利用古典概型概率公式求随机事件的概率,关键是求试验的基本事件总
数n及事件A所包含的基本事件个数m.①如果基本事件的个数比较少,可 用列举法将基本事件一一列出,然后求出m、n,再利用公式P(A)= 求出 m
n
事件的概率.②如果基本事件的个数比较多,列举有一定困难,也可借助两 个计数原理及排列组合知识计算m、n,再运用公式P(A)= 求概m率.
个.
答案 25
解析 摸出黑球的概率是1-0.40-0.35=0.25,所以黑球的个数为100×0.25=
25.
c
第十一页,编辑于星期六:二十点 二十分。
6.如图所示的正方形中,将边AB、AD各4等分,分别作AB、AD的平行线
段,构成4×4方格网,则从图中取出一个由网格线形成的矩形,恰好为正方
形的概率是
第十七页,编辑于星期六:二十点 二十分。
答案 (1)D (2)A 解析 (1)记事件A:甲或乙被录用.从五人中录用三人,基本事件有(甲,乙,
丙)、(甲,乙,丁)、(甲,乙,戊)、(甲,丙,丁)、(甲,丙,戊)、(甲,丁,戊)、(乙,
丙,丁)、(乙,丙,戊)、(乙,丁,戊)、(丙,丁,戊),共10种可能,而A的对立事件 A仅有(丙,丁,戊)一种可能,∴A的对立事件 的A概率P( )=A , 1
1.随机事件及其概率
(1)在一定的条件下必然要发生的事件,叫做必然事件. (2)在一定的条件下不可能发生的事件,叫做不可能事件;在一定的条件下
可能发生也可能不发生的事件,叫做随机事件.
(3)在大量重复进行同一试验时,事件A发生的频率 总是接近于某个常 数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A).
6
)=1 N
- 1= 5.