表示沸腾的粒子模型
- 格式:docx
- 大小:51.87 KB
- 文档页数:1
水的三态转变(教学设计)(2021-05-22 08:12:53)标签:水的三态转变(教学设计)一、教学目标1.通过熟悉水的三态活动,知道水在自然界中有不同的表现形式,欣赏感受大自然的神奇和美丽。
2.通过认识水的性质活动,知道水的三态变化的一些科学术语(沸点、熔点、熔化、沸腾、凝固、液化、升华和凝华)及其各自的定义。
3.通过应用科学术语活动,能选择适当的使用科学术语来解释日常现象,强化应用科学术语的意识。
4.通过用粒子模型来解释水的三态变化活动,理解引起水的三态变化原因,培养学生分析比较和表达交流能力。
二、学习重点和难点【重点】1.认识水的三态变化。
2.用实验数据来说明冰熔化或水沸腾时,虽然吸热但是温度不变,知道熔点和沸点的含义。
3.用粒子理论来解释水的三态变化。
【难点】1.正确使用科学术语描述日常现象中水的三态变化。
2.用粒子理论来解释水的三态变化。
三、教学准备【器材】活动一:水、冰块、烧杯、多媒体影像播放器实物投影仪活动二:碎冰块、热水、温度计、漏斗、烧杯、铁架台和铁夹、电子停表、酒精灯、平底烧瓶、带孔铁片、石棉网、玻璃片(或瓷砖、镜子)、三脚架、坩埚钳活动三:实物投影仪活动四:实物投影仪(或电脑)【资源】工作纸、图片(或水的三态变化粒子模型FLASH课件)、自然界水的各种美景影像资料、水的凝华(制霜)实验录像【活动设计】活动一:水的表现形式分类活动目标:◆观察、欣赏自然界水的不同表现形式,并欣赏感受大自然的神奇和美丽。
◆说一说画面中各种水的表现形式。
按固态、液态、气态的性质辨别水的形态,并给水的不同形式进行分类,◆说说自然界中这些水的表现形式是怎样形成的。
◆教师用多媒体影像资料展示自然界水的各类美景,唤起学生的生活经验,不仅可以直接从形态上归纳出水的各类形态,同时也可以激发学生的研究兴趣。
活动二:熟悉水的性质活动目标:1.从冰的熔化实验中,知道熔化这一科学术语和它的定义。
通过实验中数据的记录、比较分析,知道熔点的概念及一般冰的熔点是0℃。
上帝粒子,higgs玻色子来了上帝粒子被发现的相关照片在瑞士和法国边界的繁华小城的地下“捉”到神秘粒子。
疑似上帝粒子被发现:欧洲核子研究中心7月4日宣布,该中心的两个强子对撞实验项目均发现一种新的粒子,具有和科学家们多年以来一直寻找的希格斯玻色子相一致的特性。
希格斯玻色子是最后一种未被证明存在的基本粒子,由于它难以寻觅又极为重要,因此也被称为“上帝粒子”。
(《证券时报》快讯中心)疑似上帝粒子被发现:欧洲核子研究中心地上部分。
(《证券时报》快讯中心)疑似上帝粒子被发现:大型强子对撞机,宛如科幻世界。
(《证券时报》快讯中心)疑似上帝粒子被发现。
(《证券时报》快讯中心)CMS实验的巨大探测器,是欧洲大型强子对撞机找到希格斯-玻色子的主要设备之一。
(《证券时报》快讯中心)探测器中显示的粒子对撞后形成新粒子的运动轨迹图片,由欧洲核子研究中心于2011年12月13日发布。
什么是希格斯玻色子希格斯玻色子是物理学标准模型当中最后一个待发现的粒子。
7月4日欧洲核子研究中心(CERN)的科学家宣布,在寻找希格斯玻色子的过程中,他们发现了一个新粒子,与希格斯玻色子有吻合之处。
一般认为,大约要到今年年底,才有可能确认它是否真是希格斯玻色子。
标准模型是我们当前人类对自然界的一个基本物理理论。
