二乘法;2 、最小二乘法亦可用于解超定线代数方程组;3 、探索拟合函数的选择与拟合精度间的关系。
四、实验结果:1.用最小二乘法做出的曲线拟合为三次多项式a1= -0.0052 ,a2= 0.2634 ,a3= 0.0178。
()tϕ= (-0.0052) t+ (0.2634) t2 + (0.0178) t3三次多项式的误差平方和=0.2583。
图形为:图形上红线表示拟合曲线,*表示实验所给的点。
源代码为:x=[0,5,10,15,20,25,30,35,40,45,50,55];y=[0,1.27,2.16,2.86,3.44,3.87,4.15,4.37,4.51,4.58,4.02,4.64]; a1=polyfit(x,y,3) %三次多项式拟合%b1= polyval(a1,x)r1= sum((y-b1).^2) %三次多项式误差平方和%plot(x,y,'*') %用*画出x,y图像%hold onplot(x,b1, 'r') %用红色线画出x,b1图像%(说明本程序调用了MATLAB中的函数polyfit、polyval、plot)2.另外选取几个近似表达式:主要选取6次、9次和12次的拟合表达式。
曲线拟合法
曲线拟合法是一种用于求解函数的统计学方法。
它可以利用已经收集到的数据,通过最小二乘法(Least Square Method)来求解该数据集所对应的函数,从而实现对数据和函数之间的拟合。
曲线拟合法主要用来估计定量数据的表达式,从而研究特定定性数据,如温度、压力等的变化规律。
该方法可以让我们更好地理解数据的特征,从而做出更好的决策。
曲线拟合法是一种基于样本数据的有效工具,它可以帮助我们更加准确地估计函数的形式。
它不仅能够对历史数据进行准确预测,而且可以用来探索定量数据变化的相关规律,从而更好地控制和平衡变量之间的关系。
曲线拟合法需要将被研究的函数表示为一个曲线,并使用最小二乘法来拟合该曲线。
在这个过程中,需要先把函数分解为一系列的函数部分,然后利用系数来表示它们之间的关系,最后再将这些系数拟合到原始函数上。
此外,曲线拟合法还可以用来估计和推断未知的数据。
它可以使用已知的数据来拟合函数,然后利用拟合函数来预测未知点的值。
这样,便可以获得更加准确的数据估计。
因此,曲线拟合法是一种有效的统计学方法,它可以帮助我们准确预测数据,并且能够发现和探索定量数据变化的规律。