它告诉我们自然界4种力中的3个电磁力、强力和弱力是如何发挥和实现作用的。
标准模型的理论分成两部分,一部分是“杨振宁-米尔斯规范场理论”(Yang-Mills Gauge Theory),在强相互作用和电磁相互作用中,杨-米理论是发挥作用的,但在弱相互作用中,杨振宁-米尔斯规范场理论要发挥作用还需要希格斯玻色子的配合。
理论上,希格斯玻色子将为杨-米理论中传递弱相互作用的粒子赋予质量,使得弱力成为短程力,符合实验的结果。
这种质量赋予是怎样进行的呢?真空中希格斯玻色子的场可以处于一个非常特殊的状态,理论上叫做凝聚态,打个比方就像稀糖浆或者蜜糖这样的状态。
想起CFD,人们总会想起FLUENT,丰富的物理模型使其应用广泛,从机翼空气流动到熔炉燃烧,从鼓泡塔到玻璃制造,从血液流动到半导体生产,从洁净室到污水处理工厂的设计,另外软件强大的模拟能力还扩展了在旋转机械,气动噪声,内燃机和多相流系统等领域的应用。
今天,全球数以千计的公司得益于FLUENT的这一工程设计与分析软件,它在多物理场方面的模拟能力使其应用范围非常广泛,是目前功能最全的CFD软件。
FLUENT因其用户界面友好,算法健壮,新用户容易上手等优点一直在用户中有着良好的口碑。
长期以来,功能强大的模块,易用性和专业的技术支持所有这些因素使得FLUENT成为企业选择CFD 软件时的首选。
网格技术,数值技术,并行计算计算网格是任何CFD计算的核心,它通常把计算域划分为几千甚至几百万个单元,在单元上计算并存储求解变量,FLUENT使用非结构化网格技术,这就意味着可以有各种各样的网格单元:二维的四边形和三角形单元,三维的四面体核心单元、六面体核心单元、棱柱和多面体单元。
这些网格可以使用FLUENT的前处理软件GAMBIT自动生成,也可以选择在ICEM CFD工具中生成。
六面体核心网格四边形平铺网格在目前的CFD市场, FLUENT以其在非结构网格的基础上提供丰富物理模型而著称,久经考验的数值算法和鲁棒性极好的求解器保证了计算结果的精度,新的NITA算法大大减少了求解瞬态问题的所需时间,成熟的并行计算能力适用于NT,Linux或Unix平台,而且既适用单机的多处理器又适用网络联接的多台机器。
动态加载平衡功能自动监测并分析并行性能,通过调整各处理器间的网格分配平衡各CPU的计算负载。
并行速度的比较湍流和噪声模型FLUENT的湍流模型一直处于商业CFD软件的前沿,它提供的丰富的湍流模型中有经常使用到的湍流模型、针对强旋流和各相异性流的雷诺应力模型等,随着计算机能力的显著提高,FLUENT已经将大涡模拟(LES)纳入其标准模块,并且开发了更加高效的分离涡模型(DES),FLUENT提供的壁面函数和加强壁面处理的方法可以很好地处理壁面附近的流动问题。
八年级下册第二章《微粒的模型与符号》教师资料一、模型、符号的建立与作用1、模型的作用:模型可以帮助人们认识和理解一些不能直接观察到的或复杂的事物。
模型可以是一幅图、一张表或计算机图象,也可以是一个复杂的对象或过程的示意。
2、符号的作用:(1)简单明了地表示事物;(2)可避免由于事物形态不同引起的混;(3)可避免由于表达的文字语言不同引起的混乱。
二、物质的微观粒子模型3、分子是由原子构成的。
不同种类和不同数量的原子就能构成各种不同的分子。
4、构成分子的原子可以是同种原子,也可以是不同种原子。
5、分子是保持物质化学性质的最小粒子,因此,化学性质不同是因为分子不同造成的。
6、有些物质直接由原子构成的,如:金属单质(如:铁Fe、钠Na)、稀有气体单质(如:氦气He、氖气Ne、氩气Ar等),部分固态非金属单质(如:碳C、磷P、硫S、硅Si等)7、分子和原子的体积都很小,不同种类的分子和原子质量也不同。
三、原子结构的模型8、原子结构模型的建立:汤姆生(发现电子带负电,原子不带电,提出一个原子模型)——卢瑟福(α粒子轰击金属箔实验,提出核式结构模型)——波尔(改进原子核式模型,认为电子有稳定轨道)——现代电子云模型9、注:(1)核电荷数:原子核所带的电荷数(带正电),等于质子数。
(2)原子核和核外的电子所带的电荷总数相等,电性相反,整个原子不显电性。
(3)质子和中子又是由更小的微粒夸克构成。
(4)核电荷数= 质子数= 核外电子数;相对原子质量=质子数+中子数。
(5)原子的质量主要集中在原子核上。
(6)不是每个原子核中都有中子,质子和中子相近但不一定相等。
(7)不同种类的原子,质子数(核电荷数)不同。
10、离子:带电的原子或原子团,带正电的叫阳离子,带负电的叫阴离子。
11、钠在氯气中燃烧(1)现象:剧烈燃烧呈明亮的黄色火焰,并产生白烟,冷却后得到白色固体。
(2)微观:钠原子失去电子,形成带正电的钠离子,氯原子得到电子形成带负电的氯离子,带相反电荷的钠离子和氯离子相互吸引,构成了氯化钠。
Topic Three 沸腾传热基础(Elements of Boiling Heat Transfer)本讲要点:本讲介绍池内沸腾传热与强迫对流沸腾传热基础。
给出了各种沸腾模式和流动工况下的典型关联式。
重点是针对诸如大池内的单管以及单根竖直圆管等简单几何条件进行介绍。
还介绍了一些世界问题,比如由于成核困难而导致的沸腾曲线的滞后、由于存在不溶性气体而产生的沸腾曲线迁移以及表面和流体污染等等。
还包括了微重力条件下的两相流动和传热问题。
1. Introduction 引言相变传热系数和锅炉与蒸发器设计中的压降因子等涉及到一些最为复杂的热-流体现象。
由于需求以及智力和知识上的挑战,这一领域内的研究在过去的五十至七十年间呈爆炸型增长趋势。
沸腾传热科学与技术所面对的是这样一个局面:总共有超过30,000篇出版物的文献,每年约50本教材和参考书,每年还有约1000篇论文出现。
显然,我们不再可能逐篇咀嚼甚至综述这些信息。
但是,设计者仍必须对传热和压降进行预测,需要掌握预测方法。
所采用的关系也不总是基于理论,但又必须有足够合理的精度。
因此,我们应当对物理现象和机理有一个较好的认识,从而能够合理地采用有关关联式,这一点十分重要。
本讲的重点将放在简单几何条件(如大池内的单管、单根竖直圆管等)下的传热特征介绍。
很多情况下,复杂几何结构(如:水平管束、多根竖直管道等等)下的关联式,都是建立于对简单构型的经验之上。
另外,本讲主要讨论纯净流体,至于混合物的沸腾及污垢等情况,可能的话,我们还会进行介绍。
沸腾过程在传统的恒定热流或恒定壁温的边界条件下响应是不同的。
前一边界条件主要与具有固定热耗散的系统有关,比如,电热锅炉或者核反应堆堆芯等。
这一情形也会发生在诸如电子加速器靶心或计算机芯片等高功率密度设备的液体冷却情况。
而恒壁温则见诸发生相变的两种流体的热交换器等情况。
但是在一些情况中,比如,化石燃料锅炉等,热流实际上也是恒定的。